1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
mod d;
mod p;
mod q;
mod r;
use strafe_type::{LogProbability64, Positive64, Probability64, Rational64, Real64};
pub(crate) use self::{d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};
/// # The Gamma Distribution
///
/// ## Description:
///
/// Density, distribution function, quantile function and random
/// generation for the Gamma distribution with parameters ‘shape’ and
/// ‘scale’.
///
/// ## Arguments:
///
/// * rate: an alternative way to specify the scale.
/// * shape, scale: shape and scale parameters.  Must be positive, ‘scale’
/// strictly.
///
/// ## Details:
///
/// If ‘scale’ is omitted, it assumes the default value of ‘1’.
///
/// The Gamma distribution with parameters ‘shape’ = a and ‘scale’ = s
/// has density
///
/// $ f(x)= \frac{1}{s^a \Gamma(a)} x^{a-1} e^{-\frac{x}{s}} $
///
/// for $ x >= 0 $, $ a > 0 $ and $ s > 0 $.  (Here Gamma(a) is the function
/// implemented by R's ‘gamma()’ and defined in its help.  Note that a
/// = 0 corresponds to the trivial distribution with all mass at point
/// 0.)
///
/// The mean and variance are $ E(X) = a\*s $ and $ Var(X) = a\*s^2 $.
///
/// The cumulative hazard $H(t) = - log(1 - F(t))$ is
///
/// -pgamma(t, ..., lower = FALSE, log = TRUE)
///
/// Note that for smallish values of ‘shape’ (and moderate ‘scale’) a
/// large parts of the mass of the Gamma distribution is on values of
/// x so near zero that they will be represented as zero in computer
/// arithmetic.  So ‘rgamma’ may well return values which will be
/// represented as zero.  (This will also happen for very large values
/// of ‘scale’ since the actual generation is done for ‘scale = 1’.)
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::GammaBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let gamma = GammaBuilder::new().build();
/// let x = <[f64]>::sequence(-0.5, 4.0, 1000);
/// let y = x
///     .iter()
///     .map(|x| gamma.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("density.svg"),
/// #             format!("src/distribution/gamma/doctest_out/density.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/gamma/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Note:
///
/// The S (Becker _et al_, 1988) parametrization was via ‘shape’ and
/// ‘rate’: S had no ‘scale’ parameter. It is an error to supply and
/// ‘scale’ and ‘rate’.
///
/// ‘pgamma’ is closely related to the incomplete gamma function.  As
/// defined by Abramowitz and Stegun 6.5.1 (and by ‘Numerical
/// Recipes’) this is
///
/// $ P(a,x) = 1/\Gamma(a) \int_0^x t^{a-1} exp(-t) dt $
///
/// $P(a, x)$ is ‘pgamma(x, a)’.  Other authors (for example Karl
/// Pearson in his 1922 tables) omit the normalizing factor, defining
/// the incomplete gamma function gamma(a,x) as
/// $ gamma(a,x) = \int_0^x t^{a-1} exp(-t) dt $, i.e.,
/// ‘$ pgamma(x, a) * gamma(a) $’.
/// Yet other use the ‘upper’ incomplete gamma function,
///
/// $ Gamma(a,x) = \int_x^\infty t^{a-1} exp(-t) dt $,
///
/// which can be computed by ‘pgamma(x, a, lower = FALSE) * gamma(a)’.
///
/// Note however that ‘pgamma(x, a, ..)’ currently requires a > 0,
/// whereas the incomplete gamma function is also defined for negative
/// a.  In that case, you can use ‘gamma_inc(a,x)’ (for Gamma(a,x))
/// from package ‘gsl’.
///
/// See also <URL:
/// https:///en.wikipedia.org/wiki/Incomplete_gamma_function>, or <URL:
/// http:///dlmf.nist.gov/8.2#i>.
///
/// ## Source:
///
/// ‘dgamma’ is computed via the Poisson density, using code
/// contributed by Catherine Loader (see ‘dbinom’).
///
/// ‘pgamma’ uses an unpublished (and not otherwise documented)
/// algorithm ‘mainly by Morten Welinder’.
///
/// ‘qgamma’ is based on a C translation of
///
/// Best, D. J. and D. E. Roberts (1975).  Algorithm AS91. Percentage
/// points of the chi-squared distribution.  _Applied Statistics_,
/// *24*, 385-388.
///
/// plus a final Newton step to improve the approximation.
///
/// ‘rgamma’ for ‘shape >= 1’ uses
///
/// Ahrens, J. H. and Dieter, U. (1982).  Generating gamma variates by
/// a modified rejection technique.  _Communications of the ACM_,
/// *25*, 47-54,
///
/// and for ‘0 < shape < 1’ uses
///
/// Ahrens, J. H. and Dieter, U. (1974).  Computer methods for
/// sampling from gamma, beta, Poisson and binomial distributions.
/// _Computing_, *12*, 223-246.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988).  _The New
/// S Language_.  Wadsworth & Brooks/Cole.
