1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
use radix_common::prelude::*;
use radix_rust::prelude::borrow::*;
use radix_substate_store_interface::interface::*;
pub type UnmergeableSubstateDatabaseOverlay<'a, S> = SubstateDatabaseOverlay<&'a S, S>;
pub type MergeableSubstateDatabaseOverlay<'a, S> = SubstateDatabaseOverlay<&'a mut S, S>;
pub type OwnedSubstateDatabaseOverlay<S> = SubstateDatabaseOverlay<S, S>;
pub struct SubstateDatabaseOverlay<S, D> {
/// The database overlay. All commits made to the database are written to the overlay. This
/// covers new values and deletions too.
overlay: StagingDatabaseUpdates,
/// A mutable or immutable reference to the root database that this type overlays.
/// It only needs to be mutable if you wish to commit to the root store.
/// To be useful, `S` should implement at least `Borrow<D>`.
root: S,
/// The concrete type of the underlying substate database.
substate_database_type: PhantomData<D>,
}
impl<'a, D> UnmergeableSubstateDatabaseOverlay<'a, D> {
pub fn new_unmergeable(root_database: &'a D) -> Self {
Self::new(root_database)
}
}
impl<'a, D> MergeableSubstateDatabaseOverlay<'a, D> {
pub fn new_mergeable(root_database: &'a mut D) -> Self {
Self::new(root_database)
}
}
impl<D> OwnedSubstateDatabaseOverlay<D> {
pub fn new_owned(root_database: D) -> Self {
Self::new(root_database)
}
}
impl<S, D> SubstateDatabaseOverlay<S, D> {
pub fn new(root_database: S) -> Self {
Self {
overlay: Default::default(),
root: root_database,
substate_database_type: PhantomData,
}
}
pub fn deconstruct(self) -> (S, DatabaseUpdates) {
(self.root, self.overlay.into())
}
pub fn database_updates(&self) -> DatabaseUpdates {
self.overlay.clone().into()
}
pub fn into_database_updates(self) -> DatabaseUpdates {
self.overlay.into()
}
}
impl<S: Borrow<D>, D> SubstateDatabaseOverlay<S, D> {
fn get_readable_root(&self) -> &D {
self.root.borrow()
}
}
impl<S: BorrowMut<D>, D> SubstateDatabaseOverlay<S, D> {
fn get_writable_root(&mut self) -> &mut D {
self.root.borrow_mut()
}
}
impl<S: BorrowMut<D>, D: CommittableSubstateDatabase> SubstateDatabaseOverlay<S, D> {
pub fn commit_overlay_into_root_store(&mut self) {
let overlay = mem::replace(&mut self.overlay, StagingDatabaseUpdates::default());
self.get_writable_root().commit(&overlay.into());
}
}
impl<S: Borrow<D>, D: SubstateDatabase> SubstateDatabase for SubstateDatabaseOverlay<S, D> {
fn get_substate(
&self,
partition_key @ DbPartitionKey {
node_key,
partition_num,
}: &DbPartitionKey,
sort_key: &DbSortKey,
) -> Option<DbSubstateValue> {
let overlay_lookup_result = match self.overlay.node_updates.get(node_key) {
// This particular node key exists in the overlay and probably has some partitions
// written to the overlay.
Some(StagingNodeDatabaseUpdates { partition_updates }) => {
match partition_updates.get(partition_num) {
// This partition has some data written to the overlay
Some(StagingPartitionDatabaseUpdates::Delta { substate_updates }) => {
match substate_updates.get(sort_key) {
// The substate value is written to the overlay. It is a database set
// so we return the new value.
Some(DatabaseUpdate::Set(substate_value)) => {
OverlayLookupResult::Found(Some(substate_value))
}
// The substate value is written to the overlay. It is a database delete
// so we return a `Found(None)`.
Some(DatabaseUpdate::Delete) => OverlayLookupResult::Found(None),
// This particular substate was not written to the overlay and should be
// read from the underlying database.
None => OverlayLookupResult::NotFound,
}
}
Some(StagingPartitionDatabaseUpdates::Reset {
new_substate_values,
}) => match new_substate_values.get(sort_key) {
// The substate value is written to the overlay.
Some(substate_value) => OverlayLookupResult::Found(Some(substate_value)),
// In a partition reset we delete all substates in a partition and can also
// write new substates there. If the substate that we're looking for can't
// be found in the new substate values of a partition delete then it is
// one of the deleted substates. Therefore, the following will report that
// it has found the substate value in the overlay and that the substate
// does not exist.
None => OverlayLookupResult::Found(None),
},
// This particular partition for the specified node key does not exist in the
// overlay and should be read from the underlying database.
None => OverlayLookupResult::NotFound,
}
}
// This particular node key does not exist in the overlay. The substate must be read
// from the underlying database.
