ra_ap_rustc_arena/
lib.rs

1//! The arena, a fast but limited type of allocator.
2//!
3//! Arenas are a type of allocator that destroy the objects within, all at
4//! once, once the arena itself is destroyed. They do not support deallocation
5//! of individual objects while the arena itself is still alive. The benefit
6//! of an arena is very fast allocation; just a pointer bump.
7//!
8//! This crate implements several kinds of arena.
9
10#![doc(
11    html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
12    test(no_crate_inject, attr(deny(warnings)))
13)]
14#![doc(rust_logo)]
15#![feature(rustdoc_internals)]
16#![feature(core_intrinsics)]
17#![feature(dropck_eyepatch)]
18#![feature(new_uninit)]
19#![feature(maybe_uninit_slice)]
20#![feature(decl_macro)]
21#![feature(rustc_attrs)]
22#![cfg_attr(test, feature(test))]
23#![feature(strict_provenance)]
24#![deny(unsafe_op_in_unsafe_fn)]
25#![deny(rustc::untranslatable_diagnostic)]
26#![deny(rustc::diagnostic_outside_of_impl)]
27#![allow(internal_features)]
28#![allow(clippy::mut_from_ref)] // Arena allocators are one of the places where this pattern is fine.
29
30use smallvec::SmallVec;
31
32use std::alloc::Layout;
33use std::cell::{Cell, RefCell};
34use std::marker::PhantomData;
35use std::mem::{self, MaybeUninit};
36use std::ptr::{self, NonNull};
37use std::slice;
38use std::{cmp, intrinsics};
39
40/// This calls the passed function while ensuring it won't be inlined into the caller.
41#[inline(never)]
42#[cold]
43fn outline<F: FnOnce() -> R, R>(f: F) -> R {
44    f()
45}
46
47struct ArenaChunk<T = u8> {
48    /// The raw storage for the arena chunk.
49    storage: NonNull<[MaybeUninit<T>]>,
50    /// The number of valid entries in the chunk.
51    entries: usize,
52}
53
54unsafe impl<#[may_dangle] T> Drop for ArenaChunk<T> {
55    fn drop(&mut self) {
56        unsafe { drop(Box::from_raw(self.storage.as_mut())) }
57    }
58}
59
60impl<T> ArenaChunk<T> {
61    #[inline]
62    unsafe fn new(capacity: usize) -> ArenaChunk<T> {
63        ArenaChunk {
64            storage: NonNull::from(Box::leak(Box::new_uninit_slice(capacity))),
65            entries: 0,
66        }
67    }
68
69    /// Destroys this arena chunk.
70    ///
71    /// # Safety
72    ///
73    /// The caller must ensure that `len` elements of this chunk have been initialized.
74    #[inline]
75    unsafe fn destroy(&mut self, len: usize) {
76        // The branch on needs_drop() is an -O1 performance optimization.
77        // Without the branch, dropping TypedArena<T> takes linear time.
78        if mem::needs_drop::<T>() {
79            // SAFETY: The caller must ensure that `len` elements of this chunk have
80            // been initialized.
81            unsafe {
82                let slice = self.storage.as_mut();
83                ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(&mut slice[..len]));
84            }
85        }
86    }
87
88    // Returns a pointer to the first allocated object.
89    #[inline]
90    fn start(&mut self) -> *mut T {
91        self.storage.as_ptr() as *mut T
92    }
93
94    // Returns a pointer to the end of the allocated space.
95    #[inline]
96    fn end(&mut self) -> *mut T {
97        unsafe {
98            if mem::size_of::<T>() == 0 {
99                // A pointer as large as possible for zero-sized elements.
100                ptr::invalid_mut(!0)
101            } else {
102                self.start().add(self.storage.len())
103            }
104        }
105    }
106}
107
108// The arenas start with PAGE-sized chunks, and then each new chunk is twice as
109// big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
110// we stop growing. This scales well, from arenas that are barely used up to
111// arenas that are used for 100s of MiBs. Note also that the chosen sizes match
112// the usual sizes of pages and huge pages on Linux.
113const PAGE: usize = 4096;
114const HUGE_PAGE: usize = 2 * 1024 * 1024;
115
116/// An arena that can hold objects of only one type.
