1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use prelude::*;
use super::{Vec3, Vector};

/// A 4x4 matrix.
pub type Mat4<T = f32> = [ [ T; 4 ]; 4 ];

/// Matrix-methods for 4x4 arrays.
pub trait Matrix<T> where T: Copy { 
    /// Sets the matrix value from another matrix.
    fn set<M>(self: &mut Self, other: M) -> &mut Self where Mat4<T>: From<M>;
    /// Translate matrix by given vector.
    fn translate<V>(self: &mut Self, translation_vector: V) -> &mut Self where V: Vector<T>;
    /// Scale matrix by given vector.
    fn scale<V>(self: &mut Self, scaling_vector: V) -> &mut Self where V: Vector<T>;
    /// Scales at given position.
    fn scale_at<P, V>(self: &mut Self, position: P, scaling_vector: V) -> &mut Self where P: Vector<T>, V: Vector<T>;
    /// Rotates the origin around z.
    fn rotate(self: &mut Self, radians: T) -> &mut Self;
    /// Rotates around z at given position.
    fn rotate_at<P>(self: &mut Self, position: P, radians: T) -> &mut Self where P: Vector<T>;
    /// Rotates around axis.
    fn rotate_axis<V>(self: &mut Self, radians: T, axis: V) -> &mut Self where Vec3<T>: From<V>;
    /// Rotates around axis at given position.
    fn rotate_axis_at<P, V>(self: &mut Self, position: P, radians: T, axis: V) -> &mut Self where P: Vector<T>, Vec3<T>: From<V>;
    /// Returns a pure rotation matrix for given matrix
    fn get_rotation(self: &Self) -> Self;
    /// Returns the matrix's translation vector.
    fn get_translation(self: &Self) -> Vec3<T>;
    /// Returns the matrix's scaling vector.
    fn get_scale(self: &Self) -> Vec3<T>;
    /// Get rotation matrix euler angles.
    fn get_euler(self: &Self) -> Vec3<T>;
}

impl<T> Matrix<T> for Mat4<T> where T: Float {   
    fn set<M>(self: &mut Self, other: M) -> &mut Self where Mat4<T>: From<M> {
        *self = other.into();
        self
    }
    fn translate<V>(self: &mut Self, translation_vector: V) -> &mut Self where V: Vector<T> {
        let Vec3::<T>(x, y, z) = translation_vector.as_vec3(T::zero());
        self[3][0] = self[0][0]* x + self[1][0] * y + self[2][0] * z + self[3][0];
        self[3][1] = self[0][1]* x + self[1][1] * y + self[2][1] * z + self[3][1];
        self[3][2] = self[0][2]* x + self[1][2] * y + self[2][2] * z + self[3][2];
        self[3][3] = self[0][3]* x + self[1][3] * y + self[2][3] * z + self[3][3];
        self
    }
    fn scale<V>(self: &mut Self, scaling_vector: V) -> &mut Self where V: Vector<T> {
        let Vec3::<T>(x, y, z) = scaling_vector.as_vec3(T::one());
        self[0][0] = self[0][0] * x;
        self[0][1] = self[0][1] * x;
        self[0][2] = self[0][2] * x;
        self[0][3] = self[0][3] * x;
        self[1][0] = self[1][0] * y;
        self[1][1] = self[1][1] * y;
        self[1][2] = self[1][2] * y;
        self[1][3] = self[1][3] * y;
        self[2][0] = self[2][0] * z;
        self[2][1] = self[2][1] * z;
        self[2][2] = self[2][2] * z;
        self[2][3] = self[2][3] * z;
        self
    }
    fn scale_at<P, V>(self: &mut Self, position: P, scaling_vector: V) -> &mut Self where P: Vector<T>, V: Vector<T> {
        let position = position.as_vec3(T::zero());
        self.translate(position)
            .scale(scaling_vector)
            .translate(-position)
    }
    fn rotate(self: &mut Self, radians: T) -> &mut Self {
        let s = radians.sin();
        let c = radians.cos();
        let a00 = self[0][0];
        let a01 = self[0][1];
        let a02 = self[0][2];
        let a03 = self[0][3];
        let a10 = self[1][0];
        let a11 = self[1][1];
        let a12 = self[1][2];
        let a13 = self[1][3];
        self[0][0] = a00 * c + a10 * s;
        self[0][1] = a01 * c + a11 * s;
        self[0][2] = a02 * c + a12 * s;
        self[0][3] = a03 * c + a13 * s;
        self[1][0] = a10 * c - a00 * s;
        self[1][1] = a11 * c - a01 * s;
        self[1][2] = a12 * c - a02 * s;
        self[1][3] = a13 * c - a03 * s;
        self
    }
    fn rotate_at<P>(self: &mut Self, position: P, radians: T) -> &mut Self where P: Vector<T> {
        let position = position.as_vec3(T::zero());
        self.translate(position)
            .rotate(radians)
            .translate(-position)
    }
    fn rotate_axis<V>(self: &mut Self, radians: T, axis: V) -> &mut Self where Vec3<T>: From<V> {

