1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright (c) 2017-present, PingCAP, Inc. Licensed under Apache-2.0.

//! Synchronizer of writes.
//!
//! This module relies heavily on unsafe codes. Extra call site constraints are
//! required to maintain memory safety. Use it with great caution.

use std::cell::Cell;
use std::marker::PhantomData;
use std::ptr::NonNull;
use std::time::Instant;

use fail::fail_point;
use parking_lot::{Condvar, Mutex};

type Ptr<T> = Option<NonNull<T>>;

///
pub struct Writer<P, O> {
    next: Cell<Ptr<Writer<P, O>>>,
    payload: *mut P,
    output: Option<O>,

    pub(crate) sync: bool,
    pub(crate) start_time: Instant,
}

impl<P, O> Writer<P, O> {
    /// Creates a new writer.
    ///
    /// # Safety
    ///
    /// Data pointed by `payload` is mutably referenced by this writer. Do not
    /// access the payload by its original name during this writer's lifetime.
    pub fn new(payload: &mut P, sync: bool, start_time: Instant) -> Self {
        Writer {
            next: Cell::new(None),
            payload: payload as *mut _,
            output: None,
            sync,
            start_time,
        }
    }

    /// Returns an immutable reference to the payload.
    pub fn get_payload(&self) -> &P {
        unsafe { &*self.payload }
    }

    /// Sets the output. This method is re-entrant.
    pub fn set_output(&mut self, output: O) {
        self.output = Some(output);
    }

    /// Consumes itself and yields an output.
    ///
    /// # Panics
    ///
    /// Panics if called before being processed by a [`WriteBarrier`] or setting
    /// the output itself.
    pub fn finish(mut self) -> O {
        self.output.take().unwrap()
    }

    fn get_next(&self) -> Ptr<Writer<P, O>> {
        self.next.get()
    }

    fn set_next(&self, next: Ptr<Writer<P, O>>) {
        self.next.set(next);
    }
}

/// A collection of writers. User thread (leader) that receives a [`WriteGroup`]
/// is responsible for processing its containing writers.
pub struct WriteGroup<'a, 'b, P: 'a, O: 'a> {
    start: Ptr<Writer<P, O>>,
    back: Ptr<Writer<P, O>>,

    ref_barrier: &'a WriteBarrier<P, O>,
    marker: PhantomData<&'b Writer<P, O>>,
}

impl<'a, 'b, P, O> WriteGroup<'a, 'b, P, O> {
    pub fn iter_mut(&mut self) -> WriterIter<'_, 'a, 'b, P, O> {
        WriterIter {
            start: self.start,
            back: self.back,
            marker: PhantomData,
        }
    }
}

impl<'a, 'b, P, O> Drop for WriteGroup<'a, 'b, P, O> {
    fn drop(&mut self) {
        self.ref_barrier.leader_exit();
    }
}

/// An iterator over the [`Writer`]s in one [`WriteGroup`].
pub struct WriterIter<'a, 'b, 'c, P: 'c, O: 'c> {
    start: Ptr<Writer<P, O>>,
    back: Ptr<Writer<P, O>>,
    marker: PhantomData<&'a WriteGroup<'b, 'c, P, O>>,
}

impl<'a, 'b, 'c, P, O> Iterator for WriterIter<'a, 'b, 'c, P, O> {
    type Item = &'a mut Writer<P, O>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.start.is_none() {
            None
        } else {
            let writer = unsafe { self.start.unwrap().as_mut() };
            if self.start == self.back {
                self.start = None;
            } else {
                self.start = writer.get_next();
            }
            Some(writer)
        }
    }
}

struct WriteBarrierInner<P, O> {
    head: Cell<Ptr<Writer<P, O>>>,
    tail: Cell<Ptr<Writer<P, O>>>,

    pending_leader: Cell<Ptr<Writer<P, O>>>,
    pending_index: Cell<usize>,
}

unsafe impl<P: Send, O: Send> Send for WriteBarrierInner<P, O> {}

impl<P, O> Default for WriteBarrierInner<P, O> {
    fn default() -> Self {
        WriteBarrierInner {
            head: Cell::new(None),
            tail: Cell::new(None),
            pending_leader: Cell::new(None),
            pending_index: Cell::new(0),
        }
    }
}

/// A synchronizer of [`Writer`]s.
pub struct WriteBarrier<P, O> {
    inner: Mutex<WriteBarrierInner<P, O>>,
    leader_cv: Condvar,
    follower_cvs: [Condvar; 2],
}

impl<P, O> Default for WriteBarrier<P, O> {
    fn default() -> Self {
        WriteBarrier {
            leader_cv: Condvar::new(),
            follower_cvs: [Condvar::new(), Condvar::new()],
            inner: Mutex::new(WriteBarrierInner::default()),
        }
    }
}

impl<P, O> WriteBarrier<P, O> {
    /// Waits until the caller should perform some work. If `writer` has become
    /// the leader of a set of writers, returns a [`WriteGroup`] that contains
    /// them, `writer` included.
    pub fn enter<'a>(&self, writer: &'a mut Writer<P, O>) -> Option<WriteGroup<'_, 'a, P, O>> {
        let node = unsafe { Some(NonNull::new_unchecked(writer)) };
        let mut inner = self.inner.lock();
        if let Some(tail) = inner.tail.get() {
            unsafe {
                tail.as_ref().set_next(node);
            }
            inner.tail.set(node);

            if inner.pending_leader.get().is_some() {
                // follower of next write group.
                self.follower_cvs[inner.pending_index.get() % 2].wait(&mut inner);
                return None;
            } else {
                // leader of next write group.
                inner.pending_leader.set(node);
                inner
                    .pending_index
                    .set(inner.pending_index.get().wrapping_add(1));
                //
                self.leader_cv.wait(&mut inner);
                inner.pending_leader.set(None);
            }
        } else {
            // leader of a empty write group. proceed directly.
            debug_assert!(inner.pending_leader.get().is_none());
            inner.head.set(node);
            inner.tail.set(node);
        }

