ra_ap_rustc_pattern_analysis/constructor.rs
1//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
2//! fields. This file defines a `Constructor` enum and various operations to manipulate them.
3//!
4//! There are two important bits of core logic in this file: constructor inclusion and constructor
5//! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
6//! is straightforward and defined in [`Constructor::is_covered_by`].
7//!
8//! Constructor splitting is mentioned in [`crate::usefulness`] but not detailed. We describe it
9//! precisely here.
10//!
11//!
12//!
13//! # Constructor grouping and splitting
14//!
15//! As explained in the corresponding section in [`crate::usefulness`], to make usefulness tractable
16//! we need to group together constructors that have the same effect when they are used to
17//! specialize the matrix.
18//!
19//! Example:
20//! ```compile_fail,E0004
21//! match (0, false) {
22//! (0 ..=100, true) => {}
23//! (50..=150, false) => {}
24//! (0 ..=200, _) => {}
25//! }
26//! ```
27//!
28//! In this example we can restrict specialization to 5 cases: `0..50`, `50..=100`, `101..=150`,
29//! `151..=200` and `200..`.
30//!
31//! In [`crate::usefulness`], we had said that `specialize` only takes value-only constructors. We
32//! now relax this restriction: we allow `specialize` to take constructors like `0..50` as long as
33//! we're careful to only do that with constructors that make sense. For example, `specialize(0..50,
34//! (0..=100, true))` is sensible, but `specialize(50..=200, (0..=100, true))` is not.
35//!
36//! Constructor splitting looks at the constructors in the first column of the matrix and constructs
37//! such a sensible set of constructors. Formally, we want to find a smallest disjoint set of
38//! constructors:
39//! - Whose union covers the whole type, and
40//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
41//! each either disjoint with or covered by any given column constructor).
42//!
43//! We compute this in two steps: first [`PatCx::ctors_for_ty`] determines the
44//! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
45//! column of constructors and splits the set into groups accordingly. The precise invariants of
46//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
47//!
48//! Constructor splitting has two interesting special cases: integer range splitting (see
49//! [`IntRange::split`]) and slice splitting (see [`Slice::split`]).
50//!
51//!
52//!
53//! # The `Missing` constructor
54//!
55//! We detail a special case of constructor splitting that is a bit subtle. Take the following:
56//!
57//! ```
58//! enum Direction { North, South, East, West }
59//! # let wind = (Direction::North, 0u8);
60//! match wind {
61//! (Direction::North, 50..) => {}
62//! (_, _) => {}
63//! }
64//! ```
65//!
66//! Here we expect constructor splitting to output two cases: `North`, and "everything else". This
67//! "everything else" is represented by [`Constructor::Missing`]. Unlike other constructors, it's a
68//! bit contextual: to know the exact list of constructors it represents we have to look at the
69//! column. In practice however we don't need to, because by construction it only matches rows that
70//! have wildcards. This is how this constructor is special: the only constructor that covers it is
71//! `Wildcard`.
72//!
73//! The only place where we care about which constructors `Missing` represents is in diagnostics
74//! (see `crate::usefulness::WitnessMatrix::apply_constructor`).
75//!
76//! We choose whether to specialize with `Missing` in
77//! `crate::usefulness::compute_exhaustiveness_and_usefulness`.
78//!
79//!
80//!
81//! ## Empty types, empty constructors, and the `exhaustive_patterns` feature
82//!
83//! An empty type is a type that has no valid value, like `!`, `enum Void {}`, or `Result<!, !>`.
84//! They require careful handling.
85//!
86//! First, for soundness reasons related to the possible existence of invalid values, by default we
87//! don't treat empty types as empty. We force them to be matched with wildcards. Except if the
88//! `exhaustive_patterns` feature is turned on, in which case we do treat them as empty. And also
89//! except if the type has no constructors (like `enum Void {}` but not like `Result<!, !>`), we
90//! specifically allow `match void {}` to be exhaustive. There are additionally considerations of
91//! place validity that are handled in `crate::usefulness`. Yes this is a bit tricky.
92//!
93//! The second thing is that regardless of the above, it is always allowed to use all the
94//! constructors of a type. For example, all the following is ok:
95//!
96//! ```rust,ignore(example)
97//! # #![feature(never_type)]
98//! # #![feature(exhaustive_patterns)]
99//! fn foo(x: Option<!>) {
100//! match x {
101//! None => {}
102//! Some(_) => {}
103//! }
104//! }
105//! fn bar(x: &[!]) -> u32 {
106//! match x {
107//! [] => 1,
108//! [_] => 2,
109//! [_, _] => 3,
110//! }
111//! }
112//! ```
113//!
114//! Moreover, take the following:
115//!
116//! ```rust
117//! # #![feature(never_type)]
118//! # #![feature(exhaustive_patterns)]
119//! # let x = None::<!>;
120//! match x {
121//! None => {}
122//! }
123//! ```
124//!
125//! On a normal type, we would identify `Some` as missing and tell the user. If `x: Option<!>`
126//! however (and `exhaustive_patterns` is on), it's ok to omit `Some`. When listing the constructors
127//! of a type, we must therefore track which can be omitted.
128//!
129//! Let's call "empty" a constructor that matches no valid value for the type, like `Some` for the
130//! type `Option<!>`. What this all means is that `ConstructorSet` must know which constructors are
131//! empty. The difference between empty and nonempty constructors is that empty constructors need
132//! not be present for the match to be exhaustive.
133//!
134//! A final remark: empty constructors of arity 0 break specialization, we must avoid them. The
135//! reason is that if we specialize by them, nothing remains to witness the emptiness; the rest of
136//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
137//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
138//!
139//! This is all handled by [`PatCx::ctors_for_ty`] and
140//! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
141//!
142//!
