1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
mod d;
mod p;
mod q;
mod r;

use strafe_type::{LogProbability64, Positive64, Probability64, Real64};

pub(crate) use self::{d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};

/// # The Normal Distribution
///
/// ## Description
///
/// Density, distribution function, quantile function and random generation for the normal
/// distribution with mean equal to mean and standard deviation equal to sd.
///
/// ## Arguments
///
/// * mean: vector of means.
/// * sd: vector of standard deviations.
///
/// ## Details
///
/// If mean or sd are not specified they assume the default values of 0 and 1, respectively.
///
/// The normal distribution has density
///
/// $ f(x) = \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x - \mu)^2}{2 \sigma^2}} $
///
/// where $ \mu $ is the mean of the distribution and $ \sigma $ the standard deviation.
///
/// ## Value
///
/// dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile
/// function, and rnorm generates random deviates.
///
/// The length of the result is determined by n for rnorm, and is the maximum of the lengths of
/// the numerical arguments for the other functions.
///
/// The numerical arguments other than n are recycled to the length of the result. Only the first
/// elements of the logical arguments are used.
///
/// For sd = 0 this gives the limit as sd decreases to 0, a point mass at mu. sd < 0 is an error
/// and returns NaN.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::NormalBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let norm = NormalBuilder::new().build();
/// let x = <[f64]>::sequence(-3.0, 3.0, 1000);
/// let y = x
///     .iter()
///     .map(|x| norm.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("density.svg"),
/// #             format!("src/distribution/norm/doctest_out/density.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/norm/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Source
///
/// For pnorm, based on
///
/// Cody, W. D. (1993) Algorithm 715: SPECFUN – A portable FORTRAN package of special function
/// routines and test drivers. ACM Transactions on Mathematical Software 19, 22–32.
///
/// For qnorm, the code is a C translation of
///
/// Wichura, M. J. (1988) Algorithm AS 241: The percentage points of the normal distribution.
/// Applied Statistics, 37, 477–484.
///
/// which provides precise results up to about 16 digits.
///
/// For rnorm, see RNG for how to select the algorithm and for references to the supplie
/// methods.
///
/// ## References
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
/// Brooks/Cole.
///
/// Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions,
/// volume 1, chapter 13. Wiley, New York.
///
/// ## See Also
///
/// Distributions for other standard distributions, including dlnorm for the Lognormal distribution.
///
/// ## Examples
///
/// ```rust
/// # use num_traits::FloatConst;
/// # use r2rs_nmath::{distribution::NormalBuilder, traits::Distribution};
/// let norm = NormalBuilder::new().build();
/// println!("{}", norm.density(0));
/// println!("{}", 1.0 / (2.0 * f64::PI()).sqrt());
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/norm/doctest_out/dens1.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{}", norm.density(0)).unwrap();
/// # writeln!(f, "{}", 1.0 / (2.0 * f64::PI()).sqrt()).unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/dens1.md")))]
///
/// ```rust
/// # use num_traits::FloatConst;
/// # use r2rs_nmath::{distribution::NormalBuilder, traits::Distribution};
/// let norm = NormalBuilder::new().build();
/// println!("{}", norm.density(1));
/// println!("{}", (-0.5_f64).exp() / (2.0 * f64::PI()).sqrt());
/// println!("{}", 1.0 / (2.0 * f64::PI() * 1.0_f64.exp()).sqrt());
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/norm/doctest_out/dens2.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{}", norm.density(1)).unwrap();
/// # writeln!(f, "{}", (-0.5_f64).exp() / (2.0 * f64::PI()).sqrt()).unwrap();
/// # writeln!(f, "{}", 1.0 / (2.0 * f64::PI() * 1.0_f64.exp()).sqrt()).unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/dens2.md")))]
///
/// ```rust
/// # use r2rs_nmath::{distribution::NormalBuilder, traits::Distribution};
/// # use strafe_plot::{
/// #     plot::Plot,
/// #     prelude::{IntoDrawingArea, Line, PlotOptions, SVGBackend, BLACK, RED},
/// # };
/// # use strafe_type::FloatConstraint;
/// let norm = NormalBuilder::new().build();
///
/// let dx = (-60..50).map(|x| x as f64).collect::<Vec<_>>();
/// let dy1 = dx
///     .iter()
///     .map(|x| norm.log_density(x).unwrap())
///     .collect::<Vec<_>>();
/// let dy2 = dx
///     .iter()
///     .map(|x| norm.density(x).unwrap().ln())
///     .collect::<Vec<_>>();
///
/// let px = (-50..10).map(|x| x as f64).collect::<Vec<_>>();
/// let py1 = px
///     .iter()
///     .map(|x| norm.log_probability(x, true).unwrap())
///     .collect::<Vec<_>>();
/// let py2 = px
///     .iter()
///     .map(|x| norm.probability(x, true).unwrap().ln())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("log_plots.svg", (1024, 768)).into_drawing_area();
///
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         title: "Log Normal Density".to_string(),
///         legend_x: 0.1,
///         legend_y: 0.1,
///         plot_bottom: 0.5,
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x: dx.clone(),
///         y: dy1,
///         legend: true,
///         label: "log_density()".to_string(),
///         color: BLACK,
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x: dx.clone(),
///         y: dy2,
///         legend: true,
///         label: "density().ln()".to_string(),
///         color: RED,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
///
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "probability".to_string(),
///         title: "Log Normal Cumulative".to_string(),
///         legend_x: 0.1,
///         legend_y: 0.1,
///         plot_top: 0.5,
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x: px.clone(),
///         y: py1,
///         legend: true,
///         label: "log_probability()".to_string(),
///         color: BLACK,
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x: px.clone(),
///         y: py2,
///         legend: true,
///         label: "probability().ln()".to_string(),
///         color: RED,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("log_plots.svg"),
/// #             format!("src/distribution/norm/doctest_out/log_plots.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("log_plots", "src/distribution/norm/doctest_out/log_plots.svg")))]
#[cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Log Plots][log_plots]")
)]
///
/// If you want the so-called 'error function'
/// (see Abramowitz and Stegun 29.2.29)
/// ```rust
/// # use r2rs_nmath::{distribution::NormalBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// fn erf(x: f64) -> f64 {
///     let norm = NormalBuilder::new().build();
///     2.0 * norm.probability(x * 2.0_f64.sqrt(), true).unwrap() - 1.0
/// }
/// ```
///
/// and the so-called 'complementary error function'
/// ```rust
/// # use r2rs_nmath::{distribution::NormalBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// fn erfc(x: f64) -> f64 {
///     let norm = NormalBuilder::new().build();
///     2.0 * norm.probability(x * 2.0_f64.sqrt(), false).unwrap()
/// }
/// ```
///
/// and the inverses
/// ```rust
/// # use r2rs_nmath::{distribution::NormalBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// fn erfinv(x: f64) -> f64 {
///     let norm = NormalBuilder::new().build();
///     norm.quantile((1.0 + x) / 2.0, true).unwrap() / 2.0_f64.sqrt()
/// }
///
/// fn erfcinv(x: f64) -> f64 {
///     let norm = NormalBuilder::new().build();
///     norm.quantile(x / 2.0, false).unwrap() / 2.0_f64.sqrt()
/// }
/// ```
pub struct Normal {
    mean: Real64,
    standard_deviation: Positive64,
}

