1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
mod d;
mod non_central;
mod p;
mod q;
mod r;
use std::{
error::Error,
fmt::{Display, Error as FmtError, Formatter},
};
use strafe_type::{FloatConstraint, LogProbability64, Probability64, Rational64, Real64};
pub(crate) use self::{d::*, non_central::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};
/// # The Student t Distribution
///
/// ## Description
///
/// Density, distribution function, quantile function and random generation for the t distribution
/// with df degrees of freedom (and optional non-centrality parameter ncp).
///
/// ## Arguments
///
/// * df: degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.
/// * ncp: non-centrality parameter delta; currently except for rt(), only for abs(ncp) <= 37.62. If omitted, use the central t distribution.
///
/// ## Details
///
/// The t distribution with df = n degrees of freedom has density
///
/// $f(x) = \Gamma(\frac{n+1}{2}) / (\sqrt{n \pi} \Gamma(\frac{n}{2})) (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$
///
/// for all real x. It has mean 0 (for n > 1) and variance $\frac{n}{n-2}$ (for n > 2).
///
/// The general non-central t with parameters $(df, Del) = (df, ncp)$ is defined as the distribution
/// of $T(df, Del) := (U + Del) / \sqrt{V/df}$ where U and V are independent random variables,
/// $U$ ~ $N(0,1)$ and $V$ ~ $\chi^2(df)$ (see Chisquare).
///
/// The most used applications are power calculations for t-tests:
/// Let $T= \frac{mX - m0}{S/\sqrt{n}}$ where mX is the mean and S the sample standard deviation (sd)
/// of $X_1, X_2, …, X_n$ which are i.i.d. $N(\mu, \sigma^2)$ Then T is distributed as non-central t with
/// $df = n - 1$ degrees of freedom and non-centrality parameter $ncp = (\mu - m0) * \sqrt{n}/\sigma$.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::TBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let t = TBuilder::new().build();
/// let x = <[f64]>::sequence(-10.0, 10.0, 1000);
/// let y = x
/// .iter()
/// .map(|x| t.density(x).unwrap())
/// .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
/// .with_options(PlotOptions {
/// x_axis_label: "x".to_string(),
/// y_axis_label: "density".to_string(),
/// ..Default::default()
/// })
/// .with_plottable(Line {
/// x,
/// y,
/// color: BLACK,
/// ..Default::default()
/// })
/// .plot(&root)
/// .unwrap();
/// # use std::fs::rename;
/// # drop(root);
/// # rename(
/// # format!("density.svg"),
/// # format!("src/distribution/t/doctest_out/density.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/t/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Note
///
/// Supplying ncp = 0 uses the algorithm for the non-central distribution, which is not the same
/// algorithm used if ncp is omitted. This is to give consistent behaviour in extreme cases with
/// values of ncp very near zero.
///
/// The code for non-zero ncp is principally intended to be used for moderate values of ncp: it
/// will not be highly accurate, especially in the tails, for large values.
///
/// ## Source
///
/// The central dt is computed via an accurate formula provided by Catherine Loader (see the
/// reference in dbinom).
///
/// For the non-central case of dt, C code contributed by Claus Ekstrøm based on the relationship
/// (for x != 0) to the cumulative distribution.
///
/// For the central case of pt, a normal approximation in the tails, otherwise via pbeta.
///
/// For the non-central case of pt based on a C translation of
///
/// Lenth, R. V. (1989). Algorithm AS 243 — Cumulative distribution function of the non-central t
/// distribution, Applied Statistics 38, 185–189.
///
/// This computes the lower tail only, so the upper tail suffers from cancellation and a warning
/// will be given when this is likely to be significant.
///
/// For central qt, a C translation of
///
/// Hill, G. W. (1970) Algorithm 396: Student's t-quantiles. Communications of the ACM, 13(10),
/// 619–620.
///
/// altered to take account of
///
/// Hill, G. W. (1981) Remark on Algorithm 396, ACM Transactions on Mathematical Software, 7, 250–1.
///
/// The non-central case is done by inversion.
///
/// ## References
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
/// Brooks/Cole. (Except non-central versions.)
///
/// Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions,
/// volume 2, chapters 28 and 31. Wiley, New York.
///
/// ## See Also
///
/// Distributions for other standard distributions, including df for the F distribution.