None => OverlayLookupResult::NotFound,
};
match overlay_lookup_result {
OverlayLookupResult::Found(substate_value) => substate_value.cloned(),
OverlayLookupResult::NotFound => self
.get_readable_root()
.get_substate(partition_key, sort_key),
}
}
fn list_entries_from(
&self,
partition_key @ DbPartitionKey {
node_key,
partition_num,
}: &DbPartitionKey,
from_sort_key: Option<&DbSortKey>,
) -> Box<dyn Iterator<Item = PartitionEntry> + '_> {
// This function iterates over entries of the specified partition. Therefore, we don't need
// to think about other partitions here. We first check if there are any partition updates
// for the specified partition. If there is not, no overlaying is needed and we can just
// return the iterator of the root store.
let from_sort_key = from_sort_key.cloned();
match self.overlay.node_updates.get(node_key) {
// There is a partition update in the overlay.
Some(StagingNodeDatabaseUpdates { partition_updates }) => {
match partition_updates.get(partition_num) {
// The partition was reset. None of the substates of this partition that exist
// in the root store "exist" anymore. We just need an iterator over the new
// substates in the reset action.
Some(StagingPartitionDatabaseUpdates::Reset {
new_substate_values,
}) => {
match from_sort_key {
// A `from_sort_key` is specified. Only return sort keys that are larger
// than or equal to the from sort key. We do this through BTreeMap's
// range function instead of doing filtering. We're able to do this
// since a `BTreeMap`'s keys are always sorted.
Some(from_sort_key) => {
Box::new(new_substate_values.range(from_sort_key..).map(
|(sort_key, substate_value)| {
(sort_key.clone(), substate_value.clone())
},
))
}
// No `from_sort_key` is specified. Start iterating from the beginning.
None => Box::new(new_substate_values.iter().map(
|(sort_key, substate_value)| {
(sort_key.clone(), substate_value.clone())
},
)),
}
}
// There are some changes that need to be overlayed.
Some(StagingPartitionDatabaseUpdates::Delta { substate_updates }) => {
let underlying = self
.get_readable_root()
.list_entries_from(partition_key, from_sort_key.as_ref());
match from_sort_key {
// A `from_sort_key` is specified. Only return sort keys that are larger
// than or equal to the from sort key. We do this through BTreeMap's
// range function instead of doing filtering. We're able to do this
// since a `BTreeMap`'s keys are always sorted.
Some(from_sort_key) => {
let overlaying = substate_updates.range(from_sort_key..).map(
|(sort_key, database_update)| match database_update {
DatabaseUpdate::Set(substate_value) => {
(sort_key.clone(), Some(substate_value.clone()))
}
DatabaseUpdate::Delete => (sort_key.clone(), None),
},
);
Box::new(OverlayingIterator::new(underlying, overlaying))
}
// No `from_sort_key` is specified. Start iterating from the beginning.
None => {
let overlaying =
substate_updates.iter().map(|(sort_key, database_update)| {
match database_update {
DatabaseUpdate::Set(substate_value) => {
(sort_key.clone(), Some(substate_value.clone()))
}
DatabaseUpdate::Delete => (sort_key.clone(), None),
}
});
Box::new(OverlayingIterator::new(underlying, overlaying))
}
}
}
// Overlay doesn't contain anything for the provided partition number. Return an
// iterator over the data in the root store.
None => self
.get_readable_root()
.list_entries_from(partition_key, from_sort_key.as_ref()),
}
}
// Overlay doesn't contain anything for the provided node key. Return an iterator over
// the data in the root store.
None => self
.get_readable_root()
.list_entries_from(partition_key, from_sort_key.as_ref()),
}
}
}
impl<S, D> CommittableSubstateDatabase for SubstateDatabaseOverlay<S, D> {
fn commit(&mut self, database_updates: &DatabaseUpdates) {
merge_database_updates(&mut self.overlay, database_updates.clone())
}
}
impl<S: Borrow<D>, D: ListableSubstateDatabase> ListableSubstateDatabase
for SubstateDatabaseOverlay<S, D>
{
fn list_partition_keys(&self) -> Box<dyn Iterator<Item = DbPartitionKey> + '_> {
let overlying = self
.overlay
.node_updates
.iter()
.flat_map(
|(node_key, StagingNodeDatabaseUpdates { partition_updates })| {
partition_updates
.keys()
.map(|partition_num| DbPartitionKey {
node_key: node_key.clone(),
partition_num: *partition_num,
})
},
)
.map(|partition_key| (partition_key, Some(())));
let underlying = self
.get_readable_root()
.list_partition_keys()
.map(|partition_key| (partition_key, ()));
Box::new(OverlayingIterator::new(underlying, overlying).map(|(value, _)| value))
}
}
pub enum OverlayLookupResult<T> {
Found(T),
NotFound,
}
fn merge_database_updates(this: &mut StagingDatabaseUpdates, other: DatabaseUpdates) {
for (
other_node_key,
NodeDatabaseUpdates {
partition_updates: other_partition_updates,
},
) in other.node_updates.into_iter()
{
// Check if the other node key exists in `this` database updates.
match this.node_updates.get_mut(&other_node_key) {
// The node key exists in `this` database updates.