117pub struct TypedArena<T> {
118    /// A pointer to the next object to be allocated.
119    ptr: Cell<*mut T>,
120
121    /// A pointer to the end of the allocated area. When this pointer is
122    /// reached, a new chunk is allocated.
123    end: Cell<*mut T>,
124
125    /// A vector of arena chunks.
126    chunks: RefCell<Vec<ArenaChunk<T>>>,
127
128    /// Marker indicating that dropping the arena causes its owned
129    /// instances of `T` to be dropped.
130    _own: PhantomData<T>,
131}
132
133impl<T> Default for TypedArena<T> {
134    /// Creates a new `TypedArena`.
135    fn default() -> TypedArena<T> {
136        TypedArena {
137            // We set both `ptr` and `end` to 0 so that the first call to
138            // alloc() will trigger a grow().
139            ptr: Cell::new(ptr::null_mut()),
140            end: Cell::new(ptr::null_mut()),
141            chunks: Default::default(),
142            _own: PhantomData,
143        }
144    }
145}
146
147impl<T> TypedArena<T> {
148    /// Allocates an object in the `TypedArena`, returning a reference to it.
149    #[inline]
150    pub fn alloc(&self, object: T) -> &mut T {
151        if self.ptr == self.end {
152            self.grow(1)
153        }
154
155        unsafe {
156            if mem::size_of::<T>() == 0 {
157                self.ptr.set(self.ptr.get().wrapping_byte_add(1));
158                let ptr = ptr::NonNull::<T>::dangling().as_ptr();
159                // Don't drop the object. This `write` is equivalent to `forget`.
160                ptr::write(ptr, object);
161                &mut *ptr
162            } else {
163                let ptr = self.ptr.get();
164                // Advance the pointer.
165                self.ptr.set(self.ptr.get().add(1));
166                // Write into uninitialized memory.
167                ptr::write(ptr, object);
168                &mut *ptr
169            }
170        }
171    }
172
173    #[inline]
174    fn can_allocate(&self, additional: usize) -> bool {
175        // FIXME: this should *likely* use `offset_from`, but more
176        // investigation is needed (including running tests in miri).
177        let available_bytes = self.end.get().addr() - self.ptr.get().addr();
178        let additional_bytes = additional.checked_mul(mem::size_of::<T>()).unwrap();
179        available_bytes >= additional_bytes
180    }
181
182    #[inline]
183    fn alloc_raw_slice(&self, len: usize) -> *mut T {
184        assert!(mem::size_of::<T>() != 0);
185        assert!(len != 0);
186
187        // Ensure the current chunk can fit `len` objects.
188        if !self.can_allocate(len) {
189            self.grow(len);
190            debug_assert!(self.can_allocate(len));
191        }
192
193        let start_ptr = self.ptr.get();
194        // SAFETY: `can_allocate`/`grow` ensures that there is enough space for
195        // `len` elements.
196        unsafe { self.ptr.set(start_ptr.add(len)) };
197        start_ptr
198    }
199
200    /// Allocates the elements of this iterator into a contiguous slice in the `TypedArena`.
201    ///
202    /// Note: for reasons of reentrancy and panic safety we collect into a `SmallVec<[_; 8]>` before
203    /// storing the elements in the arena.
204    #[inline]
205    pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
206        // Despite the similarlty with `DroplessArena`, we cannot reuse their fast case. The reason
207        // is subtle: these arenas are reentrant. In other words, `iter` may very well be holding a
208        // reference to `self` and adding elements to the arena during iteration.
209        //
210        // For this reason, if we pre-allocated any space for the elements of this iterator, we'd
211        // have to track that some uninitialized elements are followed by some initialized elements,
212        // else we might accidentally drop uninitialized memory if something panics or if the
213        // iterator doesn't fill all the length we expected.
214        //
215        // So we collect all the elements beforehand, which takes care of reentrancy and panic
216        // safety. This function is much less hot than `DroplessArena::alloc_from_iter`, so it
217        // doesn't need to be hyper-optimized.
218        assert!(mem::size_of::<T>() != 0);
219
220        let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect();
221        if vec.is_empty() {
222            return &mut [];
223        }
224        // Move the content to the arena by copying and then forgetting it.
