1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
mod c;
mod d;
mod p;
mod q;
mod r;
use strafe_type::{LogProbability64, Natural64, Probability64, Real64};
pub use self::{c::*, d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};
/// # Distribution of the Wilcoxon Signed Rank Statistic
///
/// ## Description
///
/// Density, distribution function, quantile function and random generation for the distribution of
/// the Wilcoxon Signed Rank statistic obtained from a sample with size n.
///
/// ## Arguments
///
/// * n: number(s) of observations in the sample(s). A positive integer, or a vector of such integers.
///
/// ## Details
///
/// This distribution is obtained as follows. Let x be a sample of size n from a continuous
/// distribution symmetric about the origin. Then the Wilcoxon signed rank statistic is the
/// sum of the ranks of the absolute values $ x\[i\] $ for which $ x\[i\] $ is positive. This statistic
/// takes values between $ 0 $ and $ n(n+1)/2 $, and its mean and variance are $ n(n+1)/4 $ and
/// $ n(n+1)(2n+1)/24 $, respectively.
///
/// If either of the first two arguments is a vector, the recycling rule is used to do the
/// calculations for all combinations of the two up to the length of the longer vector.
///
/// ## Value
///
/// dsignrank gives the density, psignrank gives the distribution function, qsignrank gives the
/// quantile function, and rsignrank generates random deviates.
///
/// The length of the result is determined by nn for rsignrank, and is the maximum of the lengths
/// of the numerical arguments for the other functions.
///
/// The numerical arguments other than nn are recycled to the length of the result. Only the first
/// elements of the logical arguments are used.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::SignedRankBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let sgnrank = SignedRankBuilder::new().build();
/// let x = <[f64]>::sequence_by(-1.0, 2.0, 0.001);
/// let y = x
/// .iter()
/// .map(|x| sgnrank.density(x).unwrap())
/// .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
/// .with_options(PlotOptions {
/// x_axis_label: "x".to_string(),
/// y_axis_label: "density".to_string(),
/// ..Default::default()
/// })
/// .with_plottable(Line {
/// x,
/// y,
/// color: BLACK,
/// ..Default::default()
/// })
/// .plot(&root)
/// .unwrap();
/// # use std::fs::rename;
/// # drop(root);
/// # rename(
/// # format!("density.svg"),
/// # format!("src/distribution/signrank/doctest_out/density.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/signrank/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Author(s)
///
/// Kurt Hornik; efficiency improvement by Ivo Ugrina.
///
/// ## See Also
///
/// wilcox.test to calculate the statistic from data, find p values and so on.
///
/// Distributions for standard distributions, including dwilcox for the distribution of two-sample
/// Wilcoxon rank sum statistic.
///
/// ## Examples
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::SignedRankBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let plot_coords = [
/// [0.0, 0.5, 0.0, 0.5],
/// [0.5, 1.0, 0.0, 0.5],
/// [0.0, 0.5, 0.5, 1.0],
/// [0.5, 1.0, 0.5, 1.0],
/// ];
/// let ns = [4.0, 5.0, 10.0, 40.0];
///
/// let root = SVGBackend::new("densities.svg", (1024, 768)).into_drawing_area();
/// for i in 0..4 {
/// let n = ns[i];
/// let x = <[f64]>::sequence(0.0, n * (n + 1.0) / 2.0, 500);
/// let sgnrank = SignedRankBuilder::new().with_sample_size(n).build();
/// let y = x
/// .iter()
/// .map(|x| sgnrank.density(x).unwrap())
/// .collect::<Vec<_>>();
///
/// Plot::new()
/// .with_options(PlotOptions {
/// x_axis_label: "x".to_string(),
/// y_axis_label: "density".to_string(),
/// title: format!("n={n}"),
/// plot_left: plot_coords[i][0],
/// plot_right: plot_coords[i][1],
/// plot_top: plot_coords[i][2],
/// plot_bottom: plot_coords[i][3],
/// ..Default::default()
/// })
/// .with_plottable(Line {
/// x,
/// y,
/// color: BLACK,
/// ..Default::default()
/// })
/// .plot(&root)
/// .unwrap();
/// }
/// # use std::fs::rename;
/// # drop(root);
/// # rename(
/// # format!("densities.svg"),
/// # format!("src/distribution/signrank/doctest_out/densities.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("densities", "src/distribution/signrank/doctest_out/densities.svg")))]
#[cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Densities][densities]")
)]
pub struct SignedRank {
sample_size: Natural64,
}
impl Distribution for SignedRank {
fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
dsignrank(x, self.sample_size, false)
}
fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
dsignrank(x, self.sample_size, true)
}
fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
psignrank(q, self.sample_size, lower_tail)
}
fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
log_psignrank(q, self.sample_size, lower_tail)
}
fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
qsignrank(p, self.sample_size, lower_tail)
}
fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
log_qsignrank(p, self.sample_size, lower_tail)
}
fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
rsignrank(self.sample_size, rng)
}
}
pub struct SignedRankBuilder {
sample_size: Option<Natural64>,
}
impl SignedRankBuilder {
pub fn new() -> Self {
Self { sample_size: None }
}
pub fn with_sample_size<N: Into<Natural64>>(&mut self, sample_size: N) -> &mut Self {
self.sample_size = Some(sample_size.into());
self
}
pub fn build(&self) -> SignedRank {
let sample_size = self.sample_size.unwrap_or(1.0.into());
SignedRank { sample_size }
}
}
#[cfg(test)]
mod tests;
#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;
#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;