1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
mod d;
mod non_central;
mod p;
mod q;
mod r;

use strafe_type::{LogProbability64, Positive64, Probability64, Rational64, Real64};

pub(crate) use self::{d::*, non_central::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};

/// # The Chi-Squared Distribution
///
/// ## Description:
///
/// Density, distribution function, quantile function and random
/// generation for the chi-squared ($chi^2$) distribution with
/// degrees of freedom and non-centrality parameter.
///
/// ## Arguments:
/// * df: degrees of freedom (non-negative, but can be non-integer).
/// * ncp: non-centrality parameter (non-negative).
///
/// ## Details:
///
/// The chi-squared distribution with ‘df’= n >= 0 degrees of freedom
/// has density
///
/// $f_n(x) = \frac{1}{(2^{\frac{n}{2}} \Gamma(\frac{n}{2}))}  x^{\frac{n}{2}-1} e^{-\frac{x}{2}}$
///
/// for $x > 0$.  The mean and variance are n and 2n.
///
/// The non-central chi-squared distribution with ‘df’= n degrees of
/// freedom and non-centrality parameter ‘ncp’ = $\lambda$ has density
///
/// $ f(x) = \text{exp}(-\frac{\lambda}{2}) \sum_{r=0}^{\infty} (\frac{(\lambda / 2)^r}{r!}) \text{dchisq}(x, df + 2r) $
///
/// for $x >= 0$.  For integer n, this is the distribution of the sum of
/// squares of n normals each with variance one, lambda being the sum
/// of squares of the normal means; further,
///
/// $E(X) = n + \lambda$, $Var(X) = 2(n + 2*\lambda)$, and $E((X - E(X))^3) = 8(n + 3*\lambda)$.
///
/// Note that the degrees of freedom ‘df’= n, can be non-integer, and
/// also n = 0 which is relevant for non-centrality lambda > 0, see
/// Johnson _et al_ (1995, chapter 29).  In that (noncentral, zero df)
/// case, the distribution is a mixture of a point mass at x = 0 (of
/// size ‘pchisq(0, df=0, ncp=ncp)’) and a continuous part, and
/// ‘dchisq()’ is _not_ a density with respect to that mixture measure
/// but rather the limit of the density for df -> 0.
///
/// Note that ‘ncp’ values larger than about 1e5 may give inaccurate
/// results with many warnings for ‘pchisq’ and ‘qchisq’.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::ChiSquaredBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let chisq = ChiSquaredBuilder::new().build();
/// let x = <[f64]>::sequence(-0.5, 4.0, 1000);
/// let y = x
///     .iter()
///     .map(|x| chisq.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("density.svg"),
/// #             format!("src/distribution/chisq/doctest_out/density.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/chisq/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Note:
///
/// Supplying ‘ncp = 0’ uses the algorithm for the non-central
/// distribution, which is not the same algorithm used if ‘ncp’ is
/// omitted.  This is to give consistent behaviour in extreme cases
/// with values of ‘ncp’ very near zero.
///
/// The code for non-zero ‘ncp’ is principally intended to be used for
/// moderate values of ‘ncp’: it will not be highly accurate,
/// especially in the tails, for large values.
///
/// ## Source:
///
/// The central cases are computed via the gamma distribution.
///
/// The non-central ‘dchisq’ and ‘rchisq’ are computed as a Poisson
/// mixture central of chi-squares (Johnson _et al_, 1995, p.436).
///
/// The non-central ‘pchisq’ is for ‘ncp < 80’ computed from the
/// Poisson mixture of central chi-squares and for larger ‘ncp’ _via_
/// a C translation of
///
/// Ding, C. G. (1992) Algorithm AS275: Computing the non-central
/// chi-squared distribution function. _Appl.Statist._, *41* 478-482.
///
/// which computes the lower tail only (so the upper tail suffers from
/// cancellation and a warning will be given when this is likely to be
/// significant).
///
/// The non-central ‘qchisq’ is based on inversion of ‘pchisq’.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) _Continuous
/// Univariate Distributions_, chapters 18 (volume 1) and 29 (volume
/// 2). Wiley, New York.
///
/// ## See Also:
///
/// A central chi-squared distribution with n degrees of freedom is
/// the same as a Gamma distribution with ‘shape’ a = n/2 and ‘scale’
/// s = 2.
///
/// ## Examples:
///
/// ```rust
