1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
mod d;
mod p;
mod q;
mod r;

use strafe_type::{LogProbability64, Probability64, Real64};

pub(crate) use self::{d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};

/// # The Geometric Distribution
///
/// ## Description
///
/// Density, distribution function, quantile function and random generation for the geometric
/// distribution with parameter prob.
///
/// ## Arguments
///
/// * x, q: quantiles representing the number of failures in a sequence of Bernoulli
/// trials before success occurs.
/// * prob: probability of success in each trial. 0 < prob <= 1.
///
/// ## Details
///
/// The geometric distribution with prob = p has density
///
/// $ p(x) = p (1-p)^x $
///
/// for x = 0, 1, 2, …, 0 < p ≤ 1.
///
/// If an element of x is not integer, the result of dgeom is zero, with a warning.
///
/// The quantile is defined as the smallest value x such that $ F(x) ≥ p $, where F is the
/// distribution function.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::GeometricBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let geom = GeometricBuilder::new().build();
/// let x = <[f64]>::sequence_by(-1.0, 1.0, 0.001);
/// let y = x
///     .iter()
///     .map(|x| geom.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("density.svg"),
/// #             format!("src/distribution/geom/doctest_out/density.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/geom/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Source
///
/// dgeom computes via dbinom, using code contributed by Catherine Loader (see dbinom).
///
/// pgeom and qgeom are based on the closed-form formulae.
///
/// rgeom uses the derivation as an exponential mixture of Poissons, see
///
/// Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York. Page 480.
///
/// ## See Also
/// Distributions for other standard distributions, including dnbinom for the negative
/// binomial which generalizes the geometric distribution.
///
/// ## Examples
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::GeometricBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let x = (1..=9).map(|i| i as f64 / 10.0).collect::<Vec<_>>();
///
/// let geom = GeometricBuilder::new()
///     .with_success_probability(0.2)
///     .build();
/// let r = x
///     .iter()
///     .map(|x| geom.quantile(x, true).unwrap())
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/geom/doctest_out/quan.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/quan.md")))]
///
/// ```rust
/// # use std::collections::HashMap;
/// # use r2rs_nmath::{
/// #     distribution::GeometricBuilder,
/// #     rng::MersenneTwister,
/// #     traits::{Distribution, RNG},
/// # };
/// # use strafe_type::FloatConstraint;
/// let mut rng = MersenneTwister::new();
/// rng.set_seed(1);
///
/// let geom = GeometricBuilder::new()
///     .with_success_probability(0.25)
///     .build();
/// let mut r = (0..20)
///     .map(|_| geom.random_sample(&mut rng).unwrap() as usize)
///     .fold(HashMap::new(), |mut acc, r| {
///         *acc.entry(r).or_insert(0) += 1;
///         acc
///     })
///     .into_iter()
///     .collect::<Vec<_>>();
/// r.sort_by(|(i1, _), (i2, _)| i1.cmp(i2));
///
/// for (key, index) in &r {
///     println!("{key:2}: {index}");
/// }
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/geom/doctest_out/rand.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # for (key, index) in &r {
/// #     writeln!(f, "{key:2}: {index}").unwrap();
/// # }
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/rand.md")))]
pub struct Geometric {
    success_probability: Probability64,
}

impl Distribution for Geometric {
    fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dgeom(x, self.success_probability, false)
    }

    fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dgeom(x, self.success_probability, true)
    }

    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        pgeom(q, self.success_probability, lower_tail)
    }

    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        log_pgeom(q, self.success_probability, lower_tail)
    }

    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        qgeom(p, self.success_probability, lower_tail)
    }

    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        log_qgeom(p, self.success_probability, lower_tail)
    }

    fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
        rgeom(self.success_probability, rng)
    }
}

pub struct GeometricBuilder {
    success_probability: Option<Probability64>,
}

impl GeometricBuilder {
    pub fn new() -> Self {
        Self {
            success_probability: None,
        }
    }

    pub fn with_success_probability<P: Into<Probability64>>(
        &mut self,
        success_probability: P,
    ) -> &mut Self {
        self.success_probability = Some(success_probability.into());
        self
    }

    pub fn build(&self) -> Geometric {
        let success_probability = self.success_probability.unwrap_or(1.0.into());

        Geometric {
            success_probability,
        }
    }
}

#[cfg(test)]
mod tests;

#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;

#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;