1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
mod d;
mod p;
mod q;
mod q_mu;
mod r;

use strafe_type::{LogProbability64, Positive64, Probability64, Real64};

pub use self::{d::*, p::*, q::*, q_mu::*, r::*};
use crate::traits::{Distribution, RNG};

/// # The Negative Binomial Distribution
///
/// ## Description
/// Density, distribution function, quantile function and random generation for the negative
/// binomial distribution with parameters size and prob.
///
/// ## Arguments
/// * size: target for number of successful trials, or dispersion parameter (the shape parameter of
/// the gamma mixing distribution). Must be strictly positive, need not be integer.
/// * prob: probability of success in each trial. 0 < prob <= 1.
/// * mu: alternative parametrization via mean: see ‘Details’.
///
/// ## Details
///
/// The negative binomial distribution with size = n and prob = p has density
///
/// $ \frac{\Gamma(x+n)}{(\Gamma(n) x!)} p^n (1-p)^x $
///
/// for $ x = 0, 1, 2, …, n > 0 $ and $ 0 < p ≤ 1 $.
///
/// This represents the number of failures which occur in a sequence of Bernoulli trials before
/// a target number of successes is reached. The mean is $ \mu = n\frac{1-p}{p} $ and variance
/// $ n\frac{1-p}{p^2} $.
///
/// A negative binomial distribution can also arise as a mixture of Poisson distributions with
/// mean distributed as a gamma distribution (see pgamma) with scale parameter
/// $ \frac{1 - prob}{prob} $ and shape parameter size. (This definition allows non-integer values
/// of size.)
///
/// An alternative parametrization (often used in ecology) is by the mean mu (see above), and
/// size, the dispersion parameter, where $ prob = \frac{\text{size}}{\text{size}+\mu} $. The
/// variance is $ \mu + \frac{\mu^2}{\text{size}} $ in this parametrization.
///
/// If an element of x is not integer, the result of dnbinom is zero, with a warning.
///
/// The case size == 0 is the distribution concentrated at zero. This is the limiting distribution
/// for size approaching zero, even if mu rather than prob is held constant. Notice though, that
/// the mean of the limit distribution is 0, whatever the value of $ \mu $.
///
/// The quantile is defined as the smallest value x such that F(x) ≥ p, where F is the distribution
/// function.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::NegativeBinomialBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let nbeta = NegativeBinomialBuilder::new().build();
/// let x = <[f64]>::sequence_by(-1.0, 1.0, 0.001);
/// let y = x
///     .iter()
///     .map(|x| nbeta.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("density.svg"),
/// #             format!("src/distribution/nbinom/doctest_out/density.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/nbinom/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Source
///
/// dnbinom computes via binomial probabilities, using code contributed by Catherine Loader
/// (see dbinom).
///
/// pnbinom uses pbeta.
///
/// qnbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal
/// approximation, followed by a search.
///
/// rnbinom uses the derivation as a gamma mixture of Poissons, see
///
/// Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York. Page 480.
///
/// ## See Also
///
/// Distributions for standard distributions, including dbinom for the binomial, dpois for the
/// Poisson and dgeom for the geometric distribution, which is a special case of the negative
/// binomial.
///
/// ## Examples
///
/// Equals one
/// ```rust
/// # use r2rs_nmath::{distribution::NegativeBinomialBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let x = (0..=11).collect::<Vec<_>>();
/// let nbinom = NegativeBinomialBuilder::new()
///     .with_size(1)
///     .with_success_probability(0.5)
///     .build();
/// let r = x
///     .iter()
///     .map(|x| nbinom.density(x).unwrap() * 2.0_f64.powi(1 + x))
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/nbinom/doctest_out/equals_one.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/equals_one.md")))]
///
/// Theoretically integer
/// ```rust
/// # use r2rs_nmath::{distribution::NegativeBinomialBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let x = (0..=8).collect::<Vec<_>>();
/// let nbinom = NegativeBinomialBuilder::new()
///     .with_size(2)
///     .with_success_probability(0.5)
///     .build();
/// let r = x
///     .iter()
///     .map(|x| 126.0 / nbinom.density(x).unwrap())
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/nbinom/doctest_out/integer.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/integer.md")))]
///
/// Cumulative ('p') = Sum of discrete prob.s ('d')
/// ```rust
/// # use r2rs_nmath::{distribution::NegativeBinomialBuilder, traits::Distribution};
/// # use r2rs_stats::traits::StatArray;
/// # use strafe_type::FloatConstraint;
/// let x = (0..=11).collect::<Vec<_>>();
/// let nbinom = NegativeBinomialBuilder::new()
///     .with_size(2)
///     .with_success_probability(0.5)
///     .build();
/// let d_sum = x
///     .iter()
///     .map(|x| nbinom.density(x).unwrap())
///     .collect::<Vec<_>>()
///     .cumsum();
/// let p = x
///     .iter()
///     .map(|x| nbinom.probability(x, true).unwrap())
///     .collect::<Vec<_>>();
/// let r = d_sum
///     .iter()
///     .zip(p.iter())
///     .map(|(d, p)| 1.0 - d / p)
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/nbinom/doctest_out/sum_dens_prob.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/sum_dens_prob.md")))]
///
/// ```r
/// x <- 0:15
/// size <- (1:20)/4
/// persp(x, size, dnb <- outer(x, size, function(x,s) dnbinom(x, s, prob = 0.4)),
///       xlab = "x", ylab = "s", zlab = "density", theta = 150)
/// title(tit <- "negative binomial density(x,s, pr = 0.4)  vs.  x & s")
///
/// image  (x, size, log10(dnb), main = paste("log [", tit, "]"))
/// contour(x, size, log10(dnb), add = TRUE)
///
/// ## Alternative parametrization
/// x1 <- rnbinom(500, mu = 4, size = 1)
/// x2 <- rnbinom(500, mu = 4, size = 10)
/// x3 <- rnbinom(500, mu = 4, size = 100)
/// h1 <- hist(x1, breaks = 20, plot = FALSE)
/// h2 <- hist(x2, breaks = h1$breaks, plot = FALSE)
/// h3 <- hist(x3, breaks = h1$breaks, plot = FALSE)
/// barplot(rbind(h1$counts, h2$counts, h3$counts),
///         beside = TRUE, col = c("red","blue","cyan"),
///         names.arg = round(h1$breaks[-length(h1$breaks)]))
/// ```
pub struct NegativeBinomial {
    success_probability: Probability64,
    size: Positive64,
    mu: Option<Positive64>,
}