Some(StagingNodeDatabaseUpdates {
partition_updates: this_partition_updates,
}) => {
for (other_partition_num, other_partition_database_updates) in
other_partition_updates.into_iter()
{
// Check if the partition num exists in `this` database updates
match this_partition_updates.get_mut(&other_partition_num) {
// The partition exists in both `this` and `other` and now we must combine
// both the partition database updates together
Some(this_partition_database_updates) => {
match (
this_partition_database_updates,
other_partition_database_updates,
) {
// This and other are both `Delta`. We insert all entries in the
// other state updates into this substate updates. This will also
// override anything in `this` with anything in `other`.
(
StagingPartitionDatabaseUpdates::Delta {
substate_updates: this_substate_updates,
},
PartitionDatabaseUpdates::Delta {
substate_updates: other_substate_updates,
},
) => this_substate_updates.extend(other_substate_updates),
// We need to apply the delta on the reset.
(
StagingPartitionDatabaseUpdates::Reset {
new_substate_values: this_new_substate_values,
},
PartitionDatabaseUpdates::Delta {
substate_updates: other_substate_updates,
},
) => {
for (other_sort_key, other_database_update) in
other_substate_updates.into_iter()
{
match other_database_update {
DatabaseUpdate::Set(other_substate_value) => {
this_new_substate_values
.insert(other_sort_key, other_substate_value);
}
DatabaseUpdate::Delete => {
this_new_substate_values.remove(&other_sort_key);
}
}
}
}
// Whatever the current state is, if the other database update is
// a partition reset then it takes precedence.
(
this_partition_database_updates,
other_partition_database_updates @ PartitionDatabaseUpdates::Reset { .. },
) => {
*this_partition_database_updates = other_partition_database_updates.into();
}
}
}
// The partition num does not exist in `this` database updates. This merge
// is simple, just insert it.
None => {
this_partition_updates.insert(
other_partition_num,
other_partition_database_updates.into(),
);
}
}
}
}
// The node key does not exist in `this` database updates. This merge is simple, just
// insert it.
None => {
this.node_updates.insert(
other_node_key,
NodeDatabaseUpdates {
partition_updates: other_partition_updates,
}
.into(),
);
}
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Sbor, Default)]
struct StagingDatabaseUpdates {
node_updates: BTreeMap<DbNodeKey, StagingNodeDatabaseUpdates>,
}
impl From<StagingDatabaseUpdates> for DatabaseUpdates {
fn from(value: StagingDatabaseUpdates) -> Self {
Self {
node_updates: value
.node_updates
.into_iter()
.map(|(key, value)| (key, NodeDatabaseUpdates::from(value)))
.collect(),
}
}
}
impl From<DatabaseUpdates> for StagingDatabaseUpdates {
fn from(value: DatabaseUpdates) -> Self {
Self {
node_updates: value
.node_updates
.into_iter()
.map(|(key, value)| (key, StagingNodeDatabaseUpdates::from(value)))
.collect(),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Sbor, Default)]
struct StagingNodeDatabaseUpdates {
partition_updates: BTreeMap<DbPartitionNum, StagingPartitionDatabaseUpdates>,
}
impl From<StagingNodeDatabaseUpdates> for NodeDatabaseUpdates {
fn from(value: StagingNodeDatabaseUpdates) -> Self {
Self {
partition_updates: value
.partition_updates
.into_iter()
.map(|(key, value)| (key, PartitionDatabaseUpdates::from(value)))
.collect(),
}
}
}
impl From<NodeDatabaseUpdates> for StagingNodeDatabaseUpdates {
fn from(value: NodeDatabaseUpdates) -> Self {
Self {
partition_updates: value
.partition_updates
.into_iter()
.map(|(key, value)| (key, StagingPartitionDatabaseUpdates::from(value)))
.collect(),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Sbor)]
enum StagingPartitionDatabaseUpdates {
Delta {
substate_updates: BTreeMap<DbSortKey, DatabaseUpdate>,
},
Reset {
new_substate_values: BTreeMap<DbSortKey, DbSubstateValue>,
},
}
impl From<StagingPartitionDatabaseUpdates> for PartitionDatabaseUpdates {
fn from(value: StagingPartitionDatabaseUpdates) -> Self {
match value {
StagingPartitionDatabaseUpdates::Delta { substate_updates } => Self::Delta {
substate_updates: substate_updates.into_iter().collect(),
},
StagingPartitionDatabaseUpdates::Reset {
new_substate_values,
} => Self::Reset {
new_substate_values: new_substate_values.into_iter().collect(),
},
}
}
}
impl From<PartitionDatabaseUpdates> for StagingPartitionDatabaseUpdates {
fn from(value: PartitionDatabaseUpdates) -> Self {
match value {
PartitionDatabaseUpdates::Delta { substate_updates } => Self::Delta {
substate_updates: substate_updates.into_iter().collect(),
},
PartitionDatabaseUpdates::Reset {
new_substate_values,
} => Self::Reset {
new_substate_values: new_substate_values.into_iter().collect(),
},
}
}
}