ra_ap_rustc_pattern_analysis/
constructor.rs

1//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
2//! fields. This file defines a `Constructor` enum and various operations to manipulate them.
3//!
4//! There are two important bits of core logic in this file: constructor inclusion and constructor
5//! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
6//! is straightforward and defined in [`Constructor::is_covered_by`].
7//!
8//! Constructor splitting is mentioned in [`crate::usefulness`] but not detailed. We describe it
9//! precisely here.
10//!
11//!
12//!
13//! # Constructor grouping and splitting
14//!
15//! As explained in the corresponding section in [`crate::usefulness`], to make usefulness tractable
16//! we need to group together constructors that have the same effect when they are used to
17//! specialize the matrix.
18//!
19//! Example:
20//! ```compile_fail,E0004
21//! match (0, false) {
22//!     (0 ..=100, true) => {}
23//!     (50..=150, false) => {}
24//!     (0 ..=200, _) => {}
25//! }
26//! ```
27//!
28//! In this example we can restrict specialization to 5 cases: `0..50`, `50..=100`, `101..=150`,
29//! `151..=200` and `200..`.
30//!
31//! In [`crate::usefulness`], we had said that `specialize` only takes value-only constructors. We
32//! now relax this restriction: we allow `specialize` to take constructors like `0..50` as long as
33//! we're careful to only do that with constructors that make sense. For example, `specialize(0..50,
34//! (0..=100, true))` is sensible, but `specialize(50..=200, (0..=100, true))` is not.
35//!
36//! Constructor splitting looks at the constructors in the first column of the matrix and constructs
37//! such a sensible set of constructors. Formally, we want to find a smallest disjoint set of
38//! constructors:
39//! - Whose union covers the whole type, and
40//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
41//!     each either disjoint with or covered by any given column constructor).
42//!
43//! We compute this in two steps: first [`PatCx::ctors_for_ty`] determines the
44//! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
45//! column of constructors and splits the set into groups accordingly. The precise invariants of
46//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
47//!
48//! Constructor splitting has two interesting special cases: integer range splitting (see
49//! [`IntRange::split`]) and slice splitting (see [`Slice::split`]).
50//!
51//!
52//!
53//! # The `Missing` constructor
54//!
55//! We detail a special case of constructor splitting that is a bit subtle. Take the following:
56//!
57//! ```
58//! enum Direction { North, South, East, West }
59//! # let wind = (Direction::North, 0u8);
60//! match wind {
61//!     (Direction::North, 50..) => {}
62//!     (_, _) => {}
63//! }
64//! ```
65//!
66//! Here we expect constructor splitting to output two cases: `North`, and "everything else". This
67//! "everything else" is represented by [`Constructor::Missing`]. Unlike other constructors, it's a
68//! bit contextual: to know the exact list of constructors it represents we have to look at the
69//! column. In practice however we don't need to, because by construction it only matches rows that
70//! have wildcards. This is how this constructor is special: the only constructor that covers it is
71//! `Wildcard`.
72//!
73//! The only place where we care about which constructors `Missing` represents is in diagnostics
74//! (see `crate::usefulness::WitnessMatrix::apply_constructor`).
75//!
76//! We choose whether to specialize with `Missing` in
77//! `crate::usefulness::compute_exhaustiveness_and_usefulness`.
78//!
79//!
80//!
81//! ## Empty types, empty constructors, and the `exhaustive_patterns` feature
82//!
83//! An empty type is a type that has no valid value, like `!`, `enum Void {}`, or `Result<!, !>`.
84//! They require careful handling.
85//!
86//! First, for soundness reasons related to the possible existence of invalid values, by default we
87//! don't treat empty types as empty. We force them to be matched with wildcards. Except if the
88//! `exhaustive_patterns` feature is turned on, in which case we do treat them as empty. And also
89//! except if the type has no constructors (like `enum Void {}` but not like `Result<!, !>`), we
90//! specifically allow `match void {}` to be exhaustive. There are additionally considerations of
91//! place validity that are handled in `crate::usefulness`. Yes this is a bit tricky.
92//!
93//! The second thing is that regardless of the above, it is always allowed to use all the
94//! constructors of a type. For example, all the following is ok:
95//!
96//! ```rust,ignore(example)
97//! # #![feature(never_type)]
98//! # #![feature(exhaustive_patterns)]
99//! fn foo(x: Option<!>) {
100//!   match x {
101//!     None => {}
102//!     Some(_) => {}
103//!   }
104//! }
105//! fn bar(x: &[!]) -> u32 {
106//!   match x {
107//!     [] => 1,
108//!     [_] => 2,
109//!     [_, _] => 3,
110//!   }
111//! }
112//! ```
113//!
114//! Moreover, take the following:
115//!
116//! ```rust
117//! # #![feature(never_type)]
118//! # #![feature(exhaustive_patterns)]
119//! # let x = None::<!>;
120//! match x {
121//!   None => {}
122//! }
123//! ```
124//!
125//! On a normal type, we would identify `Some` as missing and tell the user. If `x: Option<!>`
126//! however (and `exhaustive_patterns` is on), it's ok to omit `Some`. When listing the constructors
127//! of a type, we must therefore track which can be omitted.
128//!
129//! Let's call "empty" a constructor that matches no valid value for the type, like `Some` for the
130//! type `Option<!>`. What this all means is that `ConstructorSet` must know which constructors are
131//! empty. The difference between empty and nonempty constructors is that empty constructors need
132//! not be present for the match to be exhaustive.
133//!
134//! A final remark: empty constructors of arity 0 break specialization, we must avoid them. The
135//! reason is that if we specialize by them, nothing remains to witness the emptiness; the rest of
136//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
137//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
138//!
139//! This is all handled by [`PatCx::ctors_for_ty`] and
140//! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
141//!
142//!