143//! ## Unions
144//!
145//! Unions allow us to match a value via several overlapping representations at the same time. For
146//! example, the following is exhaustive because when seeing the value as a boolean we handled all
147//! possible cases (other cases such as `n == 3` would trigger UB).
148//!
149//! ```rust
150//! # fn main() {
151//! union U8AsBool {
152//! n: u8,
153//! b: bool,
154//! }
155//! let x = U8AsBool { n: 1 };
156//! unsafe {
157//! match x {
158//! U8AsBool { n: 2 } => {}
159//! U8AsBool { b: true } => {}
160//! U8AsBool { b: false } => {}
161//! }
162//! }
163//! # }
164//! ```
165//!
166//! Pattern-matching has no knowledge that e.g. `false as u8 == 0`, so the values we consider in the
167//! algorithm look like `U8AsBool { b: true, n: 2 }`. In other words, for the most part a union is
168//! treated like a struct with the same fields. The difference lies in how we construct witnesses of
169//! non-exhaustiveness.
170//!
171//!
172//! ## Opaque patterns
173//!
174//! Some patterns, such as constants that are not allowed to be matched structurally, cannot be
175//! inspected, which we handle with `Constructor::Opaque`. Since we know nothing of these patterns,
176//! we assume they never cover each other. In order to respect the invariants of
177//! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.
178
179use std::cmp::{self, Ordering, max, min};
180use std::fmt;
181use std::iter::once;
182
183use rustc_apfloat::ieee::{DoubleS, HalfS, IeeeFloat, QuadS, SingleS};
184use rustc_index::IndexVec;
185use rustc_index::bit_set::{DenseBitSet, GrowableBitSet};
186use smallvec::SmallVec;
187
188use self::Constructor::*;
189use self::MaybeInfiniteInt::*;
190use self::SliceKind::*;
191use crate::PatCx;
192
193/// Whether we have seen a constructor in the column or not.
194#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
195enum Presence {
196 Unseen,
197 Seen,
198}
199
200#[derive(Debug, Copy, Clone, PartialEq, Eq)]
201pub enum RangeEnd {
202 Included,
203 Excluded,
204}
205
206impl fmt::Display for RangeEnd {
207 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
208 f.write_str(match self {
209 RangeEnd::Included => "..=",
210 RangeEnd::Excluded => "..",
211 })
212 }
213}
214
215/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
216/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
217/// `255`. See `signed_bias` for details.
218#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
219pub enum MaybeInfiniteInt {
220 NegInfinity,
221 /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite_{int,uint}`.
222 #[non_exhaustive]
223 Finite(u128),
224 PosInfinity,
225}
226
227impl MaybeInfiniteInt {
228 pub fn new_finite_uint(bits: u128) -> Self {
229 Finite(bits)
230 }
231 pub fn new_finite_int(bits: u128, size: u64) -> Self {
232 // Perform a shift if the underlying types are signed, which makes the interval arithmetic
233 // type-independent.
234 let bias = 1u128 << (size - 1);
235 Finite(bits ^ bias)
236 }
237
238 pub fn as_finite_uint(self) -> Option<u128> {
239 match self {
240 Finite(bits) => Some(bits),
241 _ => None,
242 }
243 }
244 pub fn as_finite_int(self, size: u64) -> Option<u128> {
245 // We decode the shift.
246 match self {
247 Finite(bits) => {
248 let bias = 1u128 << (size - 1);
249 Some(bits ^ bias)
250 }
251 _ => None,
252 }
253 }
254
255 /// Note: this will not turn a finite value into an infinite one or vice-versa.
256 pub fn minus_one(self) -> Option<Self> {
257 match self {
258 Finite(n) => n.checked_sub(1).map(Finite),
259 x => Some(x),
260 }
261 }
262 /// Note: this will turn `u128::MAX` into `PosInfinity`. This means `plus_one` and `minus_one`
263 /// are not strictly inverses, but that poses no problem in our use of them.
264 /// this will not turn a finite value into an infinite one or vice-versa.
265 pub fn plus_one(self) -> Option<Self> {
266 match self {
267 Finite(n) => match n.checked_add(1) {
268 Some(m) => Some(Finite(m)),
269 None => Some(PosInfinity),
270 },
271 x => Some(x),
272 }
273 }
274}
275
276/// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always
277/// store a contiguous range.
278///
279/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
280/// space: i.e., `range.lo < range.hi`.
281#[derive(Clone, Copy, PartialEq, Eq)]
282pub struct IntRange {
283 pub lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
284 pub hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
285}
286
287impl IntRange {
288 /// Best effort; will not know that e.g. `255u8..` is a singleton.
289 pub fn is_singleton(&self) -> bool {
290 // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
291 // to infinite, this correctly only detects ranges that contain exactly one `Finite(x)`.
292 self.lo.plus_one() == Some(self.hi)
293 }
294
295 /// Construct a singleton range.
296 /// `x` must be a `Finite(_)` value.
297 #[inline]
298 pub fn from_singleton(x: MaybeInfiniteInt) -> IntRange {
299 // `unwrap()` is ok on a finite value
300 IntRange { lo: x, hi: x.plus_one().unwrap() }
301 }
302
303 /// Construct a range with these boundaries.
304 /// `lo` must not be `PosInfinity`. `hi` must not be `NegInfinity`.
305 #[inline]
306 pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
307 if end == RangeEnd::Included {
308 hi = hi.plus_one().unwrap();
309 }
310 if lo >= hi {
311 // This should have been caught earlier by E0030.
