1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
//! # Bessel Functions
//!
//! ## Description
//!
//! Bessel Functions of integer and fractional order, of first and second kind, J(nu) and Y(nu),
//! and Modified Bessel functions (of first and third kind), I(nu) and K(nu).
//!
//! ## Arguments
//!
//! * x: numeric, ≥ 0.
//! * nu: numeric; The order (maybe fractional and negative) of the corresponding Bessel function.
//! * expon.scaled: logical; if TRUE, the results are exponentially scaled in order to avoid
//! overflow (I(nu)) or underflow (K(nu)), respectively.
//!
//! ## Details
//!
//! If expon.scaled = TRUE, exp(-x) I(x;nu), or exp(x) K(x;nu) are returned.
//!
//! For nu < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
//! suboptimal), except for besselK which is symmetric in nu.
//!
//! The current algorithms will give warnings about accuracy loss for large arguments. In some
//! cases, these warnings are exaggerated, and the precision is perfect. For large nu, say in the
//! order of millions, the current algorithms are rarely useful.
//!
//! ## Value
//!
//! Numeric vector with the (scaled, if expon.scaled = TRUE) values of the corresponding Bessel
//! function.
//!
//! The length of the result is the maximum of the lengths of the parameters. All parameters are
//! recycled to that length.
//!
//! ## Author(s)
//!
//! Original Fortran code: W. J. Cody, Argonne National Laboratory
//! Translation to C and adaptation to R: Martin Maechler maechler@stat.math.ethz.ch.
//!
//! ## Source
//!
//! The C code is a translation of Fortran routines from http://!www.netlib.org/specfun/ribesl,
//! ../rjbesl, etc. The four source code files for bessel\[IJKY\] each contain a paragraph
//! “Acknowledgement” and “References”, a short summary of which is
//!
//! besselI
//! based on (code) by David J. Sookne, see Sookne (1973)... Modifications... An earlier version
//! was published in Cody (1983).
//!
//! besselJ
//! as besselI
//!
//! besselK
//! based on (code) by J. B. Campbell (1980)... Modifications...
//!
//! besselY
//! draws heavily on Temme's Algol program for Y... and on Campbell's programs for Y_ν(x) ....
//! ... heavily modified.
//!
//! ## References
//!
//! Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions. Dover, New York;
//! Chapter 9: Bessel Functions of Integer Order.
//!
//! In order of “Source” citation above:
//!
//! Sockne, David J. (1973). Bessel Functions of Real Argument and Integer Order. Journal of
//! Research of the National Bureau of Standards, 77B, 125–132.
//!
//! Cody, William J. (1983). Algorithm 597: Sequence of modified Bessel functions of the first
//! kind. ACM Transactions on Mathematical Software, 9(2), 242–245. doi: 10.1145/357456.357462.
//!
//! Campbell, J.B. (1980). On Temme's algorithm for the modified Bessel function of the third kind.
//! ACM Transactions on Mathematical Software, 6(4), 581–586. doi: 10.1145/355921.355928.
//!
//! Campbell, J.B. (1979). Bessel functions J_nu(x) and Y_nu(x) of float order and float argument.
//! Computer Physics Communications, 18, 133–142. doi: 10.1016/0010-4655(79)90030-4.
//!
//! Temme, Nico M. (1976). On the numerical evaluation of the ordinary Bessel function of the
//! second kind. Journal of Computational Physics, 21, 343–350. doi: 10.1016/0021-9991(76)90032-2.
//!
//! ## See Also
//!
//! Other special mathematical functions, such as gamma, $\Gamma$(x), and beta, $\Beta$(x).
//!
//! ## Examples
//!