225        let len = vec.len();
226        let start_ptr = self.alloc_raw_slice(len);
227        unsafe {
228            vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
229            vec.set_len(0);
230            slice::from_raw_parts_mut(start_ptr, len)
231        }
232    }
233
234    /// Grows the arena.
235    #[inline(never)]
236    #[cold]
237    fn grow(&self, additional: usize) {
238        unsafe {
239            // We need the element size to convert chunk sizes (ranging from
240            // PAGE to HUGE_PAGE bytes) to element counts.
241            let elem_size = cmp::max(1, mem::size_of::<T>());
242            let mut chunks = self.chunks.borrow_mut();
243            let mut new_cap;
244            if let Some(last_chunk) = chunks.last_mut() {
245                // If a type is `!needs_drop`, we don't need to keep track of how many elements
246                // the chunk stores - the field will be ignored anyway.
247                if mem::needs_drop::<T>() {
248                    // FIXME: this should *likely* use `offset_from`, but more
249                    // investigation is needed (including running tests in miri).
250                    let used_bytes = self.ptr.get().addr() - last_chunk.start().addr();
251                    last_chunk.entries = used_bytes / mem::size_of::<T>();
252                }
253
254                // If the previous chunk's len is less than HUGE_PAGE
255                // bytes, then this chunk will be least double the previous
256                // chunk's size.
257                new_cap = last_chunk.storage.len().min(HUGE_PAGE / elem_size / 2);
258                new_cap *= 2;
259            } else {
260                new_cap = PAGE / elem_size;
261            }
262            // Also ensure that this chunk can fit `additional`.
263            new_cap = cmp::max(additional, new_cap);
264
265            let mut chunk = ArenaChunk::<T>::new(new_cap);
266            self.ptr.set(chunk.start());
267            self.end.set(chunk.end());
268            chunks.push(chunk);
269        }
270    }
271
272    // Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
273    // chunks.
274    fn clear_last_chunk(&self, last_chunk: &mut ArenaChunk<T>) {
275        // Determine how much was filled.
276        let start = last_chunk.start().addr();
277        // We obtain the value of the pointer to the first uninitialized element.
278        let end = self.ptr.get().addr();
279        // We then calculate the number of elements to be dropped in the last chunk,
280        // which is the filled area's length.
281        let diff = if mem::size_of::<T>() == 0 {
282            // `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
283            // the number of zero-sized values in the last and only chunk, just out of caution.
284            // Recall that `end` was incremented for each allocated value.
285            end - start
286        } else {
287            // FIXME: this should *likely* use `offset_from`, but more
288            // investigation is needed (including running tests in miri).
289            (end - start) / mem::size_of::<T>()
290        };
291        // Pass that to the `destroy` method.
292        unsafe {
293            last_chunk.destroy(diff);
294        }
295        // Reset the chunk.
296        self.ptr.set(last_chunk.start());
297    }
298}
299
300unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
301    fn drop(&mut self) {
302        unsafe {
303            // Determine how much was filled.
304            let mut chunks_borrow = self.chunks.borrow_mut();
305            if let Some(mut last_chunk) = chunks_borrow.pop() {
306                // Drop the contents of the last chunk.
307                self.clear_last_chunk(&mut last_chunk);
308                // The last chunk will be dropped. Destroy all other chunks.
309                for chunk in chunks_borrow.iter_mut() {
310                    chunk.destroy(chunk.entries);
311                }
312            }
313            // Box handles deallocation of `last_chunk` and `self.chunks`.
314        }
315    }
316}
317
318unsafe impl<T: Send> Send for TypedArena<T> {}
319
320#[inline(always)]
321fn align_down(val: usize, align: usize) -> usize {
322    debug_assert!(align.is_power_of_two());
323    val & !(align - 1)
324}
325
326#[inline(always)]
327fn align_up(val: usize, align: usize) -> usize {
328    debug_assert!(align.is_power_of_two());
329    (val + align - 1) & !(align - 1)
330}
331
332// Pointer alignment is common in compiler types, so keep `DroplessArena` aligned to them
333// to optimize away alignment code.
334const DROPLESS_ALIGNMENT: usize = mem::align_of::<usize>();
335
336/// An arena that can hold objects of multiple different types that impl `Copy`
337/// and/or satisfy `!mem::needs_drop`.