312 panic!("malformed range pattern: {lo:?}..{hi:?}");
313 }
314 IntRange { lo, hi }
315 }
316
317 #[inline]
318 pub fn is_subrange(&self, other: &Self) -> bool {
319 other.lo <= self.lo && self.hi <= other.hi
320 }
321
322 fn intersection(&self, other: &Self) -> Option<Self> {
323 if self.lo < other.hi && other.lo < self.hi {
324 Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) })
325 } else {
326 None
327 }
328 }
329
330 /// Partition a range of integers into disjoint subranges. This does constructor splitting for
331 /// integer ranges as explained at the top of the file.
332 ///
333 /// This returns an output that covers `self`. The output is split so that the only
334 /// intersections between an output range and a column range are inclusions. No output range
335 /// straddles the boundary of one of the inputs.
336 ///
337 /// Additionally, we track for each output range whether it is covered by one of the column ranges or not.
338 ///
339 /// The following input:
340 /// ```text
341 /// (--------------------------) // `self`
342 /// (------) (----------) (-)
343 /// (------) (--------)
344 /// ```
345 /// is first intersected with `self`:
346 /// ```text
347 /// (--------------------------) // `self`
348 /// (----) (----------) (-)
349 /// (------) (--------)
350 /// ```
351 /// and then iterated over as follows:
352 /// ```text
353 /// (-(--)-(-)-(------)-)--(-)-
354 /// ```
355 /// where each sequence of dashes is an output range, and dashes outside parentheses are marked
356 /// as `Presence::Missing`.
357 ///
358 /// ## `isize`/`usize`
359 ///
360 /// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize`
361 /// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for
362 /// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are
363 /// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`.
364 /// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and
365 /// not others. This was decided in <https://github.com/rust-lang/rfcs/pull/2591>.
366 ///
367 /// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and
368 /// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these
369 /// fictitious ranges sensibly.
370 fn split(
371 &self,
372 column_ranges: impl Iterator<Item = IntRange>,
373 ) -> impl Iterator<Item = (Presence, IntRange)> {
374 // The boundaries of ranges in `column_ranges` intersected with `self`.
375 // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts
376 // a range and -1 if it ends it. When the count is > 0 between two boundaries, we
377 // are within an input range.
378 let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges
379 .filter_map(|r| self.intersection(&r))
380 .flat_map(|r| [(r.lo, 1), (r.hi, -1)])
381 .collect();
382 // We sort by boundary, and for each boundary we sort the "closing parentheses" first. The
383 // order of +1/-1 for a same boundary value is actually irrelevant, because we only look at
384 // the accumulated count between distinct boundary values.
385 boundaries.sort_unstable();
386
387 // Accumulate parenthesis counts.
388 let mut paren_counter = 0isize;
389 // Gather pairs of adjacent boundaries.
390 let mut prev_bdy = self.lo;
391 boundaries
392 .into_iter()
393 // End with the end of the range. The count is ignored.
394 .chain(once((self.hi, 0)))
395 // List pairs of adjacent boundaries and the count between them.
396 .map(move |(bdy, delta)| {
397 // `delta` affects the count as we cross `bdy`, so the relevant count between
398 // `prev_bdy` and `bdy` is untouched by `delta`.
399 let ret = (prev_bdy, paren_counter, bdy);
400 prev_bdy = bdy;
401 paren_counter += delta;
402 ret
403 })
404 // Skip empty ranges.
405 .filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy)
406 // Convert back to ranges.
407 .map(move |(prev_bdy, paren_count, bdy)| {
408 use Presence::*;
409 let presence = if paren_count > 0 { Seen } else { Unseen };
410 let range = IntRange { lo: prev_bdy, hi: bdy };
411 (presence, range)
412 })
413 }
414}
415
416/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern
417/// first.
418impl fmt::Debug for IntRange {
419 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
420 if self.is_singleton() {
421 // Only finite ranges can be singletons.
422 let Finite(lo) = self.lo else { unreachable!() };
423 write!(f, "{lo}")?;
424 } else {
425 if let Finite(lo) = self.lo {
426 write!(f, "{lo}")?;
427 }
428 write!(f, "{}", RangeEnd::Excluded)?;
429 if let Finite(hi) = self.hi {
430 write!(f, "{hi}")?;
431 }
432 }
433 Ok(())
434 }
435}
436
437#[derive(Copy, Clone, Debug, PartialEq, Eq)]
438pub enum SliceKind {
439 /// Patterns of length `n` (`[x, y]`).
440 FixedLen(usize),
441 /// Patterns using the `..` notation (`[x, .., y]`).
442 /// Captures any array constructor of `length >= i + j`.
443 /// In the case where `array_len` is `Some(_)`,
444 /// this indicates that we only care about the first `i` and the last `j` values of the array,
445 /// and everything in between is a wildcard `_`.
446 VarLen(usize, usize),
447}
448
449impl SliceKind {
450 pub fn arity(self) -> usize {
451 match self {
452 FixedLen(length) => length,
453 VarLen(prefix, suffix) => prefix + suffix,
454 }
455 }
456
457 /// Whether this pattern includes patterns of length `other_len`.
458 fn covers_length(self, other_len: usize) -> bool {
459 match self {
460 FixedLen(len) => len == other_len,
461 VarLen(prefix, suffix) => prefix + suffix <= other_len,
462 }
463 }
464}
465
466/// A constructor for array and slice patterns.
467#[derive(Copy, Clone, Debug, PartialEq, Eq)]
468pub struct Slice {
469 /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
470 pub(crate) array_len: Option<usize>,
471 /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
472 pub(crate) kind: SliceKind,
473}
474
475impl Slice {
476 pub fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
477 let kind = match (array_len, kind) {
478 // If the middle `..` has length 0, we effectively have a fixed-length pattern.