/// # use r2rs_nmath::{distribution::ChiSquaredBuilder, traits::Distribution};
/// let d1 = ChiSquaredBuilder::new().with_df(1).build().density(1);
/// let d2 = ChiSquaredBuilder::new().with_df(2).build().density(1);
/// let d3 = ChiSquaredBuilder::new().with_df(3).build().density(1);
///
/// println!("{d1}");
/// println!("{d2}");
/// println!("{d3}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/chisq/doctest_out/dens_df1_3.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{d1}").unwrap();
/// # writeln!(f, "{d2}").unwrap();
/// # writeln!(f, "{d3}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/dens_df1_3.md")))]
///
/// ```rust
/// # use r2rs_nmath::{distribution::ChiSquaredBuilder, traits::Distribution};
/// let p1 = ChiSquaredBuilder::new()
///     .with_df(3)
///     .build()
///     .probability(1, true);
///
/// println!("{p1}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/chisq/doctest_out/prob_df3.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{p1}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/prob_df3.md")))]
///
/// Includes the above
/// ```rust
/// # use r2rs_nmath::{distribution::ChiSquaredBuilder, traits::Distribution};
/// let np0 = ChiSquaredBuilder::new()
///     .with_df(3)
///     .with_ncp(0)
///     .build()
///     .probability(1, true);
/// let np1 = ChiSquaredBuilder::new()
///     .with_df(3)
///     .with_ncp(1)
///     .build()
///     .probability(1, true);
/// let np2 = ChiSquaredBuilder::new()
///     .with_df(3)
///     .with_ncp(2)
///     .build()
///     .probability(1, true);
/// let np3 = ChiSquaredBuilder::new()
///     .with_df(3)
///     .with_ncp(3)
///     .build()
///     .probability(1, true);
/// let np4 = ChiSquaredBuilder::new()
///     .with_df(3)
///     .with_ncp(4)
///     .build()
///     .probability(1, true);
///
/// println!("{np0}");
/// println!("{np1}");
/// println!("{np2}");
/// println!("{np3}");
/// println!("{np4}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/chisq/doctest_out/prob_np0_4.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{np0}").unwrap();
/// # writeln!(f, "{np1}").unwrap();
/// # writeln!(f, "{np2}").unwrap();
/// # writeln!(f, "{np3}").unwrap();
/// # writeln!(f, "{np4}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/prob_np0_4.md")))]
///
/// Non-central RNG -- df = 0 with ncp > 0:  Z0 has point mass at 0
/// ```rust
/// # use r2rs_nmath::{
/// #     distribution::ChiSquaredBuilder,
/// #     rng::MersenneTwister,
/// #     traits::{Distribution, RNG},
/// # };
/// # use strafe_plot::prelude::stem_leaf_plot;
/// # use strafe_type::FloatConstraint;
/// let mut rng = MersenneTwister::new();
/// rng.set_seed(1);
/// let cauchy = ChiSquaredBuilder::new().with_df(1e-100).with_ncp(2).build();
/// let z0 = (0..100)
///     .map(|_| cauchy.random_sample(&mut rng).unwrap())
///     .collect::<Vec<_>>();
/// let slp = stem_leaf_plot(&z0);
/// println!("{slp}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/chisq/doctest_out/stem_leaf.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{slp}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/stem_leaf.md")))]
///
/// Chi-squared(df = 2) is a special exponential distribution
/// ```rust
/// # use r2rs_nmath::{
/// #     distribution::{ChiSquaredBuilder, ExponentialBuilder},
/// #     traits::Distribution,
/// # };
/// # use strafe_type::FloatConstraint;
/// let chisq = ChiSquaredBuilder::new().with_df(2).build();
/// let exp = ExponentialBuilder::new().with_rate(0.5).build();
/// let chisq_dens = (1..=10)
///     .map(|x| chisq.density(x).unwrap())
///     .collect::<Vec<_>>();
/// println!("{chisq_dens:?}");
/// let exp_dens = (1..=10)
///     .map(|x| exp.density(x).unwrap())
///     .collect::<Vec<_>>();
/// println!("{exp_dens:?}");
/// let chisq_prob = (1..=10)
///     .map(|x| chisq.probability(x, true).unwrap())
///     .collect::<Vec<_>>();
/// println!("{chisq_prob:?}");
/// let exp_prob = (1..=10)
///     .map(|x| exp.probability(x, true).unwrap())
///     .collect::<Vec<_>>();
/// println!("{exp_prob:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/chisq/doctest_out/special_exp.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{chisq_dens:?}").unwrap();