338pub struct DroplessArena {
339    /// A pointer to the start of the free space.
340    start: Cell<*mut u8>,
341
342    /// A pointer to the end of free space.
343    ///
344    /// The allocation proceeds downwards from the end of the chunk towards the
345    /// start. (This is slightly simpler and faster than allocating upwards,
346    /// see <https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html>.)
347    /// When this pointer crosses the start pointer, a new chunk is allocated.
348    ///
349    /// This is kept aligned to DROPLESS_ALIGNMENT.
350    end: Cell<*mut u8>,
351
352    /// A vector of arena chunks.
353    chunks: RefCell<Vec<ArenaChunk>>,
354}
355
356unsafe impl Send for DroplessArena {}
357
358impl Default for DroplessArena {
359    #[inline]
360    fn default() -> DroplessArena {
361        DroplessArena {
362            // We set both `start` and `end` to 0 so that the first call to
363            // alloc() will trigger a grow().
364            start: Cell::new(ptr::null_mut()),
365            end: Cell::new(ptr::null_mut()),
366            chunks: Default::default(),
367        }
368    }
369}
370
371impl DroplessArena {
372    #[inline(never)]
373    #[cold]
374    fn grow(&self, layout: Layout) {
375        // Add some padding so we can align `self.end` while
376        // still fitting in a `layout` allocation.
377        let additional = layout.size() + cmp::max(DROPLESS_ALIGNMENT, layout.align()) - 1;
378
379        unsafe {
380            let mut chunks = self.chunks.borrow_mut();
381            let mut new_cap;
382            if let Some(last_chunk) = chunks.last_mut() {
383                // There is no need to update `last_chunk.entries` because that
384                // field isn't used by `DroplessArena`.
385
386                // If the previous chunk's len is less than HUGE_PAGE
387                // bytes, then this chunk will be least double the previous
388                // chunk's size.
389                new_cap = last_chunk.storage.len().min(HUGE_PAGE / 2);
390                new_cap *= 2;
391            } else {
392                new_cap = PAGE;
393            }
394            // Also ensure that this chunk can fit `additional`.
395            new_cap = cmp::max(additional, new_cap);
396
397            let mut chunk = ArenaChunk::new(align_up(new_cap, PAGE));
398            self.start.set(chunk.start());
399
400            // Align the end to DROPLESS_ALIGNMENT.
401            let end = align_down(chunk.end().addr(), DROPLESS_ALIGNMENT);
402
403            // Make sure we don't go past `start`. This should not happen since the allocation
404            // should be at least DROPLESS_ALIGNMENT - 1 bytes.
405            debug_assert!(chunk.start().addr() <= end);
406
407            self.end.set(chunk.end().with_addr(end));
408
409            chunks.push(chunk);
410        }
411    }
412
413    #[inline]
414    pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
415        assert!(layout.size() != 0);
416
417        // This loop executes once or twice: if allocation fails the first
418        // time, the `grow` ensures it will succeed the second time.
419        loop {
420            let start = self.start.get().addr();
421            let old_end = self.end.get();
422            let end = old_end.addr();
423
424            // Align allocated bytes so that `self.end` stays aligned to
425            // DROPLESS_ALIGNMENT.
426            let bytes = align_up(layout.size(), DROPLESS_ALIGNMENT);
427
428            // Tell LLVM that `end` is aligned to DROPLESS_ALIGNMENT.
429            unsafe { intrinsics::assume(end == align_down(end, DROPLESS_ALIGNMENT)) };
430
431            if let Some(sub) = end.checked_sub(bytes) {
432                let new_end = align_down(sub, layout.align());
433                if start <= new_end {
434                    let new_end = old_end.with_addr(new_end);
435                    // `new_end` is aligned to DROPLESS_ALIGNMENT as `align_down`
436                    // preserves alignment as both `end` and `bytes` are already
437                    // aligned to DROPLESS_ALIGNMENT.
438                    self.end.set(new_end);
439                    return new_end;
440                }
441            }
442
443            // No free space left. Allocate a new chunk to satisfy the request.
444            // On failure the grow will panic or abort.