479 (Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
480 (Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => panic!(
481 "Slice pattern of length {} longer than its array length {len}",
482 prefix + suffix
483 ),
484 _ => kind,
485 };
486 Slice { array_len, kind }
487 }
488
489 pub fn arity(self) -> usize {
490 self.kind.arity()
491 }
492
493 /// See `Constructor::is_covered_by`
494 fn is_covered_by(self, other: Self) -> bool {
495 other.kind.covers_length(self.arity())
496 }
497
498 /// This computes constructor splitting for variable-length slices, as explained at the top of
499 /// the file.
500 ///
501 /// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x,
502 /// _, _, y] | etc`. The corresponding value constructors are fixed-length array constructors of
503 /// corresponding lengths. We obviously can't list this infinitude of constructors.
504 /// Thankfully, it turns out that for each finite set of slice patterns, all sufficiently large
505 /// array lengths are equivalent.
506 ///
507 /// Let's look at an example, where we are trying to split the last pattern:
508 /// ```
509 /// # fn foo(x: &[bool]) {
510 /// match x {
511 /// [true, true, ..] => {}
512 /// [.., false, false] => {}
513 /// [..] => {}
514 /// }
515 /// # }
516 /// ```
517 /// Here are the results of specialization for the first few lengths:
518 /// ```
519 /// # fn foo(x: &[bool]) { match x {
520 /// // length 0
521 /// [] => {}
522 /// // length 1
523 /// [_] => {}
524 /// // length 2
525 /// [true, true] => {}
526 /// [false, false] => {}
527 /// [_, _] => {}
528 /// // length 3
529 /// [true, true, _ ] => {}
530 /// [_, false, false] => {}
531 /// [_, _, _ ] => {}
532 /// // length 4
533 /// [true, true, _, _ ] => {}
534 /// [_, _, false, false] => {}
535 /// [_, _, _, _ ] => {}
536 /// // length 5
537 /// [true, true, _, _, _ ] => {}
538 /// [_, _, _, false, false] => {}
539 /// [_, _, _, _, _ ] => {}
540 /// # _ => {}
541 /// # }}
542 /// ```
543 ///
544 /// We see that above length 4, we are simply inserting columns full of wildcards in the middle.
545 /// This means that specialization and witness computation with slices of length `l >= 4` will
546 /// give equivalent results regardless of `l`. This applies to any set of slice patterns: there
547 /// will be a length `L` above which all lengths behave the same. This is exactly what we need
548 /// for constructor splitting.
549 ///
550 /// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just
551 /// saw, we can split this in two: lengths below `L` are treated individually with a
552 /// fixed-length slice each; lengths above `L` are grouped into a single variable-length slice
553 /// constructor.
554 ///
555 /// For each variable-length slice pattern `p` with a prefix of length `plₚ` and suffix of
556 /// length `slₚ`, only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as
557 /// long as `L` is positive (to avoid concerns about empty types), all elements after the
558 /// maximum prefix length and before the maximum suffix length are not examined by any
559 /// variable-length pattern, and therefore can be ignored. This gives us a way to compute `L`.
560 ///
561 /// Additionally, if fixed-length patterns exist, we must pick an `L` large enough to miss them,
562 /// so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`.
563 /// `max_slice` below will be made to have this arity `L`.
564 ///
565 /// If `self` is fixed-length, it is returned as-is.
566 ///
567 /// Additionally, we track for each output slice whether it is covered by one of the column slices or not.
568 fn split(
569 self,
570 column_slices: impl Iterator<Item = Slice>,
571 ) -> impl Iterator<Item = (Presence, Slice)> {
572 // Range of lengths below `L`.
573 let smaller_lengths;
574 let arity = self.arity();
575 let mut max_slice = self.kind;
576 // Tracks the smallest variable-length slice we've seen. Any slice arity above it is
577 // therefore `Presence::Seen` in the column.
578 let mut min_var_len = usize::MAX;
579 // Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
580 let mut seen_fixed_lens = GrowableBitSet::new_empty();
581 match &mut max_slice {
582 VarLen(max_prefix_len, max_suffix_len) => {
583 // A length larger than any fixed-length slice encountered.
584 // We start at 1 in case the subtype is empty because in that case the zero-length
585 // slice must be treated separately from the rest.
586 let mut fixed_len_upper_bound = 1;
587 // We grow `max_slice` to be larger than all slices encountered, as described above.
588 // `L` is `max_slice.arity()`. For diagnostics, we keep the prefix and suffix
589 // lengths separate.
590 for slice in column_slices {
591 match slice.kind {
592 FixedLen(len) => {
593 fixed_len_upper_bound = cmp::max(fixed_len_upper_bound, len + 1);
594 seen_fixed_lens.insert(len);
595 }
596 VarLen(prefix, suffix) => {
597 *max_prefix_len = cmp::max(*max_prefix_len, prefix);
598 *max_suffix_len = cmp::max(*max_suffix_len, suffix);
599 min_var_len = cmp::min(min_var_len, prefix + suffix);
600 }
601 }
602 }
603 // If `fixed_len_upper_bound >= L`, we set `L` to `fixed_len_upper_bound`.
604 if let Some(delta) =
605 fixed_len_upper_bound.checked_sub(*max_prefix_len + *max_suffix_len)
606 {
607 *max_prefix_len += delta
608 }
609
610 // We cap the arity of `max_slice` at the array size.
611 match self.array_len {
612 Some(len) if max_slice.arity() >= len => max_slice = FixedLen(len),
613 _ => {}
614 }
615
616 smaller_lengths = match self.array_len {
617 // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
618 // is fixed-length or variable-length, it will be the only relevant slice to output
619 // here.
620 Some(_) => 0..0, // empty range
621 // We need to cover all arities in the range `(arity..infinity)`. We split that
622 // range into two: lengths smaller than `max_slice.arity()` are treated
623 // independently as fixed-lengths slices, and lengths above are captured by
624 // `max_slice`.
