1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
mod d;
mod p;
mod q;
mod q_mu;
mod r;
use strafe_type::{LogProbability64, Positive64, Probability64, Real64};
pub use self::{d::*, p::*, q::*, q_mu::*, r::*};
use crate::traits::{Distribution, RNG};
/// # The Negative Binomial Distribution
///
/// ## Description
/// Density, distribution function, quantile function and random generation for the negative
/// binomial distribution with parameters size and prob.
///
/// ## Arguments
/// * size: target for number of successful trials, or dispersion parameter (the shape parameter of
/// the gamma mixing distribution). Must be strictly positive, need not be integer.
/// * prob: probability of success in each trial. 0 < prob <= 1.
/// * mu: alternative parametrization via mean: see ‘Details’.
///
/// ## Details
///
/// The negative binomial distribution with size = n and prob = p has density
///
/// $ \frac{\Gamma(x+n)}{(\Gamma(n) x!)} p^n (1-p)^x $
///
/// for $ x = 0, 1, 2, …, n > 0 $ and $ 0 < p ≤ 1 $.
///
/// This represents the number of failures which occur in a sequence of Bernoulli trials before
/// a target number of successes is reached. The mean is $ \mu = n\frac{1-p}{p} $ and variance
/// $ n\frac{1-p}{p^2} $.
///
/// A negative binomial distribution can also arise as a mixture of Poisson distributions with
/// mean distributed as a gamma distribution (see pgamma) with scale parameter
/// $ \frac{1 - prob}{prob} $ and shape parameter size. (This definition allows non-integer values
/// of size.)
///
/// An alternative parametrization (often used in ecology) is by the mean mu (see above), and
/// size, the dispersion parameter, where $ prob = \frac{\text{size}}{\text{size}+\mu} $. The
/// variance is $ \mu + \frac{\mu^2}{\text{size}} $ in this parametrization.
///
/// If an element of x is not integer, the result of dnbinom is zero, with a warning.
///
/// The case size == 0 is the distribution concentrated at zero. This is the limiting distribution
/// for size approaching zero, even if mu rather than prob is held constant. Notice though, that
/// the mean of the limit distribution is 0, whatever the value of $ \mu $.
///
/// The quantile is defined as the smallest value x such that F(x) ≥ p, where F is the distribution
/// function.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::NegativeBinomialBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let nbeta = NegativeBinomialBuilder::new().build();
/// let x = <[f64]>::sequence_by(-1.0, 1.0, 0.001);
/// let y = x
///     .iter()
///     .map(|x| nbeta.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("density.svg"),
/// #             format!("src/distribution/nbinom/doctest_out/density.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/nbinom/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Source
///
/// dnbinom computes via binomial probabilities, using code contributed by Catherine Loader
/// (see dbinom).
///
/// pnbinom uses pbeta.
///
/// qnbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal
/// approximation, followed by a search.
///
/// rnbinom uses the derivation as a gamma mixture of Poissons, see
///
/// Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York. Page 480.
///
/// ## See Also
///
/// Distributions for standard distributions, including dbinom for the binomial, dpois for the
/// Poisson and dgeom for the geometric distribution, which is a special case of the negative
/// binomial.
///
/// ## Examples
///
/// Equals one
/// ```rust
/// # use r2rs_nmath::{distribution::NegativeBinomialBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let x = (0..=11).collect::<Vec<_>>();
/// let nbinom = NegativeBinomialBuilder::new()
///     .with_size(1)
///     .with_success_probability(0.5)
///     .build();
/// let r = x
///     .iter()
///     .map(|x| nbinom.density(x).unwrap() * 2.0_f64.powi(1 + x))
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/nbinom/doctest_out/equals_one.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/equals_one.md")))]
///
/// Theoretically integer
/// ```rust
/// # use r2rs_nmath::{distribution::NegativeBinomialBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let x = (0..=8).collect::<Vec<_>>();
/// let nbinom = NegativeBinomialBuilder::new()
///     .with_size(2)
///     .with_success_probability(0.5)
///     .build();
/// let r = x
///     .iter()
///     .map(|x| 126.0 / nbinom.density(x).unwrap())
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/nbinom/doctest_out/integer.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/integer.md")))]
///
/// Cumulative ('p') = Sum of discrete prob.s ('d')
/// ```rust
/// # use r2rs_nmath::{distribution::NegativeBinomialBuilder, traits::Distribution};
