1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
mod d;
mod p;
mod q;
mod r;
use strafe_type::{LogProbability64, Probability64, Real64};
pub(crate) use self::{d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};
/// # The Geometric Distribution
///
/// ## Description
///
/// Density, distribution function, quantile function and random generation for the geometric
/// distribution with parameter prob.
///
/// ## Arguments
///
/// * x, q: quantiles representing the number of failures in a sequence of Bernoulli
/// trials before success occurs.
/// * prob: probability of success in each trial. 0 < prob <= 1.
///
/// ## Details
///
/// The geometric distribution with prob = p has density
///
/// $ p(x) = p (1-p)^x $
///
/// for x = 0, 1, 2, …, 0 < p ≤ 1.
///
/// If an element of x is not integer, the result of dgeom is zero, with a warning.
///
/// The quantile is defined as the smallest value x such that $ F(x) ≥ p $, where F is the
/// distribution function.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::GeometricBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let geom = GeometricBuilder::new().build();
/// let x = <[f64]>::sequence_by(-1.0, 1.0, 0.001);
/// let y = x
/// .iter()
/// .map(|x| geom.density(x).unwrap())
/// .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
/// .with_options(PlotOptions {
/// x_axis_label: "x".to_string(),
/// y_axis_label: "density".to_string(),
/// ..Default::default()
/// })
/// .with_plottable(Line {
/// x,
/// y,
/// color: BLACK,
/// ..Default::default()
/// })
/// .plot(&root)
/// .unwrap();
/// # use std::fs::rename;
/// # drop(root);
/// # rename(
/// # format!("density.svg"),
/// # format!("src/distribution/geom/doctest_out/density.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/geom/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Source
///
/// dgeom computes via dbinom, using code contributed by Catherine Loader (see dbinom).
///
/// pgeom and qgeom are based on the closed-form formulae.
///
/// rgeom uses the derivation as an exponential mixture of Poissons, see
///
/// Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York. Page 480.
///
/// ## See Also
/// Distributions for other standard distributions, including dnbinom for the negative
/// binomial which generalizes the geometric distribution.
///
/// ## Examples
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::GeometricBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let x = (1..=9).map(|i| i as f64 / 10.0).collect::<Vec<_>>();
///
/// let geom = GeometricBuilder::new()
/// .with_success_probability(0.2)
/// .build();
/// let r = x
/// .iter()
/// .map(|x| geom.quantile(x, true).unwrap())
/// .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/geom/doctest_out/quan.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/quan.md")))]
///
/// ```rust
/// # use std::collections::HashMap;
/// # use r2rs_nmath::{
/// # distribution::GeometricBuilder,
/// # rng::MersenneTwister,
/// # traits::{Distribution, RNG},
/// # };
/// # use strafe_type::FloatConstraint;
/// let mut rng = MersenneTwister::new();
/// rng.set_seed(1);
///
/// let geom = GeometricBuilder::new()
/// .with_success_probability(0.25)
/// .build();
/// let mut r = (0..20)
/// .map(|_| geom.random_sample(&mut rng).unwrap() as usize)
/// .fold(HashMap::new(), |mut acc, r| {
/// *acc.entry(r).or_insert(0) += 1;
/// acc
/// })
/// .into_iter()
/// .collect::<Vec<_>>();
/// r.sort_by(|(i1, _), (i2, _)| i1.cmp(i2));
///
/// for (key, index) in &r {
/// println!("{key:2}: {index}");
/// }
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/geom/doctest_out/rand.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # for (key, index) in &r {
/// # writeln!(f, "{key:2}: {index}").unwrap();
/// # }
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/rand.md")))]
pub struct Geometric {
success_probability: Probability64,
}
impl Distribution for Geometric {
fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
dgeom(x, self.success_probability, false)
}
fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
dgeom(x, self.success_probability, true)
}
fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
pgeom(q, self.success_probability, lower_tail)
}
fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
log_pgeom(q, self.success_probability, lower_tail)
}
fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
qgeom(p, self.success_probability, lower_tail)
}
fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
log_qgeom(p, self.success_probability, lower_tail)
}
fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
rgeom(self.success_probability, rng)
}
}
pub struct GeometricBuilder {
success_probability: Option<Probability64>,
}
impl GeometricBuilder {
pub fn new() -> Self {
Self {
success_probability: None,
}
}
pub fn with_success_probability<P: Into<Probability64>>(
&mut self,
success_probability: P,
) -> &mut Self {
self.success_probability = Some(success_probability.into());
self
}
pub fn build(&self) -> Geometric {
let success_probability = self.success_probability.unwrap_or(1.0.into());
Geometric {
success_probability,
}
}
}
#[cfg(test)]
mod tests;
#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;
#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;