625 None => self.arity()..max_slice.arity(),
626 };
627 }
628 FixedLen(_) => {
629 // No need to split here. We only track presence.
630 for slice in column_slices {
631 match slice.kind {
632 FixedLen(len) => {
633 if len == arity {
634 seen_fixed_lens.insert(len);
635 }
636 }
637 VarLen(prefix, suffix) => {
638 min_var_len = cmp::min(min_var_len, prefix + suffix);
639 }
640 }
641 }
642 smaller_lengths = 0..0;
643 }
644 };
645
646 smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
647 let arity = kind.arity();
648 let seen = if min_var_len <= arity || seen_fixed_lens.contains(arity) {
649 Presence::Seen
650 } else {
651 Presence::Unseen
652 };
653 (seen, Slice::new(self.array_len, kind))
654 })
655 }
656}
657
658/// A globally unique id to distinguish `Opaque` patterns.
659#[derive(Clone, Debug, PartialEq, Eq)]
660pub struct OpaqueId(u32);
661
662impl OpaqueId {
663 pub fn new() -> Self {
664 use std::sync::atomic::{AtomicU32, Ordering};
665 static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
666 OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
667 }
668}
669
670/// A value can be decomposed into a constructor applied to some fields. This struct represents
671/// the constructor. See also `Fields`.
672///
673/// `pat_constructor` retrieves the constructor corresponding to a pattern.
674/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
675/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
676/// `Fields`.
677#[derive(Debug)]
678pub enum Constructor<Cx: PatCx> {
679 /// Tuples and structs.
680 Struct,
681 /// Enum variants.
682 Variant(Cx::VariantIdx),
683 /// References
684 Ref,
685 /// Array and slice patterns.
686 Slice(Slice),
687 /// Union field accesses.
688 UnionField,
689 /// Booleans
690 Bool(bool),
691 /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
692 IntRange(IntRange),
693 /// Ranges of floating-point literal values (`2.0..=5.2`).
694 F16Range(IeeeFloat<HalfS>, IeeeFloat<HalfS>, RangeEnd),
695 F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
696 F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
697 F128Range(IeeeFloat<QuadS>, IeeeFloat<QuadS>, RangeEnd),
698 /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
699 Str(Cx::StrLit),
700 /// Deref patterns (enabled by the `deref_patterns` feature) provide a way of matching on a
701 /// smart pointer ADT through its pointee. They don't directly correspond to ADT constructors,
702 /// and currently are not supported alongside them. Carries the type of the pointee.
703 DerefPattern(Cx::Ty),
704 /// Constants that must not be matched structurally. They are treated as black boxes for the
705 /// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
706 /// match exhaustive.
707 /// Carries an id that must be unique within a match. We need this to ensure the invariants of
708 /// [`SplitConstructorSet`].
709 Opaque(OpaqueId),
710 /// Or-pattern.
711 Or,
712 /// Wildcard pattern.
713 Wildcard,
714 /// Never pattern. Only used in `WitnessPat`. An actual never pattern should be lowered as
715 /// `Wildcard`.
716 Never,
717 /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
718 /// for those types for which we cannot list constructors explicitly, like `f64` and `str`. Only
719 /// used in `WitnessPat`.
720 NonExhaustive,
721 /// Fake extra constructor for variants that should not be mentioned in diagnostics. We use this
722 /// for variants behind an unstable gate as well as `#[doc(hidden)]` ones. Only used in
723 /// `WitnessPat`.
724 Hidden,
725 /// Fake extra constructor for constructors that are not seen in the matrix, as explained at the
726 /// top of the file. Only used for specialization.
727 Missing,
728 /// Fake extra constructor that indicates and empty field that is private. When we encounter one
729 /// we skip the column entirely so we don't observe its emptiness. Only used for specialization.
730 PrivateUninhabited,
731}
732
733impl<Cx: PatCx> Clone for Constructor<Cx> {
734 fn clone(&self) -> Self {
735 match self {
736 Constructor::Struct => Constructor::Struct,
737 Constructor::Variant(idx) => Constructor::Variant(*idx),
738 Constructor::Ref => Constructor::Ref,
739 Constructor::Slice(slice) => Constructor::Slice(*slice),
740 Constructor::UnionField => Constructor::UnionField,
741 Constructor::Bool(b) => Constructor::Bool(*b),
742 Constructor::IntRange(range) => Constructor::IntRange(*range),
743 Constructor::F16Range(lo, hi, end) => Constructor::F16Range(*lo, *hi, *end),
744 Constructor::F32Range(lo, hi, end) => Constructor::F32Range(*lo, *hi, *end),
745 Constructor::F64Range(lo, hi, end) => Constructor::F64Range(*lo, *hi, *end),
746 Constructor::F128Range(lo, hi, end) => Constructor::F128Range(*lo, *hi, *end),
747 Constructor::Str(value) => Constructor::Str(value.clone()),
748 Constructor::DerefPattern(ty) => Constructor::DerefPattern(ty.clone()),
749 Constructor::Opaque(inner) => Constructor::Opaque(inner.clone()),
750 Constructor::Or => Constructor::Or,
751 Constructor::Never => Constructor::Never,
752 Constructor::Wildcard => Constructor::Wildcard,
753 Constructor::NonExhaustive => Constructor::NonExhaustive,
754 Constructor::Hidden => Constructor::Hidden,
755 Constructor::Missing => Constructor::Missing,
756 Constructor::PrivateUninhabited => Constructor::PrivateUninhabited,
757 }
758 }
759}
760
761impl<Cx: PatCx> Constructor<Cx> {
762 pub(crate) fn is_non_exhaustive(&self) -> bool {
763 matches!(self, NonExhaustive)
764 }
765
766 pub(crate) fn as_variant(&self) -> Option<Cx::VariantIdx> {
767 match self {
768 Variant(i) => Some(*i),
769 _ => None,
770 }
771 }
772 fn as_bool(&self) -> Option<bool> {
773 match self {
774 Bool(b) => Some(*b),
775 _ => None,
776 }
777 }
778 pub(crate) fn as_int_range(&self) -> Option<&IntRange> {
779 match self {
780 IntRange(range) => Some(range),
781 _ => None,
782 }
783 }
784 fn as_slice(&self) -> Option<Slice> {
785 match self {
786 Slice(slice) => Some(*slice),
787 _ => None,
788 }
789 }
790
791 /// The number of fields for this constructor. This must be kept in sync with
792 /// `Fields::wildcards`.
