1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
mod d;
mod p;
mod q;
mod r;
use strafe_type::{Finite64, FloatConstraint, LogProbability64, Probability64, Real64};
pub(crate) use self::{d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};
/// # The Uniform Distribution
///
/// ## Description
///
/// These functions provide information about the uniform distribution on the interval from min to
/// max. dunif gives the density, punif gives the distribution function qunif gives the quantile
/// function and runif generates random deviates.
///
/// ## Arguments
///
/// * min, max: lower and upper limits of the distribution. Must be finite.
///
/// ## Details
///
/// If min or max are not specified they assume the default values of 0 and 1 respectively.
///
/// The uniform distribution has density
///
/// $ f(x) = \frac{1}{\text{max}-\text{min}} $
///
/// for min ≤ x ≤ max.
///
/// For the case of u := min == max, the limit case of X == u is assumed, although there is no
/// density in that case and dunif will return NaN (the error condition).
///
/// runif will not generate either of the extreme values unless max = min or max-min is small
/// compared to min, and in particular not for the default arguments.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::UniformBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let unif = UniformBuilder::new().build();
/// let x = <[f64]>::sequence(-1.0, 2.0, 1000);
/// let y = x
/// .iter()
/// .map(|x| unif.density(x).unwrap())
/// .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
/// .with_options(PlotOptions {
/// x_axis_label: "x".to_string(),
/// y_axis_label: "density".to_string(),
/// ..Default::default()
/// })
/// .with_plottable(Line {
/// x,
/// y,
/// color: BLACK,
/// ..Default::default()
/// })
/// .plot(&root)
/// .unwrap();
/// # use std::fs::rename;
/// # drop(root);
/// # rename(
/// # format!("density.svg"),
/// # format!("src/distribution/unif/doctest_out/density.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/unif/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Note
///
/// The characteristics of output from pseudo-random number generators (such as precision and
/// periodicity) vary widely. See .Random.seed for more information on R's random number generation
/// algorithms.
///
/// ## References
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
/// Brooks/Cole.
///
/// ## See Also
///
/// RNG about random number generation in R.
///
/// Distributions for other standard distributions.
///
/// ## Examples
/// These relations always hold
/// ```rust
/// # use r2rs_nmath::{
/// # distribution::UniformBuilder,
/// # rng::MersenneTwister,
/// # traits::{Distribution, RNG},
/// # };
/// # use strafe_type::FloatConstraint;
/// let unif = UniformBuilder::new().build();
///
/// let mut rng = MersenneTwister::new();
/// rng.set_seed(1);
///
/// let u = (0..20)
/// .map(|_| unif.random_sample(&mut rng).unwrap())
/// .collect::<Vec<_>>();
///
/// let p = u
/// .iter()
/// .map(|&u| unif.probability(u, true).unwrap() == u)
/// .collect::<Vec<_>>();
/// println!("{p:?}");
/// let d = u
/// .iter()
/// .map(|&u| unif.density(u).unwrap() == 1.0)
/// .collect::<Vec<_>>();
/// println!("{d:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/unif/doctest_out/pd.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{p:?}").unwrap();
/// # writeln!(f, "{d:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/pd.md")))]
///
/// ~ = 1/12 = .08333
/// ```rust
/// # use r2rs_nmath::{
/// # distribution::UniformBuilder,
/// # rng::MersenneTwister,
/// # traits::{Distribution, RNG},
/// # };
/// # use r2rs_stats::funcs::variance;
/// # use strafe_type::FloatConstraint;
/// let unif = UniformBuilder::new().build();
///
/// let mut rng = MersenneTwister::new();
/// rng.set_seed(1);
///
/// let r = (0..10_000)
/// .map(|_| unif.random_sample(&mut rng).unwrap())
/// .collect::<Vec<_>>();
/// println!("{}", variance(&r));
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/unif/doctest_out/rand_var.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{}", variance(&r)).unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/rand_var.md")))]
pub struct Uniform {
lower_bound: Finite64,
upper_bound: Finite64,
}
impl Distribution for Uniform {
fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
dunif(x, self.lower_bound, self.upper_bound, false)
}
fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
dunif(x, self.lower_bound, self.upper_bound, true)
}
fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
punif(q, self.lower_bound, self.upper_bound, lower_tail)
}
fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
log_punif(q, self.lower_bound, self.upper_bound, lower_tail)
}
fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
qunif(p, self.lower_bound, self.upper_bound, lower_tail)
}
fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
log_qunif(p, self.lower_bound, self.upper_bound, lower_tail)
}
fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
runif(self.lower_bound, self.upper_bound, rng)
}
}
pub struct UniformBuilder {
lower_bound: Option<Finite64>,
upper_bound: Option<Finite64>,
}
impl UniformBuilder {
pub fn new() -> Self {
Self {
lower_bound: None,
upper_bound: None,
}
}
pub fn with_bounds<F1: Into<Finite64>, F2: Into<Finite64>>(
&mut self,
bound1: F1,
bound2: F2,
) -> &mut Self {
let bound1 = bound1.into();
let bound2 = bound2.into();
if bound1.unwrap() < bound2.unwrap() {
self.lower_bound = Some(bound1);
self.upper_bound = Some(bound2);
} else {
self.lower_bound = Some(bound2);
self.upper_bound = Some(bound1);
}
self
}
pub fn build(&self) -> Uniform {
let lower_bound = self.lower_bound.unwrap_or(0.0.into());
let upper_bound = self.upper_bound.unwrap_or(1.0.into());
Uniform {
lower_bound,
upper_bound,
}
}
}
#[cfg(test)]
mod tests;
#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;
#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;