        let Vec3::<T>(mut x, mut y, mut z) = axis.into();
        let mut len: T = (x * x + y * y + z * z).sqrt();

        if len == T::zero() || len.is_normal() == false {
            return self;
        }

        len = T::one() / len;
        x = x * len;
        y = y * len;
        z = z * len;

        let s: T = radians.sin();
        let c: T = radians.cos();
        let t: T = T::one() - c;

        let a00 = self[0][0];
        let a01 = self[0][1];
        let a02 = self[0][2];
        let a03 = self[0][3];
        let a10 = self[1][0];
        let a11 = self[1][1];
        let a12 = self[1][2];
        let a13 = self[1][3];
        let a20 = self[2][0];
        let a21 = self[2][1];
        let a22 = self[2][2];
        let a23 = self[2][3];

        // Construct the elements of the rotation matrix
        let b00 = x * x * t + c;
        let b01 = y * x * t + z * s;
        let b02 = z * x * t - y * s;
        let b10 = x * y * t - z * s;
        let b11 = y * y * t + c;
        let b12 = z * y * t + x * s;
        let b20 = x * z * t + y * s;
        let b21 = y * z * t - x * s;
        let b22 = z * z * t + c;

        // Perform rotation-specific matrix multiplication
        self[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
        self[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
        self[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
        self[0][3] = a03 * b00 + a13 * b01 + a23 * b02;
        self[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
        self[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
        self[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
        self[1][3] = a03 * b10 + a13 * b11 + a23 * b12;
        self[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
        self[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
        self[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
        self[2][3] = a03 * b20 + a13 * b21 + a23 * b22;

        self
    }
    fn rotate_axis_at<P, V>(self: &mut Self, position: P, radians: T, axis: V) -> &mut Self where P: Vector<T>, Vec3<T>: From<V> {
        let position = position.as_vec3(T::zero());
        self.translate(position)
            .rotate_axis(radians, axis)
            .translate(-position)
    }
    fn get_rotation(self: &Self) -> Self {
        let Vec3(x, y, z) = self.get_scale();
        let a = self;
        [
            [ a[0][0] / x, a[0][1] / x, a[0][2] / x, T::zero()  ],
            [ a[1][0] / y, a[1][1] / y, a[1][2] / y, T::zero(), ],
            [ a[2][0] / z, a[2][1] / z, a[2][2] / z, T::zero(), ],
            [ T::zero(),   T::zero(),   T::zero(),   T::one(),  ],
        ]
    }
    fn get_translation(self: &Self) -> Vec3<T> {
        let a = self;
        Vec3(a[3][0], a[3][1], a[3][2])
    }
    fn get_scale(self: &Self) -> Vec3<T> {
        let a = self;
        let x = Vec3(a[0][0], a[0][1], a[0][2]);
        let y = Vec3(a[1][0], a[1][1], a[1][2]);
        let z = Vec3(a[2][0], a[2][1], a[2][2]);
        Vec3(x.len(), y.len(), z.len())
    }
    #[allow(non_snake_case)]
    fn get_euler(self: &Self) -> Vec3<T> {
        let a = self;
        let y: T;
        let z: T;
        let x: T;

        let half_PI = NumCast::from(f64::consts::PI / 2.0).unwrap();

    	if a[0][1] > NumCast::from(0.998).unwrap() { // singularity at north pole
    		y = a[2][0].atan2(a[2][2]);
    		z = half_PI;
    		x = T::zero();
    	} else if a[0][1] < NumCast::from(-0.998).unwrap() { // singularity at south pole
    		y = a[2][0].atan2(a[2][2]);
    		z = -half_PI;
    		x = T::zero();
    	} else {
        	y = (-a[0][2]).atan2(a[0][0]);
            x = (-a[2][1]).atan2(a[1][1]);
        	z = a[0][1].asin();
        }

        Vec3(x, y, z)
    }
}