143//! ## Unions
144//!
145//! Unions allow us to match a value via several overlapping representations at the same time. For
146//! example, the following is exhaustive because when seeing the value as a boolean we handled all
147//! possible cases (other cases such as `n == 3` would trigger UB).
148//!
149//! ```rust
150//! # fn main() {
151//! union U8AsBool {
152//!     n: u8,
153//!     b: bool,
154//! }
155//! let x = U8AsBool { n: 1 };
156//! unsafe {
157//!     match x {
158//!         U8AsBool { n: 2 } => {}
159//!         U8AsBool { b: true } => {}
160//!         U8AsBool { b: false } => {}
161//!     }
162//! }
163//! # }
164//! ```
165//!
166//! Pattern-matching has no knowledge that e.g. `false as u8 == 0`, so the values we consider in the
167//! algorithm look like `U8AsBool { b: true, n: 2 }`. In other words, for the most part a union is
168//! treated like a struct with the same fields. The difference lies in how we construct witnesses of
169//! non-exhaustiveness.
170//!
171//!
172//! ## Opaque patterns
173//!
174//! Some patterns, such as constants that are not allowed to be matched structurally, cannot be
175//! inspected, which we handle with `Constructor::Opaque`. Since we know nothing of these patterns,
176//! we assume they never cover each other. In order to respect the invariants of
177//! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.
178
179use std::cmp::{self, Ordering, max, min};
180use std::fmt;
181use std::iter::once;
182
183use rustc_apfloat::ieee::{DoubleS, HalfS, IeeeFloat, QuadS, SingleS};
184use rustc_index::IndexVec;
185use rustc_index::bit_set::{DenseBitSet, GrowableBitSet};
186use smallvec::SmallVec;
187
188use self::Constructor::*;
189use self::MaybeInfiniteInt::*;
190use self::SliceKind::*;
191use crate::PatCx;
192
193/// Whether we have seen a constructor in the column or not.
194#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
195enum Presence {
196    Unseen,
197    Seen,
198}
199
200#[derive(Debug, Copy, Clone, PartialEq, Eq)]
201pub enum RangeEnd {
202    Included,
203    Excluded,
204}
205
206impl fmt::Display for RangeEnd {
207    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
208        f.write_str(match self {
209            RangeEnd::Included => "..=",
210            RangeEnd::Excluded => "..",
211        })
212    }
213}
214
215/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
216/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
217/// `255`. See `signed_bias` for details.
218#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
219pub enum MaybeInfiniteInt {
220    NegInfinity,
221    /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite_{int,uint}`.
222    #[non_exhaustive]
223    Finite(u128),
224    PosInfinity,
225}
226
227impl MaybeInfiniteInt {
228    pub fn new_finite_uint(bits: u128) -> Self {
229        Finite(bits)
230    }
231    pub fn new_finite_int(bits: u128, size: u64) -> Self {
232        // Perform a shift if the underlying types are signed, which makes the interval arithmetic
233        // type-independent.
234        let bias = 1u128 << (size - 1);
235        Finite(bits ^ bias)
236    }
237
238    pub fn as_finite_uint(self) -> Option<u128> {
239        match self {
240            Finite(bits) => Some(bits),
241            _ => None,
242        }
243    }
244    pub fn as_finite_int(self, size: u64) -> Option<u128> {
245        // We decode the shift.
246        match self {
247            Finite(bits) => {
248                let bias = 1u128 << (size - 1);
249                Some(bits ^ bias)
250            }
251            _ => None,
252        }
253    }
254
255    /// Note: this will not turn a finite value into an infinite one or vice-versa.
256    pub fn minus_one(self) -> Option<Self> {
257        match self {
258            Finite(n) => n.checked_sub(1).map(Finite),
259            x => Some(x),
260        }
261    }
262    /// Note: this will turn `u128::MAX` into `PosInfinity`. This means `plus_one` and `minus_one`
263    /// are not strictly inverses, but that poses no problem in our use of them.
264    /// this will not turn a finite value into an infinite one or vice-versa.
265    pub fn plus_one(self) -> Option<Self> {
266        match self {
267            Finite(n) => match n.checked_add(1) {
268                Some(m) => Some(Finite(m)),
269                None => Some(PosInfinity),
270            },
271            x => Some(x),
272        }
273    }
274}
275
276/// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always
277/// store a contiguous range.
278///
279/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
280/// space: i.e., `range.lo < range.hi`.
281#[derive(Clone, Copy, PartialEq, Eq)]
282pub struct IntRange {
283    pub lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
284    pub hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
285}
286
287impl IntRange {
288    /// Best effort; will not know that e.g. `255u8..` is a singleton.
289    pub fn is_singleton(&self) -> bool {
290        // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
291        // to infinite, this correctly only detects ranges that contain exactly one `Finite(x)`.
292        self.lo.plus_one() == Some(self.hi)
293    }
294
295    /// Construct a singleton range.
296    /// `x` must be a `Finite(_)` value.
297    #[inline]
298    pub fn from_singleton(x: MaybeInfiniteInt) -> IntRange {
299        // `unwrap()` is ok on a finite value
300        IntRange { lo: x, hi: x.plus_one().unwrap() }
301    }
302
303    /// Construct a range with these boundaries.
304    /// `lo` must not be `PosInfinity`. `hi` must not be `NegInfinity`.
305    #[inline]
306    pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
307        if end == RangeEnd::Included {
308            hi = hi.plus_one().unwrap();
309        }
310        if lo >= hi {
311            // This should have been caught earlier by E0030.