793 pub(crate) fn arity(&self, cx: &Cx, ty: &Cx::Ty) -> usize {
794 cx.ctor_arity(self, ty)
795 }
796
797 /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
798 /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
799 /// this checks for inclusion.
800 // We inline because this has a single call site in `Matrix::specialize_constructor`.
801 #[inline]
802 pub(crate) fn is_covered_by(&self, cx: &Cx, other: &Self) -> Result<bool, Cx::Error> {
803 Ok(match (self, other) {
804 (Wildcard, _) => {
805 return Err(cx.bug(format_args!(
806 "Constructor splitting should not have returned `Wildcard`"
807 )));
808 }
809 // Wildcards cover anything
810 (_, Wildcard) => true,
811 // `PrivateUninhabited` skips everything.
812 (PrivateUninhabited, _) => true,
813 // Only a wildcard pattern can match these special constructors.
814 (Missing { .. } | NonExhaustive | Hidden, _) => false,
815
816 (Struct, Struct) => true,
817 (Ref, Ref) => true,
818 (UnionField, UnionField) => true,
819 (Variant(self_id), Variant(other_id)) => self_id == other_id,
820 (Bool(self_b), Bool(other_b)) => self_b == other_b,
821
822 (IntRange(self_range), IntRange(other_range)) => self_range.is_subrange(other_range),
823 (F16Range(self_from, self_to, self_end), F16Range(other_from, other_to, other_end)) => {
824 self_from.ge(other_from)
825 && match self_to.partial_cmp(other_to) {
826 Some(Ordering::Less) => true,
827 Some(Ordering::Equal) => other_end == self_end,
828 _ => false,
829 }
830 }
831 (F32Range(self_from, self_to, self_end), F32Range(other_from, other_to, other_end)) => {
832 self_from.ge(other_from)
833 && match self_to.partial_cmp(other_to) {
834 Some(Ordering::Less) => true,
835 Some(Ordering::Equal) => other_end == self_end,
836 _ => false,
837 }
838 }
839 (F64Range(self_from, self_to, self_end), F64Range(other_from, other_to, other_end)) => {
840 self_from.ge(other_from)
841 && match self_to.partial_cmp(other_to) {
842 Some(Ordering::Less) => true,
843 Some(Ordering::Equal) => other_end == self_end,
844 _ => false,
845 }
846 }
847 (
848 F128Range(self_from, self_to, self_end),
849 F128Range(other_from, other_to, other_end),
850 ) => {
851 self_from.ge(other_from)
852 && match self_to.partial_cmp(other_to) {
853 Some(Ordering::Less) => true,
854 Some(Ordering::Equal) => other_end == self_end,
855 _ => false,
856 }
857 }
858 (Str(self_val), Str(other_val)) => {
859 // FIXME Once valtrees are available we can directly use the bytes
860 // in the `Str` variant of the valtree for the comparison here.
861 self_val == other_val
862 }
863 (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
864
865 // Deref patterns only interact with other deref patterns. Prior to usefulness analysis,
866 // we ensure they don't appear alongside any other non-wild non-opaque constructors.
867 (DerefPattern(_), DerefPattern(_)) => true,
868
869 // Opaque constructors don't interact with anything unless they come from the
870 // syntactically identical pattern.
871 (Opaque(self_id), Opaque(other_id)) => self_id == other_id,
872 (Opaque(..), _) | (_, Opaque(..)) => false,
873
874 _ => {
875 return Err(cx.bug(format_args!(
876 "trying to compare incompatible constructors {self:?} and {other:?}"
877 )));
878 }
879 })
880 }
881
882 pub(crate) fn fmt_fields(
883 &self,
884 f: &mut fmt::Formatter<'_>,
885 ty: &Cx::Ty,
886 mut fields: impl Iterator<Item = impl fmt::Debug>,
887 ) -> fmt::Result {
888 let mut first = true;
889 let mut start_or_continue = |s| {
890 if first {
891 first = false;
892 ""
893 } else {
894 s
895 }
896 };
897 let mut start_or_comma = || start_or_continue(", ");
898
899 match self {
900 Struct | Variant(_) | UnionField => {
901 Cx::write_variant_name(f, self, ty)?;
902 // Without `cx`, we can't know which field corresponds to which, so we can't
903 // get the names of the fields. Instead we just display everything as a tuple
904 // struct, which should be good enough.
905 write!(f, "(")?;
906 for p in fields {
907 write!(f, "{}{:?}", start_or_comma(), p)?;
908 }
909 write!(f, ")")?;
910 }
911 // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
912 // be careful to detect strings here. However a string literal pattern will never
913 // be reported as a non-exhaustiveness witness, so we can ignore this issue.