445            self.grow(layout);
446        }
447    }
448
449    #[inline]
450    pub fn alloc<T>(&self, object: T) -> &mut T {
451        assert!(!mem::needs_drop::<T>());
452        assert!(mem::size_of::<T>() != 0);
453
454        let mem = self.alloc_raw(Layout::new::<T>()) as *mut T;
455
456        unsafe {
457            // Write into uninitialized memory.
458            ptr::write(mem, object);
459            &mut *mem
460        }
461    }
462
463    /// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
464    /// reference to it. Will panic if passed a zero-sized type.
465    ///
466    /// Panics:
467    ///
468    ///  - Zero-sized types
469    ///  - Zero-length slices
470    #[inline]
471    pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
472    where
473        T: Copy,
474    {
475        assert!(!mem::needs_drop::<T>());
476        assert!(mem::size_of::<T>() != 0);
477        assert!(!slice.is_empty());
478
479        let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;
480
481        unsafe {
482            mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
483            slice::from_raw_parts_mut(mem, slice.len())
484        }
485    }
486
487    /// Allocates a string slice that is copied into the `DroplessArena`, returning a
488    /// reference to it. Will panic if passed an empty string.
489    ///
490    /// Panics:
491    ///
492    ///  - Zero-length string
493    #[inline]
494    pub fn alloc_str(&self, string: &str) -> &str {
495        let slice = self.alloc_slice(string.as_bytes());
496
497        // SAFETY: the result has a copy of the same valid UTF-8 bytes.
498        unsafe { std::str::from_utf8_unchecked(slice) }
499    }
500
501    /// # Safety
502    ///
503    /// The caller must ensure that `mem` is valid for writes up to `size_of::<T>() * len`, and that
504    /// that memory stays allocated and not shared for the lifetime of `self`. This must hold even
505    /// if `iter.next()` allocates onto `self`.
506    #[inline]
507    unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
508        &self,
509        mut iter: I,
510        len: usize,
511        mem: *mut T,
512    ) -> &mut [T] {
513        let mut i = 0;
514        // Use a manual loop since LLVM manages to optimize it better for
515        // slice iterators
516        loop {
517            // SAFETY: The caller must ensure that `mem` is valid for writes up to
518            // `size_of::<T>() * len`.
519            unsafe {
520                match iter.next() {
521                    Some(value) if i < len => mem.add(i).write(value),
522                    Some(_) | None => {
523                        // We only return as many items as the iterator gave us, even
524                        // though it was supposed to give us `len`
525                        return slice::from_raw_parts_mut(mem, i);
526                    }
527                }
528            }
529            i += 1;
530        }
531    }
532
533    #[inline]
534    pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
535        // Warning: this function is reentrant: `iter` could hold a reference to `&self` and
536        // allocate additional elements while we're iterating.
537        let iter = iter.into_iter();
538        assert!(mem::size_of::<T>() != 0);
539        assert!(!mem::needs_drop::<T>());
540
541        let size_hint = iter.size_hint();
542
543        match size_hint {
544            (min, Some(max)) if min == max => {
545                // We know the exact number of elements the iterator expects to produce here.
546                let len = min;
547
548                if len == 0 {
549                    return &mut [];
550                }
551
552                let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
553                // SAFETY: `write_from_iter` doesn't touch `self`. It only touches the slice we just
554                // reserved. If the iterator panics or doesn't output `len` elements, this will
555                // leave some unallocated slots in the arena, which is fine because we do not call
556                // `drop`.
557                unsafe { self.write_from_iter(iter, len, mem) }
558            }
559            (_, _) => {
560                outline(move || -> &mut [T] {
561                    // Takes care of reentrancy.
562                    let mut vec: SmallVec<[_; 8]> = iter.collect();
563                    if vec.is_empty() {
564                        return &mut [];
565                    }
566                    // Move the content to the arena by copying it and then forgetting
567                    // the content of the SmallVec
568                    unsafe {
569                        let len = vec.len();
570                        let start_ptr =
571                            self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
572                        vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
573                        vec.set_len(0);
574                        slice::from_raw_parts_mut(start_ptr, len)
575                    }
576                })
577            }
578        }
579    }
580}
581
582/// Declare an `Arena` containing one dropless arena and many typed arenas (the
583/// types of the typed arenas are specified by the arguments).
584///
585/// There are three cases of interest.