312            panic!("malformed range pattern: {lo:?}..{hi:?}");
313        }
314        IntRange { lo, hi }
315    }
316
317    #[inline]
318    pub fn is_subrange(&self, other: &Self) -> bool {
319        other.lo <= self.lo && self.hi <= other.hi
320    }
321
322    fn intersection(&self, other: &Self) -> Option<Self> {
323        if self.lo < other.hi && other.lo < self.hi {
324            Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) })
325        } else {
326            None
327        }
328    }
329
330    /// Partition a range of integers into disjoint subranges. This does constructor splitting for
331    /// integer ranges as explained at the top of the file.
332    ///
333    /// This returns an output that covers `self`. The output is split so that the only
334    /// intersections between an output range and a column range are inclusions. No output range
335    /// straddles the boundary of one of the inputs.
336    ///
337    /// Additionally, we track for each output range whether it is covered by one of the column ranges or not.
338    ///
339    /// The following input:
340    /// ```text
341    ///   (--------------------------) // `self`
342    /// (------) (----------)    (-)
343    ///     (------) (--------)
344    /// ```
345    /// is first intersected with `self`:
346    /// ```text
347    ///   (--------------------------) // `self`
348    ///   (----) (----------)    (-)
349    ///     (------) (--------)
350    /// ```
351    /// and then iterated over as follows:
352    /// ```text
353    ///   (-(--)-(-)-(------)-)--(-)-
354    /// ```
355    /// where each sequence of dashes is an output range, and dashes outside parentheses are marked
356    /// as `Presence::Missing`.
357    ///
358    /// ## `isize`/`usize`
359    ///
360    /// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize`
361    /// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for
362    /// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are
363    /// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`.
364    /// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and
365    /// not others. This was decided in <https://github.com/rust-lang/rfcs/pull/2591>.
366    ///
367    /// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and
368    /// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these
369    /// fictitious ranges sensibly.
370    fn split(
371        &self,
372        column_ranges: impl Iterator<Item = IntRange>,
373    ) -> impl Iterator<Item = (Presence, IntRange)> {
374        // The boundaries of ranges in `column_ranges` intersected with `self`.
375        // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts
376        // a range and -1 if it ends it. When the count is > 0 between two boundaries, we
377        // are within an input range.
378        let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges
379            .filter_map(|r| self.intersection(&r))
380            .flat_map(|r| [(r.lo, 1), (r.hi, -1)])
381            .collect();
382        // We sort by boundary, and for each boundary we sort the "closing parentheses" first. The
383        // order of +1/-1 for a same boundary value is actually irrelevant, because we only look at
384        // the accumulated count between distinct boundary values.
385        boundaries.sort_unstable();
386
387        // Accumulate parenthesis counts.
388        let mut paren_counter = 0isize;
389        // Gather pairs of adjacent boundaries.
390        let mut prev_bdy = self.lo;
391        boundaries
392            .into_iter()
393            // End with the end of the range. The count is ignored.
394            .chain(once((self.hi, 0)))
395            // List pairs of adjacent boundaries and the count between them.
396            .map(move |(bdy, delta)| {
397                // `delta` affects the count as we cross `bdy`, so the relevant count between
398                // `prev_bdy` and `bdy` is untouched by `delta`.
399                let ret = (prev_bdy, paren_counter, bdy);
400                prev_bdy = bdy;
401                paren_counter += delta;
402                ret
403            })
404            // Skip empty ranges.
405            .filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy)
406            // Convert back to ranges.
407            .map(move |(prev_bdy, paren_count, bdy)| {
408                use Presence::*;
409                let presence = if paren_count > 0 { Seen } else { Unseen };
410                let range = IntRange { lo: prev_bdy, hi: bdy };
411                (presence, range)
412            })
413    }
414}
415
416/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern
417/// first.
418impl fmt::Debug for IntRange {
419    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
420        if self.is_singleton() {
421            // Only finite ranges can be singletons.
422            let Finite(lo) = self.lo else { unreachable!() };
423            write!(f, "{lo}")?;
424        } else {
425            if let Finite(lo) = self.lo {
426                write!(f, "{lo}")?;
427            }
428            write!(f, "{}", RangeEnd::Excluded)?;
429            if let Finite(hi) = self.hi {
430                write!(f, "{hi}")?;
431            }
432        }
433        Ok(())
434    }
435}
436
437#[derive(Copy, Clone, Debug, PartialEq, Eq)]
438pub enum SliceKind {
439    /// Patterns of length `n` (`[x, y]`).
440    FixedLen(usize),
441    /// Patterns using the `..` notation (`[x, .., y]`).
442    /// Captures any array constructor of `length >= i + j`.
443    /// In the case where `array_len` is `Some(_)`,
444    /// this indicates that we only care about the first `i` and the last `j` values of the array,
445    /// and everything in between is a wildcard `_`.
446    VarLen(usize, usize),
447}
448
449impl SliceKind {
450    pub fn arity(self) -> usize {
451        match self {
452            FixedLen(length) => length,
453            VarLen(prefix, suffix) => prefix + suffix,
454        }
455    }
456
457    /// Whether this pattern includes patterns of length `other_len`.
458    fn covers_length(self, other_len: usize) -> bool {
459        match self {
460            FixedLen(len) => len == other_len,
461            VarLen(prefix, suffix) => prefix + suffix <= other_len,
462        }
463    }
464}
465
466/// A constructor for array and slice patterns.
467#[derive(Copy, Clone, Debug, PartialEq, Eq)]
468pub struct Slice {
469    /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
470    pub(crate) array_len: Option<usize>,
471    /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
472    pub(crate) kind: SliceKind,
473}
474
475impl Slice {
476    pub fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
477        let kind = match (array_len, kind) {
478            // If the middle `..` has length 0, we effectively have a fixed-length pattern.
479            (Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
480            (Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => panic!(
481                "Slice pattern of length {} longer than its array length {len}",
482                prefix + suffix
483            ),
484            _ => kind,
485        };
486        Slice { array_len, kind }
487    }
488
489    pub fn arity(self) -> usize {
490        self.kind.arity()
491    }
492
493    /// See `Constructor::is_covered_by`
494    fn is_covered_by(self, other: Self) -> bool {
495        other.kind.covers_length(self.arity())
496    }
497
498    /// This computes constructor splitting for variable-length slices, as explained at the top of
499    /// the file.