914 Ref => {
915 write!(f, "&{:?}", fields.next().unwrap())?;
916 }
917 Slice(slice) => {
918 write!(f, "[")?;
919 match slice.kind {
920 SliceKind::FixedLen(_) => {
921 for p in fields {
922 write!(f, "{}{:?}", start_or_comma(), p)?;
923 }
924 }
925 SliceKind::VarLen(prefix_len, _) => {
926 for p in fields.by_ref().take(prefix_len) {
927 write!(f, "{}{:?}", start_or_comma(), p)?;
928 }
929 write!(f, "{}..", start_or_comma())?;
930 for p in fields {
931 write!(f, "{}{:?}", start_or_comma(), p)?;
932 }
933 }
934 }
935 write!(f, "]")?;
936 }
937 Bool(b) => write!(f, "{b}")?,
938 // Best-effort, will render signed ranges incorrectly
939 IntRange(range) => write!(f, "{range:?}")?,
940 F16Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
941 F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
942 F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
943 F128Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
944 Str(value) => write!(f, "{value:?}")?,
945 DerefPattern(_) => write!(f, "deref!({:?})", fields.next().unwrap())?,
946 Opaque(..) => write!(f, "<constant pattern>")?,
947 Or => {
948 for pat in fields {
949 write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
950 }
951 }
952 Never => write!(f, "!")?,
953 Wildcard | Missing | NonExhaustive | Hidden | PrivateUninhabited => {
954 write!(f, "_ : {:?}", ty)?
955 }
956 }
957 Ok(())
958 }
959}
960
961#[derive(Debug, Clone, Copy)]
962pub enum VariantVisibility {
963 /// Variant that doesn't fit the other cases, i.e. most variants.
964 Visible,
965 /// Variant behind an unstable gate or with the `#[doc(hidden)]` attribute. It will not be
966 /// mentioned in diagnostics unless the user mentioned it first.
967 Hidden,
968 /// Variant that matches no value. E.g. `Some::<Option<!>>` if the `exhaustive_patterns` feature
969 /// is enabled. Like `Hidden`, it will not be mentioned in diagnostics unless the user mentioned
970 /// it first.
971 Empty,
972}
973
974/// Describes the set of all constructors for a type. For details, in particular about the emptiness
975/// of constructors, see the top of the file.
976///
977/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
978/// `exhaustive_patterns` feature.
979#[derive(Debug)]
980pub enum ConstructorSet<Cx: PatCx> {
981 /// The type is a tuple or struct. `empty` tracks whether the type is empty.
982 Struct { empty: bool },
983 /// This type has the following list of constructors. If `variants` is empty and
984 /// `non_exhaustive` is false, don't use this; use `NoConstructors` instead.
985 Variants { variants: IndexVec<Cx::VariantIdx, VariantVisibility>, non_exhaustive: bool },
986 /// The type is `&T`.
987 Ref,
988 /// The type is a union.
989 Union,
990 /// Booleans.
991 Bool,
992 /// The type is spanned by integer values. The range or ranges give the set of allowed values.
993 /// The second range is only useful for `char`.
994 Integers { range_1: IntRange, range_2: Option<IntRange> },
995 /// The type is matched by slices. `array_len` is the compile-time length of the array, if
996 /// known. If `subtype_is_empty`, all constructors are empty except possibly the zero-length
997 /// slice `[]`.
998 Slice { array_len: Option<usize>, subtype_is_empty: bool },
999 /// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`,
1000 /// floats.
1001 Unlistable,
1002 /// The type has no constructors (not even empty ones). This is `!` and empty enums.
1003 NoConstructors,
1004}
1005
1006/// Describes the result of analyzing the constructors in a column of a match.
1007///
1008/// `present` is morally the set of constructors present in the column, and `missing` is the set of
1009/// constructors that exist in the type but are not present in the column.
1010///
1011/// More formally, if we discard wildcards from the column, this respects the following constraints:
1012/// 1. the union of `present`, `missing` and `missing_empty` covers all the constructors of the type
1013/// 2. each constructor in `present` is covered by something in the column
1014/// 3. no constructor in `missing` or `missing_empty` is covered by anything in the column
1015/// 4. each constructor in the column is equal to the union of one or more constructors in `present`
1016/// 5. `missing` does not contain empty constructors (see discussion about emptiness at the top of
1017/// the file);
1018/// 6. `missing_empty` contains only empty constructors
1019/// 7. constructors in `present`, `missing` and `missing_empty` are split for the column; in other
1020/// words, they are either fully included in or fully disjoint from each constructor in the
1021/// column. In yet other words, there are no non-trivial intersections like between `0..10` and
1022/// `5..15`.
1023///
1024/// We must be particularly careful with weird constructors like `Opaque`: they're not formally part
1025/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
1026/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
1027#[derive(Debug)]
1028pub struct SplitConstructorSet<Cx: PatCx> {
1029 pub present: SmallVec<[Constructor<Cx>; 1]>,
1030 pub missing: Vec<Constructor<Cx>>,
1031 pub missing_empty: Vec<Constructor<Cx>>,
1032}
1033
1034impl<Cx: PatCx> ConstructorSet<Cx> {
1035 /// This analyzes a column of constructors to 1/ determine which constructors of the type (if
1036 /// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
1037 /// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
1038 /// and its invariants.
1039 pub fn split<'a>(
1040 &self,
1041 ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
1042 ) -> SplitConstructorSet<Cx>
1043 where
1044 Cx: 'a,
1045 {
1046 let mut present: SmallVec<[_; 1]> = SmallVec::new();
1047 // Empty constructors found missing.
1048 let mut missing_empty = Vec::new();
1049 // Nonempty constructors found missing.
1050 let mut missing = Vec::new();
1051 // Constructors in `ctors`, except wildcards and opaques.
1052 let mut seen = Vec::new();
1053 // If we see a deref pattern, it must be the only non-wildcard non-opaque constructor; we
1054 // ensure this prior to analysis.