//! Bessel I Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_i;
//! # use strafe_plot::prelude::*;
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let nus = [0, 1, 2, 3, 4, 5, 10, 20];
//! let x = <[f64]>::sequence(0.0, 4.0, 501);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//! y_min: Some(0.0),
//! y_max: Some(6.0),
//! x_min: Some(0.0),
//! x_max: Some(4.0),
//! legend_x: 0.1,
//! legend_y: 0.1,
//! title: "Bessel Main Functions I_nu(x)".to_string(),
//! x_axis_label: "x".to_string(),
//! y_axis_label: " ".to_string(),
//! ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//! let y = x
//! .iter()
//! .map(|x| bessel_i(x, nus[i], false).unwrap())
//! .collect::<Vec<_>>();
//! plot.with_plottable(Line {
//! x: x.clone(),
//! y,
//! color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//! legend: true,
//! label: format!("nu={}", nus[i]),
//! ..Default::default()
//! });
//! }
//!
//! let root = SVGBackend::new("bessel_i.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! # format!("bessel_i.svg"),
//! # format!("src/func/bessel/doctest_out/bessel_i.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_i", "src/func/bessel/doctest_out/bessel_i.svg")))]
#![cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Bessel I Plot][bessel_i]")
)]
//!
//! Bessel J Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_j;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let nus = [0, 1, 2, 3, 4, 5, 10, 20];
//! let x = <[f64]>::sequence(0.0, 40.0, 801);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//! y_min: Some(-0.5),
//! y_max: Some(1.0),
//! x_min: Some(0.0),
//! x_max: Some(40.0),
//! legend_x: 0.9,
//! legend_y: 0.1,
//! title: "Bessel Functions J_nu(x)".to_string(),
//! x_axis_label: "x".to_string(),
//! y_axis_label: " ".to_string(),
//! ..Default::default()
//! })
//! .with_plottable(HorizontalLine {
//! y: 0.0,
//! dash: true,
//! color: GREY_600,
//! ..Default::default()
//! })
//! .with_plottable(VerticalLine {
//! x: 0.0,
//! dash: true,
//! color: GREY_600,
//! ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//! let y = x
//! .iter()
//! .map(|x| bessel_j(x, nus[i]).unwrap())
//! .collect::<Vec<_>>();
//! plot.with_plottable(Line {
//! x: x.clone(),
//! y,
//! color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//! legend: true,
//! label: format!("nu={}", nus[i]),
//! ..Default::default()
//! });
//! }
//!
//! let root = SVGBackend::new("bessel_j.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! # format!("bessel_j.svg"),
//! # format!("src/func/bessel/doctest_out/bessel_j.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_j", "src/func/bessel/doctest_out/bessel_j.svg")))]
#![cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Bessel J Plot][bessel_j]")
)]
//!
//! Bessel I Negative Nu's Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_i;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let xx = (2..=7).collect::<Vec<_>>();
//! let nu = <[f64]>::sequence(-10.0, 9.0, 2001);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//! y_min: Some(-50.0),
//! y_max: Some(200.0),
//! x_min: Some(-10.0),
//! x_max: Some(10.0),
//! legend_x: 0.9,
//! legend_y: 0.1,
//! title: "Bessel I_nu(x) for fixed x, as f(nu)".to_string(),
//! x_axis_label: "x".to_string(),
//! y_axis_label: " ".to_string(),
//! ..Default::default()
//! })
//! .with_plottable(VerticalLine {
//! x: 0.0,
//! dash: true,
//! color: GREY_600,
//! ..Default::default()
//! });
//!
//! for i in 0..xx.len() {
//! let y = nu
//! .iter()
//! .map(|nu| bessel_i(xx[i], nu, false).unwrap())
//! .collect::<Vec<_>>();
//! plot.with_plottable(Line {
//! x: nu.clone(),
//! y,
//! color: ViridisRGB::get_color(i as f64 / xx.len() as f64),
//! legend: true,
//! label: format!("x={}", xx[i]),
//! ..Default::default()
//! });
//! }
//!
//! let root = SVGBackend::new("bessel_i_negative_nus.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! # format!("bessel_i_negative_nus.svg"),
//! # format!("src/func/bessel/doctest_out/bessel_i_negative_nus.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_i_negative_nus", "src/func/bessel/doctest_out/bessel_i_negative_nus.svg")))]
#![cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Bessel I Negative Nus Plot][bessel_i_negative_nus]")
)]
//!