/// # writeln!(f, "{exp_dens:?}").unwrap();
/// # writeln!(f, "{chisq_prob:?}").unwrap();
/// # writeln!(f, "{exp_prob:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/special_exp.md")))]
///
/// Visual testing; do P-P plots for 1000 points at various degrees of freedom
/// ```rust
/// # use r2rs_nmath::{
/// #     distribution::{ChiSquaredBuilder, NormalBuilder},
/// #     rng::MersenneTwister,
/// #     traits::{Distribution, RNG},
/// # };
/// # use r2rs_stats::funcs::ppoints;
/// # use strafe_plot::{
/// #     plot::Plot,
/// #     prelude::{IntoDrawingArea, Line, PlotOptions, Points, SVGBackend, BLACK, RED},
/// # };
/// # use strafe_type::FloatConstraint;
/// let l = 1.2;
/// let n = 1000;
/// let pp = ppoints(n, None)
///     .into_iter()
///     .map(|pp| pp.unwrap())
///     .collect::<Vec<_>>();
///
/// let mut rng = MersenneTwister::new();
/// rng.set_seed(1);
///
/// let norm = NormalBuilder::new().build();
/// let dfs = (0..9)
///     .map(|_| 2.0_f64.powf(4.0 * norm.random_sample(&mut rng).unwrap()))
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("df.svg", (1024, 768)).into_drawing_area();
/// for i in 0..9 {
///     let chisq = ChiSquaredBuilder::new().with_df(dfs[i]).with_ncp(l).build();
///     let mut rr = (0..n)
///         .map(|_| {
///             chisq
///                 .probability(chisq.random_sample(&mut rng).unwrap(), true)
///                 .unwrap()
///         })
///         .collect::<Vec<_>>();
///     rr.sort_by(|r1, r2| r1.partial_cmp(r2).unwrap());
///
///     Plot::new()
///         .with_options(PlotOptions {
///             title: format!("df={:.1}", dfs[i]),
///             x_axis_label: "pp".to_string(),
///             y_axis_label: "chisq.probability(chisq.random_sample())".to_string(),
///             plot_top: ((i / 3) % 3) as f64 / 3.0,
///             plot_bottom: (((i / 3) % 3) + 1) as f64 / 3.0,
///             plot_left: (i % 3) as f64 / 3.0,
///             plot_right: ((i % 3) + 1) as f64 / 3.0,
///             ..Default::default()
///         })
///         .with_plottable(Points {
///             x: pp.clone(),
///             y: rr,
///             color: BLACK,
///             ..Default::default()
///         })
///         .with_plottable(Line {
///             x: vec![-5.0, 5.0],
///             y: vec![-5.0, 5.0],
///             force_fit_all: false,
///             color: RED,
///             ..Default::default()
///         })
///         .plot(&root)
///         .unwrap();
/// }
/// # drop(root);
/// # use std::fs::rename;
/// # rename(
/// #     format!("df.svg"),
/// #     format!("src/distribution/chisq/doctest_out/df.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("df", "src/distribution/chisq/doctest_out/df.svg")))]
#[cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Degrees of Freedom Plot][df]")
)]
///
/// ```rust
/// # use num_traits::Float;
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::ChiSquaredBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let lam = <[f64]>::sequence_by(0.0, 100.0, 0.25);
/// let exp_lam = lam.iter().map(|lam| (-lam / 2.0).exp()).collect::<Vec<_>>();
/// let p00 = lam
///     .iter()
///     .map(|lam| {
///         ChiSquaredBuilder::new()
///             .with_ncp(lam)
///             .with_df(f64::min_positive_value())
///             .build()
///             .probability(0.0, true)
///             .unwrap()
///     })
///     .collect::<Vec<_>>();
/// let p_0 = lam
///     .iter()
///     .map(|lam| {
///         ChiSquaredBuilder::new()
///             .with_ncp(lam)
///             .with_df(f64::min_positive_value())
///             .build()
///             .probability(1e-300, true)
///             .unwrap()
///     })
///     .collect::<Vec<_>>();
/// println!("{exp_lam:?}");
/// println!("{p00:?}");
/// println!("{p_0:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/chisq/doctest_out/analytical_test.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{exp_lam:?}").unwrap();
/// # writeln!(f, "{p00:?}").unwrap();
/// # writeln!(f, "{p_0:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/analytical_test.md")))]
pub struct ChiSquared {
    df: Rational64,
    ncp: Option<Positive64>,
}