500    ///
501    /// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x,
502    /// _, _, y] | etc`. The corresponding value constructors are fixed-length array constructors of
503    /// corresponding lengths. We obviously can't list this infinitude of constructors.
504    /// Thankfully, it turns out that for each finite set of slice patterns, all sufficiently large
505    /// array lengths are equivalent.
506    ///
507    /// Let's look at an example, where we are trying to split the last pattern:
508    /// ```
509    /// # fn foo(x: &[bool]) {
510    /// match x {
511    ///     [true, true, ..] => {}
512    ///     [.., false, false] => {}
513    ///     [..] => {}
514    /// }
515    /// # }
516    /// ```
517    /// Here are the results of specialization for the first few lengths:
518    /// ```
519    /// # fn foo(x: &[bool]) { match x {
520    /// // length 0
521    /// [] => {}
522    /// // length 1
523    /// [_] => {}
524    /// // length 2
525    /// [true, true] => {}
526    /// [false, false] => {}
527    /// [_, _] => {}
528    /// // length 3
529    /// [true, true,  _    ] => {}
530    /// [_,    false, false] => {}
531    /// [_,    _,     _    ] => {}
532    /// // length 4
533    /// [true, true, _,     _    ] => {}
534    /// [_,    _,    false, false] => {}
535    /// [_,    _,    _,     _    ] => {}
536    /// // length 5
537    /// [true, true, _, _,     _    ] => {}
538    /// [_,    _,    _, false, false] => {}
539    /// [_,    _,    _, _,     _    ] => {}
540    /// # _ => {}
541    /// # }}
542    /// ```
543    ///
544    /// We see that above length 4, we are simply inserting columns full of wildcards in the middle.
545    /// This means that specialization and witness computation with slices of length `l >= 4` will
546    /// give equivalent results regardless of `l`. This applies to any set of slice patterns: there
547    /// will be a length `L` above which all lengths behave the same. This is exactly what we need
548    /// for constructor splitting.
549    ///
550    /// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just
551    /// saw, we can split this in two: lengths below `L` are treated individually with a
552    /// fixed-length slice each; lengths above `L` are grouped into a single variable-length slice
553    /// constructor.
554    ///
555    /// For each variable-length slice pattern `p` with a prefix of length `plₚ` and suffix of
556    /// length `slₚ`, only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as
557    /// long as `L` is positive (to avoid concerns about empty types), all elements after the
558    /// maximum prefix length and before the maximum suffix length are not examined by any
559    /// variable-length pattern, and therefore can be ignored. This gives us a way to compute `L`.
560    ///
561    /// Additionally, if fixed-length patterns exist, we must pick an `L` large enough to miss them,
562    /// so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`.
563    /// `max_slice` below will be made to have this arity `L`.
564    ///
565    /// If `self` is fixed-length, it is returned as-is.
566    ///
567    /// Additionally, we track for each output slice whether it is covered by one of the column slices or not.
568    fn split(
569        self,
570        column_slices: impl Iterator<Item = Slice>,
571    ) -> impl Iterator<Item = (Presence, Slice)> {
572        // Range of lengths below `L`.
573        let smaller_lengths;
574        let arity = self.arity();
575        let mut max_slice = self.kind;
576        // Tracks the smallest variable-length slice we've seen. Any slice arity above it is
577        // therefore `Presence::Seen` in the column.
578        let mut min_var_len = usize::MAX;
579        // Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
580        let mut seen_fixed_lens = GrowableBitSet::new_empty();
581        match &mut max_slice {
582            VarLen(max_prefix_len, max_suffix_len) => {
583                // A length larger than any fixed-length slice encountered.
584                // We start at 1 in case the subtype is empty because in that case the zero-length
585                // slice must be treated separately from the rest.
586                let mut fixed_len_upper_bound = 1;
587                // We grow `max_slice` to be larger than all slices encountered, as described above.
588                // `L` is `max_slice.arity()`. For diagnostics, we keep the prefix and suffix
589                // lengths separate.
590                for slice in column_slices {
591                    match slice.kind {
592                        FixedLen(len) => {
593                            fixed_len_upper_bound = cmp::max(fixed_len_upper_bound, len + 1);
594                            seen_fixed_lens.insert(len);
595                        }
596                        VarLen(prefix, suffix) => {
597                            *max_prefix_len = cmp::max(*max_prefix_len, prefix);
598                            *max_suffix_len = cmp::max(*max_suffix_len, suffix);
599                            min_var_len = cmp::min(min_var_len, prefix + suffix);
600                        }
601                    }
602                }
603                // If `fixed_len_upper_bound >= L`, we set `L` to `fixed_len_upper_bound`.
604                if let Some(delta) =
605                    fixed_len_upper_bound.checked_sub(*max_prefix_len + *max_suffix_len)
606                {
607                    *max_prefix_len += delta
608                }
609
610                // We cap the arity of `max_slice` at the array size.
611                match self.array_len {
612                    Some(len) if max_slice.arity() >= len => max_slice = FixedLen(len),
613                    _ => {}
614                }
615
616                smaller_lengths = match self.array_len {
617                    // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
618                    // is fixed-length or variable-length, it will be the only relevant slice to output
619                    // here.
620                    Some(_) => 0..0, // empty range
621                    // We need to cover all arities in the range `(arity..infinity)`. We split that
622                    // range into two: lengths smaller than `max_slice.arity()` are treated
623                    // independently as fixed-lengths slices, and lengths above are captured by
624                    // `max_slice`.