///
/// Shea, B. L. (1988).  Algorithm AS 239: Chi-squared and incomplete
/// Gamma integral, _Applied Statistics (JRSS C)_, *37*, 466-473.
/// doi: 10.2307/2347328 (URL: https:///doi.org/10.2307/2347328).
///
/// Abramowitz, M. and Stegun, I. A. (1972) _Handbook of Mathematical
/// Functions._ New York: Dover.  Chapter 6: Gamma and Related
/// Functions.
///
/// NIST Digital Library of Mathematical Functions.  <URL:
/// http:///dlmf.nist.gov/>, section 8.2.
///
/// ## See Also:
///
/// ‘gamma’ for the gamma function.
///
/// Distributions for other standard distributions, including ‘dbeta’
/// for the Beta distribution and ‘dchisq’ for the chi-squared
/// distribution which is a special case of the Gamma distribution.
///
/// ## Examples:
///
/// ```rust
/// # use r2rs_nmath::{distribution::GammaBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let gamma = GammaBuilder::new().with_shape(1).build();
/// let r = (1..=4)
///     .map(|x| -gamma.density(x).unwrap().ln())
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/gamma/doctest_out/dens.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/dens.md")))]
///
/// ```rust
/// # use r2rs_nmath::{distribution::GammaBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let p = (1..=9).map(|i| i as f64 / 10.0).collect::<Vec<_>>();
/// let gamma = GammaBuilder::new().with_shape(2).build();
/// let r = p
///     .iter()
///     .map(|p| gamma.probability(gamma.quantile(p, true), true).unwrap())
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/gamma/doctest_out/prob1.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/prob1.md")))]
///
/// ```rust
/// # use r2rs_nmath::{distribution::GammaBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let p = (1..=9).map(|i| i as f64 / 10.0).collect::<Vec<_>>();
/// let gamma = GammaBuilder::new().with_shape(1).build();
/// let r = p
///     .iter()
///     .map(|p| 1.0 - 1.0 / gamma.quantile(p, true).unwrap().exp())
///     .collect::<Vec<_>>();
/// println!("{r:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/gamma/doctest_out/prob2.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/prob2.md")))]
///
/// Even for shape = 0.001 about half the mass is on numbers
/// that cannot be represented accurately (and most of those as zero)
/// ```rust
/// # use num_traits::Float;
/// # use r2rs_nmath::{
/// #     distribution::GammaBuilder,
/// #     rng::MersenneTwister,
/// #     traits::{Distribution, RNG},
/// # };
/// # use strafe_type::FloatConstraint;
/// let gamma = GammaBuilder::new().with_shape(0.001).build();
/// let r1 = gamma.probability(f64::min_positive_value(), true);
/// println!("{r1}");
/// let r2 = gamma.probability(5e-324, true);
/// println!("{r2}");
/// let mut rng = MersenneTwister::new();
/// rng.set_seed(1);
/// let r3 = (0..10_000)
///     .map(|_| {
///         if gamma.random_sample(&mut rng).unwrap() == 0.0 {
///             1.0
///         } else {
///             0.0
///         }
///     })
///     .sum::<f64>();
/// println!(
///     "{}% of the samples are 0",
///     ((r3 / 10_000.0) * 100.0) as usize
/// );
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/gamma/doctest_out/limits.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r1}").unwrap();
/// # writeln!(f, "{r2}").unwrap();
/// # writeln!(f, "{}% of the samples are 0", ((r3 / 10_000.0) * 100.0) as usize).unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/limits.md")))]
pub struct Gamma {
    shape: Positive64,
    scale: Rational64,
}
impl Distribution for Gamma {
    fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dgamma(x, self.shape, self.scale, false)
    }
    fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dgamma(x, self.shape, self.scale, true)
    }
    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        pgamma(q, self.shape, self.scale, lower_tail)
    }
    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        log_pgamma(q, self.shape, self.scale, lower_tail)
    }
    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        qgamma(p, self.shape, self.scale, lower_tail)
    }
    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        log_qgamma(p, self.shape, self.scale, lower_tail)
    }
    fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
        rgamma(self.shape, self.scale, rng)
    }
}
pub struct GammaBuilder {
    shape: Option<Positive64>,
    scale: Option<Rational64>,
}
impl GammaBuilder {
    pub fn new() -> Self {
        Self {
            shape: None,
            scale: None,
        }
    }
    pub fn with_shape<P: Into<Positive64>>(&mut self, shape: P) -> &mut Self {
        self.shape = Some(shape.into());
        self
    }
    pub fn with_scale<R: Into<Rational64>>(&mut self, scale: R) -> &mut Self {
        self.scale = Some(scale.into());
        self
    }
    pub fn build(&self) -> Gamma {
        let shape = self.shape.unwrap_or(1.0.into());
        let scale = self.scale.unwrap_or(1.0.into());
        Gamma { shape, scale }
    }
}
#[cfg(test)]
mod tests;
#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;
#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;