impl Distribution for ChiSquared {
    fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
        if let Some(ncp) = self.ncp {
            dnchisq(x, self.df, ncp, false)
        } else {
            dchisq(x, self.df, false)
        }
    }

    fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
        if let Some(ncp) = self.ncp {
            dnchisq(x, self.df, ncp, true)
        } else {
            dchisq(x, self.df, true)
        }
    }

    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        if let Some(ncp) = self.ncp {
            pnchisq(q, self.df, ncp, lower_tail)
        } else {
            pchisq(q, self.df, lower_tail)
        }
    }

    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        if let Some(ncp) = self.ncp {
            log_pnchisq(q, self.df, ncp, lower_tail)
        } else {
            log_pchisq(q, self.df, lower_tail)
        }
    }

    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        if let Some(ncp) = self.ncp {
            qnchisq(p, self.df, ncp, lower_tail)
        } else {
            qchisq(p, self.df, lower_tail)
        }
    }

    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        if let Some(ncp) = self.ncp {
            log_qnchisq(p, self.df, ncp, lower_tail)
        } else {
            log_qchisq(p, self.df, lower_tail)
        }
    }

    fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
        if let Some(ncp) = self.ncp {
            rnchisq(self.df, ncp, rng)
        } else {
            rchisq(self.df, rng)
        }
    }
}

pub struct ChiSquaredBuilder {
    df: Option<Rational64>,
    ncp: Option<Positive64>,
}

impl ChiSquaredBuilder {
    pub fn new() -> Self {
        Self {
            df: None,
            ncp: None,
        }
    }

    pub fn with_df<R: Into<Rational64>>(&mut self, df: R) -> &mut Self {
        self.df = Some(df.into());
        self
    }

    pub fn with_ncp<P: Into<Positive64>>(&mut self, ncp: P) -> &mut Self {
        self.ncp = Some(ncp.into());
        self
    }

    pub fn build(&self) -> ChiSquared {
        let df = self.df.unwrap_or(1.0.into());

        ChiSquared { df, ncp: self.ncp }
    }
}

#[cfg(test)]
mod tests;

#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;

#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;