///
/// ## Examples
///
/// ```rust
/// # use r2rs_nmath::{distribution::TBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let x = (1..=5).collect::<Vec<_>>();
/// let t = TBuilder::new().with_df(1).unwrap().build();
/// let r = x
/// .iter()
/// .map(|x| 1.0 - t.probability(x, true).unwrap())
/// .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/t/doctest_out/dens1.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/dens1.md")))]
///
/// ```rust
/// # use r2rs_nmath::{distribution::TBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let dfs = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 1000];
/// let r = dfs
/// .iter()
/// .map(|df| {
/// TBuilder::new()
/// .with_df(df)
/// .unwrap()
/// .build()
/// .quantile(0.975, true)
/// .unwrap()
/// })
/// .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/t/doctest_out/dens2.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/dens2.md")))]
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::TBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let nt = TBuilder::new().with_df(3).unwrap().with_ncp(2).build();
/// let x = <[f64]>::sequence_by(-3.0, 11.0, 0.01);
/// let y = x.iter().map(|x| nt.density(x).unwrap()).collect::<Vec<_>>();
///
/// let root = SVGBackend::new("noncent_density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
/// .with_options(PlotOptions {
/// x_axis_label: "x".to_string(),
/// y_axis_label: "density".to_string(),
/// title: "Non-Central T Density".to_string(),
/// ..Default::default()
/// })
/// .with_plottable(Line {
/// x,
/// y,
/// color: BLACK,
/// ..Default::default()
/// })
/// .plot(&root)
/// .unwrap();
/// # use std::fs::rename;
/// # drop(root);
/// # rename(
/// # format!("noncent_density.svg"),
/// # format!("src/distribution/t/doctest_out/noncent_density.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("noncent_density", "src/distribution/t/doctest_out/noncent_density.svg")))]
#[cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Noncentral Density][noncent_density]")
)]
///
/// ```r
/// require(graphics)
///
/// tt <- seq(0, 10, len = 21)
/// ncp <- seq(0, 6, len = 31)
/// ptn <- outer(tt, ncp, function(t, d) pt(t, df = 3, ncp = d))
/// t.tit <- "Non-central t - Probabilities"
/// image(tt, ncp, ptn, zlim = c(0,1), main = t.tit)
/// persp(tt, ncp, ptn, zlim = 0:1, r = 2, phi = 20, theta = 200, main = t.tit,
/// xlab = "t", ylab = "non-centrality parameter",
/// zlab = "Pr(T <= t)")
/// ```
pub struct T {
df: Rational64,
ncp: Option<Real64>,
}
impl Distribution for T {
fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
if let Some(ncp) = self.ncp {
dnt(x, self.df, ncp, false)
} else {
dt(x, self.df, false)
}
}
fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
if let Some(ncp) = self.ncp {
dnt(x, self.df, ncp, true)
} else {
dt(x, self.df, true)
}
}
fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
if let Some(ncp) = self.ncp {
pnt(q, self.df, ncp, lower_tail)
} else {
pt(q, self.df, lower_tail)
}
}
fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
if let Some(ncp) = self.ncp {
log_pnt(q, self.df, ncp, lower_tail)
} else {
log_pt(q, self.df, lower_tail)
}
}
fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
if let Some(ncp) = self.ncp {
qnt(p, self.df, ncp, lower_tail)
} else {
qt(p, self.df, lower_tail)
}
}
fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
if let Some(ncp) = self.ncp {
log_qnt(p, self.df, ncp, lower_tail)
} else {
log_qt(p, self.df, lower_tail)
}
}
fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
if let Some(ncp) = self.ncp {
rnt(self.df, ncp, rng)
} else {
rt(self.df, rng)
}
}
}
#[derive(Debug)]
pub enum BuildError {
DFLessThan0,
BadFloat,
}
#[cfg(not(tarpaulin_include))]
impl Display for BuildError {
fn fmt(&self, fmt: &mut Formatter) -> Result<(), FmtError> {
match &self {
BuildError::DFLessThan0 => write!(fmt, "DF must be greater than or equal to 0"),
BuildError::BadFloat => write!(fmt, "The float passed was not valid"),
}
}
}
impl Error for BuildError {}
pub struct TBuilder {
df: Option<Rational64>,
ncp: Option<Real64>,
}
impl TBuilder {
pub fn new() -> Self {
Self {
df: None,
ncp: None,
}
}
pub fn with_df<R: Into<Rational64>>(&mut self, df: R) -> Result<&mut Self, impl Error> {
let df = df.into();
if df.unwrap() > 0.0 {
self.df = Some(df);
Ok(self)
} else {
#[cfg(not(tarpaulin_include))]
Err(BuildError::DFLessThan0)
}
}
pub fn with_ncp<P: Into<Real64>>(&mut self, ncp: P) -> &mut Self {
self.ncp = Some(ncp.into());
self
}
pub fn build(&self) -> T {
let df = self.df.unwrap_or(1.0.into());
T { df, ncp: self.ncp }
}
}
#[cfg(test)]
mod tests;
#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;
#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;