1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// "Whatever you do, work at it with all your heart, as working for the Lord,
// not for human masters, since you know that you will receive an inheritance
// from the Lord as a reward. It is the Lord Christ you are serving."
// (Col 3:23-24)

mod d;
mod p;
mod q;
mod r;

use strafe_type::{LogProbability64, Natural64, Probability64, Real64};

pub(crate) use self::{d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};

/// # The Cauchy Distribution
///
/// ## Description:
///
/// Density, distribution function, quantile function and random
/// generation for the Cauchy distribution with location and scale.
///
/// ## Details:
///
/// If ‘location’ or ‘scale’ are not specified, they assume the
/// default values of ‘0’ and ‘1’ respectively.
///
/// The Cauchy distribution with location l and scale s has density
///
/// $f(x) = 1 / (\pi s (1 + (\frac{x-l}{s})^2))$
///
/// for all x.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::CauchyBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let cauchy = CauchyBuilder::new().build();
/// let x = <[f64]>::sequence(-5.0, 5.0, 1000);
/// let y = x
///     .iter()
///     .map(|x| cauchy.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("density.svg"),
/// #             format!("src/distribution/cauchy/doctest_out/density.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/cauchy/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Source:
///
/// ‘density’, ‘probability’ and ‘quantile’ are all calculated from
/// numerically stable versions of the definitions.
///
/// ‘random’ uses inversion.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) _Continuous
/// Univariate Distributions_, volume 1, chapter 16.  Wiley, New York.
///
/// ## See Also:
///
/// Distributions for other standard distributions, including ‘dt’ for
/// the t distribution which generalizes ‘dcauchy(*, l = 0, s = 1)’.
///
/// ## Examples:
///
/// ```rust
/// # use r2rs_nmath::{distribution::CauchyBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let cauchy = CauchyBuilder::new().build();
/// let dens = (-1..=4)
///     .map(|x| cauchy.density(x).unwrap())
///     .collect::<Vec<_>>();
/// println!("{dens:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/cauchy/doctest_out/density.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{dens:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/density.md")))]
pub struct Cauchy {
    location: Real64,
    scale: Natural64,
}

impl Distribution for Cauchy {
    fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dcauchy(x, self.location, self.scale, false)
    }

    fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dcauchy(x, self.location, self.scale, true)
    }

    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        pcauchy(q, self.location, self.scale, lower_tail)
    }

    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        log_pcauchy(q, self.location, self.scale, lower_tail)
    }

    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        qcauchy(p, self.location, self.scale, lower_tail)
    }

    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        log_qcauchy(p, self.location, self.scale, lower_tail)
    }

    fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
        rcauchy(self.location, self.scale, rng)
    }
}

pub struct CauchyBuilder {
    location: Option<Real64>,
    scale: Option<Natural64>,
}

impl CauchyBuilder {
    pub fn new() -> Self {
        Self {
            location: None,
            scale: None,
        }
    }

    pub fn with_location<R: Into<Real64>>(&mut self, location: R) -> &mut Self {
        self.location = Some(location.into());
        self
    }

    pub fn with_scale<N: Into<Natural64>>(&mut self, scale: N) -> &mut Self {
        self.scale = Some(scale.into());
        self
    }

    pub fn build(&self) -> Cauchy {
        let location = self.location.unwrap_or(0.0.into());
        let scale = self.scale.unwrap_or(1.0.into());

        Cauchy { location, scale }
    }
}

#[cfg(test)]
mod tests;

#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;

#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;