625                    None => self.arity()..max_slice.arity(),
626                };
627            }
628            FixedLen(_) => {
629                // No need to split here. We only track presence.
630                for slice in column_slices {
631                    match slice.kind {
632                        FixedLen(len) => {
633                            if len == arity {
634                                seen_fixed_lens.insert(len);
635                            }
636                        }
637                        VarLen(prefix, suffix) => {
638                            min_var_len = cmp::min(min_var_len, prefix + suffix);
639                        }
640                    }
641                }
642                smaller_lengths = 0..0;
643            }
644        };
645
646        smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
647            let arity = kind.arity();
648            let seen = if min_var_len <= arity || seen_fixed_lens.contains(arity) {
649                Presence::Seen
650            } else {
651                Presence::Unseen
652            };
653            (seen, Slice::new(self.array_len, kind))
654        })
655    }
656}
657
658/// A globally unique id to distinguish `Opaque` patterns.
659#[derive(Clone, Debug, PartialEq, Eq)]
660pub struct OpaqueId(u32);
661
662impl OpaqueId {
663    pub fn new() -> Self {
664        use std::sync::atomic::{AtomicU32, Ordering};
665        static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
666        OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
667    }
668}
669
670/// A value can be decomposed into a constructor applied to some fields. This struct represents
671/// the constructor. See also `Fields`.
672///
673/// `pat_constructor` retrieves the constructor corresponding to a pattern.
674/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
675/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
676/// `Fields`.
677#[derive(Debug)]
678pub enum Constructor<Cx: PatCx> {
679    /// Tuples and structs.
680    Struct,
681    /// Enum variants.
682    Variant(Cx::VariantIdx),
683    /// References
684    Ref,
685    /// Array and slice patterns.
686    Slice(Slice),
687    /// Union field accesses.
688    UnionField,
689    /// Booleans
690    Bool(bool),
691    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
692    IntRange(IntRange),
693    /// Ranges of floating-point literal values (`2.0..=5.2`).
694    F16Range(IeeeFloat<HalfS>, IeeeFloat<HalfS>, RangeEnd),
695    F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
696    F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
697    F128Range(IeeeFloat<QuadS>, IeeeFloat<QuadS>, RangeEnd),
698    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
699    Str(Cx::StrLit),
700    /// Deref patterns (enabled by the `deref_patterns` feature) provide a way of matching on a
701    /// smart pointer ADT through its pointee. They don't directly correspond to ADT constructors,
702    /// and currently are not supported alongside them. Carries the type of the pointee.
703    DerefPattern(Cx::Ty),
704    /// Constants that must not be matched structurally. They are treated as black boxes for the
705    /// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
706    /// match exhaustive.
707    /// Carries an id that must be unique within a match. We need this to ensure the invariants of
708    /// [`SplitConstructorSet`].
709    Opaque(OpaqueId),
710    /// Or-pattern.
711    Or,
712    /// Wildcard pattern.
713    Wildcard,
714    /// Never pattern. Only used in `WitnessPat`. An actual never pattern should be lowered as
715    /// `Wildcard`.
716    Never,
717    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
718    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`. Only
719    /// used in `WitnessPat`.
720    NonExhaustive,
721    /// Fake extra constructor for variants that should not be mentioned in diagnostics. We use this
722    /// for variants behind an unstable gate as well as `#[doc(hidden)]` ones. Only used in
723    /// `WitnessPat`.
724    Hidden,
725    /// Fake extra constructor for constructors that are not seen in the matrix, as explained at the
726    /// top of the file. Only used for specialization.
727    Missing,
728    /// Fake extra constructor that indicates and empty field that is private. When we encounter one
729    /// we skip the column entirely so we don't observe its emptiness. Only used for specialization.
730    PrivateUninhabited,
731}
732
733impl<Cx: PatCx> Clone for Constructor<Cx> {
734    fn clone(&self) -> Self {
735        match self {
736            Constructor::Struct => Constructor::Struct,
737            Constructor::Variant(idx) => Constructor::Variant(*idx),
738            Constructor::Ref => Constructor::Ref,
739            Constructor::Slice(slice) => Constructor::Slice(*slice),
740            Constructor::UnionField => Constructor::UnionField,
741            Constructor::Bool(b) => Constructor::Bool(*b),
742            Constructor::IntRange(range) => Constructor::IntRange(*range),
743            Constructor::F16Range(lo, hi, end) => Constructor::F16Range(*lo, *hi, *end),
744            Constructor::F32Range(lo, hi, end) => Constructor::F32Range(*lo, *hi, *end),
745            Constructor::F64Range(lo, hi, end) => Constructor::F64Range(*lo, *hi, *end),
746            Constructor::F128Range(lo, hi, end) => Constructor::F128Range(*lo, *hi, *end),
747            Constructor::Str(value) => Constructor::Str(value.clone()),
748            Constructor::DerefPattern(ty) => Constructor::DerefPattern(ty.clone()),
749            Constructor::Opaque(inner) => Constructor::Opaque(inner.clone()),
750            Constructor::Or => Constructor::Or,
751            Constructor::Never => Constructor::Never,
752            Constructor::Wildcard => Constructor::Wildcard,
753            Constructor::NonExhaustive => Constructor::NonExhaustive,
754            Constructor::Hidden => Constructor::Hidden,
755            Constructor::Missing => Constructor::Missing,
756            Constructor::PrivateUninhabited => Constructor::PrivateUninhabited,
757        }
758    }
759}
760
761impl<Cx: PatCx> Constructor<Cx> {
762    pub(crate) fn is_non_exhaustive(&self) -> bool {
763        matches!(self, NonExhaustive)
764    }
765
766    pub(crate) fn as_variant(&self) -> Option<Cx::VariantIdx> {
767        match self {
768            Variant(i) => Some(*i),
769            _ => None,
770        }
771    }
772    fn as_bool(&self) -> Option<bool> {
773        match self {
774            Bool(b) => Some(*b),
775            _ => None,
776        }
777    }
778    pub(crate) fn as_int_range(&self) -> Option<&IntRange> {
779        match self {
780            IntRange(range) => Some(range),
781            _ => None,
782        }
783    }
784    fn as_slice(&self) -> Option<Slice> {
785        match self {
786            Slice(slice) => Some(*slice),
787            _ => None,
788        }
789    }
790
791    /// The number of fields for this constructor. This must be kept in sync with
792    /// `Fields::wildcards`.