586/// - Types that are `Copy`: these need not be specified in the arguments. They
587///   will use the `DroplessArena`.
588/// - Types that are `!Copy` and `!Drop`: these must be specified in the
589///   arguments. An empty `TypedArena` will be created for each one, but the
590///   `DroplessArena` will always be used and the `TypedArena` will stay empty.
591///   This is odd but harmless, because an empty arena allocates no memory.
592/// - Types that are `!Copy` and `Drop`: these must be specified in the
593///   arguments. The `TypedArena` will be used for them.
594///
595#[rustc_macro_transparency = "semitransparent"]
596pub macro declare_arena([$($a:tt $name:ident: $ty:ty,)*]) {
597    #[derive(Default)]
598    pub struct Arena<'tcx> {
599        pub dropless: $crate::DroplessArena,
600        $($name: $crate::TypedArena<$ty>,)*
601    }
602
603    pub trait ArenaAllocatable<'tcx, C = rustc_arena::IsNotCopy>: Sized {
604        #[allow(clippy::mut_from_ref)]
605        fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self;
606        #[allow(clippy::mut_from_ref)]
607        fn allocate_from_iter<'a>(
608            arena: &'a Arena<'tcx>,
609            iter: impl ::std::iter::IntoIterator<Item = Self>,
610        ) -> &'a mut [Self];
611    }
612
613    // Any type that impls `Copy` can be arena-allocated in the `DroplessArena`.
614    impl<'tcx, T: Copy> ArenaAllocatable<'tcx, rustc_arena::IsCopy> for T {
615        #[inline]
616        #[allow(clippy::mut_from_ref)]
617        fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
618            arena.dropless.alloc(self)
619        }
620        #[inline]
621        #[allow(clippy::mut_from_ref)]
622        fn allocate_from_iter<'a>(
623            arena: &'a Arena<'tcx>,
624            iter: impl ::std::iter::IntoIterator<Item = Self>,
625        ) -> &'a mut [Self] {
626            arena.dropless.alloc_from_iter(iter)
627        }
628    }
629    $(
630        impl<'tcx> ArenaAllocatable<'tcx, rustc_arena::IsNotCopy> for $ty {
631            #[inline]
632            fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
633                if !::std::mem::needs_drop::<Self>() {
634                    arena.dropless.alloc(self)
635                } else {
636                    arena.$name.alloc(self)
637                }
638            }
639
640            #[inline]
641            #[allow(clippy::mut_from_ref)]
642            fn allocate_from_iter<'a>(
643                arena: &'a Arena<'tcx>,
644                iter: impl ::std::iter::IntoIterator<Item = Self>,
645            ) -> &'a mut [Self] {
646                if !::std::mem::needs_drop::<Self>() {
647                    arena.dropless.alloc_from_iter(iter)
648                } else {
649                    arena.$name.alloc_from_iter(iter)
650                }
651            }
652        }
653    )*
654
655    impl<'tcx> Arena<'tcx> {
656        #[inline]
657        #[allow(clippy::mut_from_ref)]
658        pub fn alloc<T: ArenaAllocatable<'tcx, C>, C>(&self, value: T) -> &mut T {
659            value.allocate_on(self)
660        }
661
662        // Any type that impls `Copy` can have slices be arena-allocated in the `DroplessArena`.
663        #[inline]
664        #[allow(clippy::mut_from_ref)]
665        pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
666            if value.is_empty() {
667                return &mut [];
668            }
669            self.dropless.alloc_slice(value)
670        }
671
672        #[inline]
673        pub fn alloc_str(&self, string: &str) -> &str {
674            if string.is_empty() {
675                return "";
676            }
677            self.dropless.alloc_str(string)
678        }
679
680        #[allow(clippy::mut_from_ref)]
681        pub fn alloc_from_iter<T: ArenaAllocatable<'tcx, C>, C>(
682            &self,
683            iter: impl ::std::iter::IntoIterator<Item = T>,
684        ) -> &mut [T] {
685            T::allocate_from_iter(self, iter)
686        }
687    }
688}
689
690// Marker types that let us give different behaviour for arenas allocating
691// `Copy` types vs `!Copy` types.
692pub struct IsCopy;
693pub struct IsNotCopy;
694
695#[cfg(test)]
696mod tests;