/// # use r2rs_stats::traits::StatArray;
/// # use strafe_type::FloatConstraint;
/// let x = (0..=11).collect::<Vec<_>>();
/// let nbinom = NegativeBinomialBuilder::new()
///     .with_size(2)
///     .with_success_probability(0.5)
///     .build();
/// let d_sum = x
///     .iter()
///     .map(|x| nbinom.density(x).unwrap())
///     .collect::<Vec<_>>()
///     .cumsum();
/// let p = x
///     .iter()
///     .map(|x| nbinom.probability(x, true).unwrap())
///     .collect::<Vec<_>>();
/// let r = d_sum
///     .iter()
///     .zip(p.iter())
///     .map(|(d, p)| 1.0 - d / p)
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/nbinom/doctest_out/sum_dens_prob.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/sum_dens_prob.md")))]
///
/// ```r
/// x <- 0:15
/// size <- (1:20)/4
/// persp(x, size, dnb <- outer(x, size, function(x,s) dnbinom(x, s, prob = 0.4)),
///       xlab = "x", ylab = "s", zlab = "density", theta = 150)
/// title(tit <- "negative binomial density(x,s, pr = 0.4)  vs.  x & s")
///
/// image  (x, size, log10(dnb), main = paste("log [", tit, "]"))
/// contour(x, size, log10(dnb), add = TRUE)
///
/// ## Alternative parametrization
/// x1 <- rnbinom(500, mu = 4, size = 1)
/// x2 <- rnbinom(500, mu = 4, size = 10)
/// x3 <- rnbinom(500, mu = 4, size = 100)
/// h1 <- hist(x1, breaks = 20, plot = FALSE)
/// h2 <- hist(x2, breaks = h1$breaks, plot = FALSE)
/// h3 <- hist(x3, breaks = h1$breaks, plot = FALSE)
/// barplot(rbind(h1$counts, h2$counts, h3$counts),
///         beside = TRUE, col = c("red","blue","cyan"),
///         names.arg = round(h1$breaks[-length(h1$breaks)]))
/// ```
pub struct NegativeBinomial {
    success_probability: Probability64,
    size: Positive64,
    mu: Option<Positive64>,
}
impl Distribution for NegativeBinomial {
    fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
        if let Some(mu) = self.mu {
            dnbinom_mu(x, self.size, mu, false)
        } else {
            dnbinom(x, self.size, self.success_probability, false)
        }
    }
    fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
        if let Some(mu) = self.mu {
            dnbinom_mu(x, self.size, mu, true)
        } else {
            dnbinom(x, self.size, self.success_probability, true)
        }
    }
    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        if let Some(mu) = self.mu {
            pnbinom_mu(q, self.size, mu, lower_tail)
        } else {
            pnbinom(q, self.size, self.success_probability, lower_tail)
        }
    }
    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        if let Some(mu) = self.mu {
            log_pnbinom_mu(q, self.size, mu, lower_tail)
        } else {
            log_pnbinom(q, self.size, self.success_probability, lower_tail)
        }
    }
    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        if let Some(mu) = self.mu {
            qnbinom_mu(p, self.size, mu, lower_tail)
        } else {
            qnbinom(p, self.size, self.success_probability, lower_tail)
        }
    }
    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        if let Some(mu) = self.mu {
            log_qnbinom_mu(p, self.size, mu, lower_tail)
        } else {
            log_qnbinom(p, self.size, self.success_probability, lower_tail)
        }
    }
    fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
        if let Some(mu) = self.mu {
            rnbinom_mu(self.size, mu, rng)
        } else {
            rnbinom(self.size, self.success_probability, rng)
        }
    }
}
pub struct NegativeBinomialBuilder {
    success_probability: Option<Probability64>,
    size: Option<Positive64>,
    mu: Option<Positive64>,
}
impl NegativeBinomialBuilder {
    pub fn new() -> Self {
        Self {
            size: None,
            success_probability: None,
            mu: None,
        }
    }
    pub fn with_size<P: Into<Positive64>>(&mut self, size: P) -> &mut Self {
        self.size = Some(size.into());
        self
    }
    pub fn with_success_probability<P: Into<Probability64>>(
        &mut self,
        success_probability: P,
    ) -> &mut Self {
        self.success_probability = Some(success_probability.into());
        self
    }
    pub fn with_mu<P: Into<Positive64>>(&mut self, mu: P) -> &mut Self {
        self.mu = Some(mu.into());
        self
    }
    pub fn build(&self) -> NegativeBinomial {
        let success_probability = self.success_probability.unwrap_or(1.0.into());
        let size = self.size.unwrap_or(1.0.into());
        NegativeBinomial {
            size,
            success_probability,
            mu: self.mu,
        }
    }
}
#[cfg(test)]
mod tests;
#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;
#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;