793    pub(crate) fn arity(&self, cx: &Cx, ty: &Cx::Ty) -> usize {
794        cx.ctor_arity(self, ty)
795    }
796
797    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
798    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
799    /// this checks for inclusion.
800    // We inline because this has a single call site in `Matrix::specialize_constructor`.
801    #[inline]
802    pub(crate) fn is_covered_by(&self, cx: &Cx, other: &Self) -> Result<bool, Cx::Error> {
803        Ok(match (self, other) {
804            (Wildcard, _) => {
805                return Err(cx.bug(format_args!(
806                    "Constructor splitting should not have returned `Wildcard`"
807                )));
808            }
809            // Wildcards cover anything
810            (_, Wildcard) => true,
811            // `PrivateUninhabited` skips everything.
812            (PrivateUninhabited, _) => true,
813            // Only a wildcard pattern can match these special constructors.
814            (Missing { .. } | NonExhaustive | Hidden, _) => false,
815
816            (Struct, Struct) => true,
817            (Ref, Ref) => true,
818            (UnionField, UnionField) => true,
819            (Variant(self_id), Variant(other_id)) => self_id == other_id,
820            (Bool(self_b), Bool(other_b)) => self_b == other_b,
821
822            (IntRange(self_range), IntRange(other_range)) => self_range.is_subrange(other_range),
823            (F16Range(self_from, self_to, self_end), F16Range(other_from, other_to, other_end)) => {
824                self_from.ge(other_from)
825                    && match self_to.partial_cmp(other_to) {
826                        Some(Ordering::Less) => true,
827                        Some(Ordering::Equal) => other_end == self_end,
828                        _ => false,
829                    }
830            }
831            (F32Range(self_from, self_to, self_end), F32Range(other_from, other_to, other_end)) => {
832                self_from.ge(other_from)
833                    && match self_to.partial_cmp(other_to) {
834                        Some(Ordering::Less) => true,
835                        Some(Ordering::Equal) => other_end == self_end,
836                        _ => false,
837                    }
838            }
839            (F64Range(self_from, self_to, self_end), F64Range(other_from, other_to, other_end)) => {
840                self_from.ge(other_from)
841                    && match self_to.partial_cmp(other_to) {
842                        Some(Ordering::Less) => true,
843                        Some(Ordering::Equal) => other_end == self_end,
844                        _ => false,
845                    }
846            }
847            (
848                F128Range(self_from, self_to, self_end),
849                F128Range(other_from, other_to, other_end),
850            ) => {
851                self_from.ge(other_from)
852                    && match self_to.partial_cmp(other_to) {
853                        Some(Ordering::Less) => true,
854                        Some(Ordering::Equal) => other_end == self_end,
855                        _ => false,
856                    }
857            }
858            (Str(self_val), Str(other_val)) => {
859                // FIXME Once valtrees are available we can directly use the bytes
860                // in the `Str` variant of the valtree for the comparison here.
861                self_val == other_val
862            }
863            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
864
865            // Deref patterns only interact with other deref patterns. Prior to usefulness analysis,
866            // we ensure they don't appear alongside any other non-wild non-opaque constructors.
867            (DerefPattern(_), DerefPattern(_)) => true,
868
869            // Opaque constructors don't interact with anything unless they come from the
870            // syntactically identical pattern.
871            (Opaque(self_id), Opaque(other_id)) => self_id == other_id,
872            (Opaque(..), _) | (_, Opaque(..)) => false,
873
874            _ => {
875                return Err(cx.bug(format_args!(
876                    "trying to compare incompatible constructors {self:?} and {other:?}"
877                )));
878            }
879        })
880    }
881
882    pub(crate) fn fmt_fields(
883        &self,
884        f: &mut fmt::Formatter<'_>,
885        ty: &Cx::Ty,
886        mut fields: impl Iterator<Item = impl fmt::Debug>,
887    ) -> fmt::Result {
888        let mut first = true;
889        let mut start_or_continue = |s| {
890            if first {
891                first = false;
892                ""
893            } else {
894                s
895            }
896        };
897        let mut start_or_comma = || start_or_continue(", ");
898
899        match self {
900            Struct | Variant(_) | UnionField => {
901                Cx::write_variant_name(f, self, ty)?;
902                // Without `cx`, we can't know which field corresponds to which, so we can't
903                // get the names of the fields. Instead we just display everything as a tuple
904                // struct, which should be good enough.
905                write!(f, "(")?;
906                for p in fields {
907                    write!(f, "{}{:?}", start_or_comma(), p)?;
908                }
909                write!(f, ")")?;
910            }
911            // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
912            // be careful to detect strings here. However a string literal pattern will never
913            // be reported as a non-exhaustiveness witness, so we can ignore this issue.