        Some(WriteGroup {
            start: node,
            back: inner.tail.get(),
            ref_barrier: self,
            marker: PhantomData,
        })
    }

    /// Must called when write group leader finishes processing its responsible
    /// writers, and next write group should be formed.
    fn leader_exit(&self) {
        fail_point!("write_barrier::leader_exit", |_| {});
        let inner = self.inner.lock();
        if let Some(leader) = inner.pending_leader.get() {
            // wake up leader of next write group.
            self.leader_cv.notify_one();
            // wake up follower of current write group.
            self.follower_cvs[inner.pending_index.get().wrapping_sub(1) % 2].notify_all();
            inner.head.set(Some(leader));
        } else {
            // wake up follower of current write group.
            self.follower_cvs[inner.pending_index.get() % 2].notify_all();
            inner.head.set(None);
            inner.tail.set(None);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::sync::mpsc;
    use std::sync::{Arc, Barrier};
    use std::thread::{self, Builder as ThreadBuilder};
    use std::time::Duration;

    #[test]
    fn test_sequential_groups() {
        let barrier: WriteBarrier<(), u32> = Default::default();
        let mut payload = ();
        let mut leaders = 0;
        let mut processed_writers = 0;

        for _ in 0..4 {
            let mut writer = Writer::new(&mut payload, false, Instant::now());
            {
                let mut wg = barrier.enter(&mut writer).unwrap();
                leaders += 1;
                for writer in wg.iter_mut() {
                    writer.set_output(7);
                    processed_writers += 1;
                }
            }
            assert_eq!(writer.finish(), 7);
        }

        assert_eq!(processed_writers, 4);
        assert_eq!(leaders, 4);
    }

    struct ConcurrentWriteContext {
        barrier: Arc<WriteBarrier<u32, u32>>,

        seq: u32,
        ths: Vec<thread::JoinHandle<()>>,
        leader_exit_tx: mpsc::SyncSender<()>,
        leader_exit_rx: mpsc::Receiver<()>,
    }

    impl ConcurrentWriteContext {
        fn new() -> Self {
            let (leader_exit_tx, leader_exit_rx) = mpsc::sync_channel(0);
            Self {
                barrier: Default::default(),
                seq: 0,
                ths: Vec::new(),
                leader_exit_tx,
                leader_exit_rx,
            }
        }

        // 1) create `n` writers and form a new write group
        // 2) current active write group finishes writing and exits
        // 3) the new write group enters writing phrase
        fn step(&mut self, n: usize) {
            if self.ths.is_empty() {
                // ensure there is at least one active writer.
                self.seq += 1;
                let (leader_enter_tx, leader_enter_rx) = mpsc::channel();

                let barrier = self.barrier.clone();
                let leader_exit_tx = self.leader_exit_tx.clone();
                let mut seq = self.seq;
                self.ths.push(
                    ThreadBuilder::new()
                        .spawn(move || {
                            let mut writer = Writer::new(&mut seq, false, Instant::now());
                            {
                                let mut wg = barrier.enter(&mut writer).unwrap();
                                leader_enter_tx.send(()).unwrap();
                                let mut n = 0;
                                for w in wg.iter_mut() {
                                    w.set_output(*w.get_payload());
                                    n += 1;
                                }
                                assert_eq!(n, 1);
                                leader_exit_tx.send(()).unwrap();
                            }
                            assert_eq!(writer.finish(), seq);
                        })
                        .unwrap(),
                );

                leader_enter_rx.recv().unwrap();
            }

            let prev_writers = self.ths.len();
            let (leader_enter_tx, leader_enter_rx) = mpsc::channel();
            let start_thread = Arc::new(Barrier::new(n + 1));
            for _ in 0..n {
                self.seq += 1;

                let barrier = self.barrier.clone();
                let start_thread = start_thread.clone();
                let leader_enter_tx_clone = leader_enter_tx.clone();
                let leader_exit_tx = self.leader_exit_tx.clone();
                let mut seq = self.seq;
                self.ths.push(
                    ThreadBuilder::new()
                        .spawn(move || {
                            let mut writer = Writer::new(&mut seq, false, Instant::now());
                            start_thread.wait();
                            if let Some(mut wg) = barrier.enter(&mut writer) {
                                leader_enter_tx_clone.send(()).unwrap();
                                let mut idx = 0;
                                for w in wg.iter_mut() {
                                    w.set_output(*w.get_payload());
                                    idx += 1;
                                }
                                assert_eq!(idx, n as u32);
                                leader_exit_tx.send(()).unwrap();
                            }
                            assert_eq!(writer.finish(), seq);
                        })
                        .unwrap(),
                );
            }
            start_thread.wait();
            std::thread::sleep(Duration::from_millis(100));
            // unblock current leader
            self.leader_exit_rx.recv().unwrap();
            for th in self.ths.drain(0..prev_writers) {
                th.join().unwrap();
            }
            // make sure new leader is ready
            leader_enter_rx.recv().unwrap();
        }

        fn join(&mut self) {
            self.leader_exit_rx.recv().unwrap();
            for th in self.ths.drain(..) {
                th.join().unwrap();
            }
        }
    }

    #[test]
    fn test_parallel_groups() {
        let mut ctx = ConcurrentWriteContext::new();
        for i in 1..5 {
            ctx.step(i);
        }
        ctx.join();
    }
}