impl Distribution for Normal {
    fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dnorm(x, self.mean, self.standard_deviation, false)
    }

    fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dnorm(x, self.mean, self.standard_deviation, true)
    }

    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        pnorm(q, self.mean, self.standard_deviation, lower_tail)
    }

    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        log_pnorm(q, self.mean, self.standard_deviation, lower_tail)
    }

    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        qnorm(p, self.mean, self.standard_deviation, lower_tail)
    }

    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        log_qnorm(p, self.mean, self.standard_deviation, lower_tail)
    }

    fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
        rnorm(self.mean, self.standard_deviation, rng)
    }
}

pub struct NormalBuilder {
    mean: Option<Real64>,
    standard_deviation: Option<Positive64>,
}

impl NormalBuilder {
    pub fn new() -> Self {
        Self {
            mean: None,
            standard_deviation: None,
        }
    }

    pub fn with_mean<R: Into<Real64>>(&mut self, mean: R) -> &mut Self {
        self.mean = Some(mean.into());
        self
    }

    pub fn with_standard_deviation<P: Into<Positive64>>(
        &mut self,
        standard_deviation: P,
    ) -> &mut Self {
        self.standard_deviation = Some(standard_deviation.into());
        self
    }

    pub fn build(&self) -> Normal {
        let mean = self.mean.unwrap_or(0.0.into());
        let standard_deviation = self.standard_deviation.unwrap_or(1.0.into());

        Normal {
            mean,
            standard_deviation,
        }
    }
}

#[cfg(test)]
mod tests;

#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;

#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;