914            Ref => {
915                write!(f, "&{:?}", fields.next().unwrap())?;
916            }
917            Slice(slice) => {
918                write!(f, "[")?;
919                match slice.kind {
920                    SliceKind::FixedLen(_) => {
921                        for p in fields {
922                            write!(f, "{}{:?}", start_or_comma(), p)?;
923                        }
924                    }
925                    SliceKind::VarLen(prefix_len, _) => {
926                        for p in fields.by_ref().take(prefix_len) {
927                            write!(f, "{}{:?}", start_or_comma(), p)?;
928                        }
929                        write!(f, "{}..", start_or_comma())?;
930                        for p in fields {
931                            write!(f, "{}{:?}", start_or_comma(), p)?;
932                        }
933                    }
934                }
935                write!(f, "]")?;
936            }
937            Bool(b) => write!(f, "{b}")?,
938            // Best-effort, will render signed ranges incorrectly
939            IntRange(range) => write!(f, "{range:?}")?,
940            F16Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
941            F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
942            F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
943            F128Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
944            Str(value) => write!(f, "{value:?}")?,
945            DerefPattern(_) => write!(f, "deref!({:?})", fields.next().unwrap())?,
946            Opaque(..) => write!(f, "<constant pattern>")?,
947            Or => {
948                for pat in fields {
949                    write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
950                }
951            }
952            Never => write!(f, "!")?,
953            Wildcard | Missing | NonExhaustive | Hidden | PrivateUninhabited => {
954                write!(f, "_ : {:?}", ty)?
955            }
956        }
957        Ok(())
958    }
959}
960
961#[derive(Debug, Clone, Copy)]
962pub enum VariantVisibility {
963    /// Variant that doesn't fit the other cases, i.e. most variants.
964    Visible,
965    /// Variant behind an unstable gate or with the `#[doc(hidden)]` attribute. It will not be
966    /// mentioned in diagnostics unless the user mentioned it first.
967    Hidden,
968    /// Variant that matches no value. E.g. `Some::<Option<!>>` if the `exhaustive_patterns` feature
969    /// is enabled. Like `Hidden`, it will not be mentioned in diagnostics unless the user mentioned
970    /// it first.
971    Empty,
972}
973
974/// Describes the set of all constructors for a type. For details, in particular about the emptiness
975/// of constructors, see the top of the file.
976///
977/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
978/// `exhaustive_patterns` feature.
979#[derive(Debug)]
980pub enum ConstructorSet<Cx: PatCx> {
981    /// The type is a tuple or struct. `empty` tracks whether the type is empty.
982    Struct { empty: bool },
983    /// This type has the following list of constructors. If `variants` is empty and
984    /// `non_exhaustive` is false, don't use this; use `NoConstructors` instead.
985    Variants { variants: IndexVec<Cx::VariantIdx, VariantVisibility>, non_exhaustive: bool },
986    /// The type is `&T`.
987    Ref,
988    /// The type is a union.
989    Union,
990    /// Booleans.
991    Bool,
992    /// The type is spanned by integer values. The range or ranges give the set of allowed values.
993    /// The second range is only useful for `char`.
994    Integers { range_1: IntRange, range_2: Option<IntRange> },
995    /// The type is matched by slices. `array_len` is the compile-time length of the array, if
996    /// known. If `subtype_is_empty`, all constructors are empty except possibly the zero-length
997    /// slice `[]`.
998    Slice { array_len: Option<usize>, subtype_is_empty: bool },
999    /// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`,
1000    /// floats.
1001    Unlistable,
1002    /// The type has no constructors (not even empty ones). This is `!` and empty enums.
1003    NoConstructors,
1004}
1005
1006/// Describes the result of analyzing the constructors in a column of a match.
1007///
1008/// `present` is morally the set of constructors present in the column, and `missing` is the set of
1009/// constructors that exist in the type but are not present in the column.
1010///
1011/// More formally, if we discard wildcards from the column, this respects the following constraints:
1012/// 1. the union of `present`, `missing` and `missing_empty` covers all the constructors of the type
1013/// 2. each constructor in `present` is covered by something in the column
1014/// 3. no constructor in `missing` or `missing_empty` is covered by anything in the column
1015/// 4. each constructor in the column is equal to the union of one or more constructors in `present`
1016/// 5. `missing` does not contain empty constructors (see discussion about emptiness at the top of
1017///    the file);
1018/// 6. `missing_empty` contains only empty constructors
1019/// 7. constructors in `present`, `missing` and `missing_empty` are split for the column; in other
1020///    words, they are either fully included in or fully disjoint from each constructor in the
1021///    column. In yet other words, there are no non-trivial intersections like between `0..10` and
1022///    `5..15`.
1023///
1024/// We must be particularly careful with weird constructors like `Opaque`: they're not formally part
1025/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
1026/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
1027#[derive(Debug)]
1028pub struct SplitConstructorSet<Cx: PatCx> {
1029    pub present: SmallVec<[Constructor<Cx>; 1]>,
1030    pub missing: Vec<Constructor<Cx>>,
1031    pub missing_empty: Vec<Constructor<Cx>>,
1032}
1033
1034impl<Cx: PatCx> ConstructorSet<Cx> {
1035    /// This analyzes a column of constructors to 1/ determine which constructors of the type (if
1036    /// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
1037    /// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
1038    /// and its invariants.
1039    pub fn split<'a>(
1040        &self,
1041        ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
1042    ) -> SplitConstructorSet<Cx>
1043    where
1044        Cx: 'a,
1045    {
1046        let mut present: SmallVec<[_; 1]> = SmallVec::new();
1047        // Empty constructors found missing.
1048        let mut missing_empty = Vec::new();
1049        // Nonempty constructors found missing.
1050        let mut missing = Vec::new();
1051        // Constructors in `ctors`, except wildcards and opaques.
1052        let mut seen = Vec::new();
1053        // If we see a deref pattern, it must be the only non-wildcard non-opaque constructor; we
1054        // ensure this prior to analysis.
1055        let mut deref_pat_present = false;
1056        for ctor in ctors.cloned() {
1057            match ctor {
1058                DerefPattern(..) => {
1059                    if !deref_pat_present {
1060                        deref_pat_present = true;
1061                        present.push(ctor);
1062                    }
1063                }
1064                Opaque(..) => present.push(ctor),
1065                Wildcard => {} // discard wildcards
1066                _ => seen.push(ctor),
1067            }
1068        }
1069
1070        match self {
1071            _ if deref_pat_present => {
1072                // Deref patterns are the only constructor; nothing is missing.