1055 let mut deref_pat_present = false;
1056 for ctor in ctors.cloned() {
1057 match ctor {
1058 DerefPattern(..) => {
1059 if !deref_pat_present {
1060 deref_pat_present = true;
1061 present.push(ctor);
1062 }
1063 }
1064 Opaque(..) => present.push(ctor),
1065 Wildcard => {} // discard wildcards
1066 _ => seen.push(ctor),
1067 }
1068 }
1069
1070 match self {
1071 _ if deref_pat_present => {
1072 // Deref patterns are the only constructor; nothing is missing.
1073 }
1074 ConstructorSet::Struct { empty } => {
1075 if !seen.is_empty() {
1076 present.push(Struct);
1077 } else if *empty {
1078 missing_empty.push(Struct);
1079 } else {
1080 missing.push(Struct);
1081 }
1082 }
1083 ConstructorSet::Ref => {
1084 if !seen.is_empty() {
1085 present.push(Ref);
1086 } else {
1087 missing.push(Ref);
1088 }
1089 }
1090 ConstructorSet::Union => {
1091 if !seen.is_empty() {
1092 present.push(UnionField);
1093 } else {
1094 missing.push(UnionField);
1095 }
1096 }
1097 ConstructorSet::Variants { variants, non_exhaustive } => {
1098 let mut seen_set = DenseBitSet::new_empty(variants.len());
1099 for idx in seen.iter().filter_map(|c| c.as_variant()) {
1100 seen_set.insert(idx);
1101 }
1102 let mut skipped_a_hidden_variant = false;
1103
1104 for (idx, visibility) in variants.iter_enumerated() {
1105 let ctor = Variant(idx);
1106 if seen_set.contains(idx) {
1107 present.push(ctor);
1108 } else {
1109 // We only put visible variants directly into `missing`.
1110 match visibility {
1111 VariantVisibility::Visible => missing.push(ctor),
1112 VariantVisibility::Hidden => skipped_a_hidden_variant = true,
1113 VariantVisibility::Empty => missing_empty.push(ctor),
1114 }
1115 }
1116 }
1117
1118 if skipped_a_hidden_variant {
1119 missing.push(Hidden);
1120 }
1121 if *non_exhaustive {
1122 missing.push(NonExhaustive);
1123 }
1124 }
1125 ConstructorSet::Bool => {
1126 let mut seen_false = false;
1127 let mut seen_true = false;
1128 for b in seen.iter().filter_map(|ctor| ctor.as_bool()) {
1129 if b {
1130 seen_true = true;
1131 } else {
1132 seen_false = true;
1133 }
1134 }
1135 if seen_false {
1136 present.push(Bool(false));
1137 } else {
1138 missing.push(Bool(false));
1139 }
1140 if seen_true {
1141 present.push(Bool(true));
1142 } else {
1143 missing.push(Bool(true));
1144 }
1145 }
1146 ConstructorSet::Integers { range_1, range_2 } => {
1147 let seen_ranges: Vec<_> =
1148 seen.iter().filter_map(|ctor| ctor.as_int_range()).copied().collect();
1149 for (seen, splitted_range) in range_1.split(seen_ranges.iter().cloned()) {
1150 match seen {
1151 Presence::Unseen => missing.push(IntRange(splitted_range)),
1152 Presence::Seen => present.push(IntRange(splitted_range)),
1153 }
1154 }
1155 if let Some(range_2) = range_2 {
1156 for (seen, splitted_range) in range_2.split(seen_ranges.into_iter()) {
1157 match seen {
1158 Presence::Unseen => missing.push(IntRange(splitted_range)),
1159 Presence::Seen => present.push(IntRange(splitted_range)),
1160 }
1161 }
1162 }
1163 }
1164 ConstructorSet::Slice { array_len, subtype_is_empty } => {
1165 let seen_slices = seen.iter().filter_map(|c| c.as_slice());
1166 let base_slice = Slice::new(*array_len, VarLen(0, 0));
1167 for (seen, splitted_slice) in base_slice.split(seen_slices) {
1168 let ctor = Slice(splitted_slice);
1169 match seen {
1170 Presence::Seen => present.push(ctor),
1171 Presence::Unseen => {
1172 if *subtype_is_empty && splitted_slice.arity() != 0 {
1173 // We have subpatterns of an empty type, so the constructor is
1174 // empty.
1175 missing_empty.push(ctor);
1176 } else {
1177 missing.push(ctor);
1178 }
1179 }
1180 }
1181 }
1182 }
1183 ConstructorSet::Unlistable => {
1184 // Since we can't list constructors, we take the ones in the column. This might list
1185 // some constructors several times but there's not much we can do.
1186 present.extend(seen);
1187 missing.push(NonExhaustive);
1188 }
1189 ConstructorSet::NoConstructors => {
1190 // In a `MaybeInvalid` place even an empty pattern may be reachable. We therefore
1191 // add a dummy empty constructor here, which will be ignored if the place is
1192 // `ValidOnly`.
1193 missing_empty.push(Never);
1194 }
1195 }
1196
1197 SplitConstructorSet { present, missing, missing_empty }
1198 }
1199
1200 /// Whether this set only contains empty constructors.
1201 pub(crate) fn all_empty(&self) -> bool {
1202 match self {
1203 ConstructorSet::Bool
1204 | ConstructorSet::Integers { .. }
1205 | ConstructorSet::Ref
1206 | ConstructorSet::Union
1207 | ConstructorSet::Unlistable => false,
1208 ConstructorSet::NoConstructors => true,
1209 ConstructorSet::Struct { empty } => *empty,
1210 ConstructorSet::Variants { variants, non_exhaustive } => {
1211 !*non_exhaustive
1212 && variants
1213 .iter()
1214 .all(|visibility| matches!(visibility, VariantVisibility::Empty))
1215 }
1216 ConstructorSet::Slice { array_len, subtype_is_empty } => {
1217 *subtype_is_empty && matches!(array_len, Some(1..))
1218 }
1219 }
1220 }
1221}