impl Distribution for NegativeBinomial {
    fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
        if let Some(mu) = self.mu {
            dnbinom_mu(x, self.size, mu, false)
        } else {
            dnbinom(x, self.size, self.success_probability, false)
        }
    }

    fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
        if let Some(mu) = self.mu {
            dnbinom_mu(x, self.size, mu, true)
        } else {
            dnbinom(x, self.size, self.success_probability, true)
        }
    }

    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        if let Some(mu) = self.mu {
            pnbinom_mu(q, self.size, mu, lower_tail)
        } else {
            pnbinom(q, self.size, self.success_probability, lower_tail)
        }
    }

    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        if let Some(mu) = self.mu {
            log_pnbinom_mu(q, self.size, mu, lower_tail)
        } else {
            log_pnbinom(q, self.size, self.success_probability, lower_tail)
        }
    }

    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        if let Some(mu) = self.mu {
            qnbinom_mu(p, self.size, mu, lower_tail)
        } else {
            qnbinom(p, self.size, self.success_probability, lower_tail)
        }
    }

    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        if let Some(mu) = self.mu {
            log_qnbinom_mu(p, self.size, mu, lower_tail)
        } else {
            log_qnbinom(p, self.size, self.success_probability, lower_tail)
        }
    }

    fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
        if let Some(mu) = self.mu {
            rnbinom_mu(self.size, mu, rng)
        } else {
            rnbinom(self.size, self.success_probability, rng)
        }
    }
}

pub struct NegativeBinomialBuilder {
    success_probability: Option<Probability64>,
    size: Option<Positive64>,
    mu: Option<Positive64>,
}

impl NegativeBinomialBuilder {
    pub fn new() -> Self {
        Self {
            size: None,
            success_probability: None,
            mu: None,
        }
    }

    pub fn with_size<P: Into<Positive64>>(&mut self, size: P) -> &mut Self {
        self.size = Some(size.into());
        self
    }

    pub fn with_success_probability<P: Into<Probability64>>(
        &mut self,
        success_probability: P,
    ) -> &mut Self {
        self.success_probability = Some(success_probability.into());
        self
    }

    pub fn with_mu<P: Into<Positive64>>(&mut self, mu: P) -> &mut Self {
        self.mu = Some(mu.into());
        self
    }

    pub fn build(&self) -> NegativeBinomial {
        let success_probability = self.success_probability.unwrap_or(1.0.into());
        let size = self.size.unwrap_or(1.0.into());

        NegativeBinomial {
            size,
            success_probability,
            mu: self.mu,
        }
    }
}

#[cfg(test)]
mod tests;

#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;

#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;