1073            }
1074            ConstructorSet::Struct { empty } => {
1075                if !seen.is_empty() {
1076                    present.push(Struct);
1077                } else if *empty {
1078                    missing_empty.push(Struct);
1079                } else {
1080                    missing.push(Struct);
1081                }
1082            }
1083            ConstructorSet::Ref => {
1084                if !seen.is_empty() {
1085                    present.push(Ref);
1086                } else {
1087                    missing.push(Ref);
1088                }
1089            }
1090            ConstructorSet::Union => {
1091                if !seen.is_empty() {
1092                    present.push(UnionField);
1093                } else {
1094                    missing.push(UnionField);
1095                }
1096            }
1097            ConstructorSet::Variants { variants, non_exhaustive } => {
1098                let mut seen_set = DenseBitSet::new_empty(variants.len());
1099                for idx in seen.iter().filter_map(|c| c.as_variant()) {
1100                    seen_set.insert(idx);
1101                }
1102                let mut skipped_a_hidden_variant = false;
1103
1104                for (idx, visibility) in variants.iter_enumerated() {
1105                    let ctor = Variant(idx);
1106                    if seen_set.contains(idx) {
1107                        present.push(ctor);
1108                    } else {
1109                        // We only put visible variants directly into `missing`.
1110                        match visibility {
1111                            VariantVisibility::Visible => missing.push(ctor),
1112                            VariantVisibility::Hidden => skipped_a_hidden_variant = true,
1113                            VariantVisibility::Empty => missing_empty.push(ctor),
1114                        }
1115                    }
1116                }
1117
1118                if skipped_a_hidden_variant {
1119                    missing.push(Hidden);
1120                }
1121                if *non_exhaustive {
1122                    missing.push(NonExhaustive);
1123                }
1124            }
1125            ConstructorSet::Bool => {
1126                let mut seen_false = false;
1127                let mut seen_true = false;
1128                for b in seen.iter().filter_map(|ctor| ctor.as_bool()) {
1129                    if b {
1130                        seen_true = true;
1131                    } else {
1132                        seen_false = true;
1133                    }
1134                }
1135                if seen_false {
1136                    present.push(Bool(false));
1137                } else {
1138                    missing.push(Bool(false));
1139                }
1140                if seen_true {
1141                    present.push(Bool(true));
1142                } else {
1143                    missing.push(Bool(true));
1144                }
1145            }
1146            ConstructorSet::Integers { range_1, range_2 } => {
1147                let seen_ranges: Vec<_> =
1148                    seen.iter().filter_map(|ctor| ctor.as_int_range()).copied().collect();
1149                for (seen, splitted_range) in range_1.split(seen_ranges.iter().cloned()) {
1150                    match seen {
1151                        Presence::Unseen => missing.push(IntRange(splitted_range)),
1152                        Presence::Seen => present.push(IntRange(splitted_range)),
1153                    }
1154                }
1155                if let Some(range_2) = range_2 {
1156                    for (seen, splitted_range) in range_2.split(seen_ranges.into_iter()) {
1157                        match seen {
1158                            Presence::Unseen => missing.push(IntRange(splitted_range)),
1159                            Presence::Seen => present.push(IntRange(splitted_range)),
1160                        }
1161                    }
1162                }
1163            }
1164            ConstructorSet::Slice { array_len, subtype_is_empty } => {
1165                let seen_slices = seen.iter().filter_map(|c| c.as_slice());
1166                let base_slice = Slice::new(*array_len, VarLen(0, 0));
1167                for (seen, splitted_slice) in base_slice.split(seen_slices) {
1168                    let ctor = Slice(splitted_slice);
1169                    match seen {
1170                        Presence::Seen => present.push(ctor),
1171                        Presence::Unseen => {
1172                            if *subtype_is_empty && splitted_slice.arity() != 0 {
1173                                // We have subpatterns of an empty type, so the constructor is
1174                                // empty.
1175                                missing_empty.push(ctor);
1176                            } else {
1177                                missing.push(ctor);
1178                            }
1179                        }
1180                    }
1181                }
1182            }
1183            ConstructorSet::Unlistable => {
1184                // Since we can't list constructors, we take the ones in the column. This might list
1185                // some constructors several times but there's not much we can do.
1186                present.extend(seen);
1187                missing.push(NonExhaustive);
1188            }
1189            ConstructorSet::NoConstructors => {
1190                // In a `MaybeInvalid` place even an empty pattern may be reachable. We therefore
1191                // add a dummy empty constructor here, which will be ignored if the place is
1192                // `ValidOnly`.
1193                missing_empty.push(Never);
1194            }
1195        }
1196
1197        SplitConstructorSet { present, missing, missing_empty }
1198    }
1199
1200    /// Whether this set only contains empty constructors.
1201    pub(crate) fn all_empty(&self) -> bool {
1202        match self {
1203            ConstructorSet::Bool
1204            | ConstructorSet::Integers { .. }
1205            | ConstructorSet::Ref
1206            | ConstructorSet::Union
1207            | ConstructorSet::Unlistable => false,
1208            ConstructorSet::NoConstructors => true,
1209            ConstructorSet::Struct { empty } => *empty,
1210            ConstructorSet::Variants { variants, non_exhaustive } => {
1211                !*non_exhaustive
1212                    && variants
1213                        .iter()
1214                        .all(|visibility| matches!(visibility, VariantVisibility::Empty))
1215            }
1216            ConstructorSet::Slice { array_len, subtype_is_empty } => {
1217                *subtype_is_empty && matches!(array_len, Some(1..))
1218            }
1219        }
1220    }
1221}