//! Bessel J Negative Nu's Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_j;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let xx = (2..=7).collect::<Vec<_>>();
//! let nu = <[f64]>::sequence(-10.0, 9.0, 2001);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//! y_min: Some(-50.0),
//! y_max: Some(200.0),
//! x_min: Some(-10.0),
//! x_max: Some(10.0),
//! legend_x: 0.9,
//! legend_y: 0.1,
//! title: "Bessel J_nu(x) for fixed x, as f(nu)".to_string(),
//! x_axis_label: "x".to_string(),
//! y_axis_label: " ".to_string(),
//! ..Default::default()
//! })
//! .with_plottable(VerticalLine {
//! x: 0.0,
//! dash: true,
//! color: GREY_600,
//! ..Default::default()
//! });
//!
//! for i in 0..xx.len() {
//! let y = nu
//! .iter()
//! .map(|nu| bessel_j(xx[i], nu).unwrap())
//! .collect::<Vec<_>>();
//! plot.with_plottable(Line {
//! x: nu.clone(),
//! y,
//! color: ViridisRGB::get_color(i as f64 / xx.len() as f64),
//! legend: true,
//! label: format!("x={}", xx[i]),
//! ..Default::default()
//! });
//! }
//!
//! let root = SVGBackend::new("bessel_j_negative_nus.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! # format!("bessel_j_negative_nus.svg"),
//! # format!("src/func/bessel/doctest_out/bessel_j_negative_nus.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_j_negative_nus", "src/func/bessel/doctest_out/bessel_j_negative_nus.svg")))]
#![cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Bessel J Negative Nus Plot][bessel_j_negative_nus]")
)]
//!
//! Bessel J Near Zero Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_j;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let nus = [
//! 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 10.0, 10.5, 20.0, 20.5,
//! ];
//! let x0 = <[f64]>::sequence(-16.0, 5.0, 256)
//! .into_iter()
//! .map(|x| 2.0_f64.powf(x))
//! .collect::<Vec<_>>();
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//! y_min: Some(1e-40),
//! y_max: Some(1.0),
//! x_log: true,
//! y_log: true,
//! legend_x: 0.95,
//! legend_y: 0.4,
//! title: "Bessel Functions J_nu(x) Near 0 log-log Scale".to_string(),
//! x_axis_label: "x".to_string(),
//! y_axis_label: " ".to_string(),
//! ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//! let y = x0
//! .iter()
//! .map(|x| bessel_j(x, nus[i]).unwrap())
//! .collect::<Vec<_>>();
//! plot.with_plottable(Line {
//! x: x0.clone(),
//! y,
//! color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//! legend: true,
//! label: format!("nu={}", nus[i]),
//! ..Default::default()
//! });
//! }
//!
//! let root = SVGBackend::new("bessel_j_near_zero.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! # format!("bessel_j_near_zero.svg"),
//! # format!("src/func/bessel/doctest_out/bessel_j_near_zero.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_j_near_zero", "src/func/bessel/doctest_out/bessel_j_near_zero.svg")))]
#![cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Bessel J Near Zero Plot][bessel_j_near_zero]")
)]
//!
//! Bessel K Near Zero Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_k;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let nus = [
//! 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 10.0, 10.5, 20.0, 20.5,
//! ];
//! let x0 = <[f64]>::sequence(-10.0, 8.0, 256)
//! .into_iter()
//! .map(|x| 2.0_f64.powf(x))
//! .collect::<Vec<_>>();
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//! x_log: true,
//! y_log: true,
//! legend_x: 0.95,
//! legend_y: 0.05,
//! title: "Bessel Functions K_nu(x) Near 0 log-log Scale".to_string(),
//! x_axis_label: "x".to_string(),
//! y_axis_label: " ".to_string(),
//! ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//! let y = x0
//! .iter()
//! .map(|x| bessel_k(x, nus[i], false).unwrap())
//! .collect::<Vec<_>>();
//! plot.with_plottable(Line {
//! x: x0.clone(),
//! y,
//! color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//! legend: true,
//! label: format!("nu={}", nus[i]),
//! ..Default::default()
//! });
//! }
//!
//! let root = SVGBackend::new("bessel_k_near_zero.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! # format!("bessel_k_near_zero.svg"),
//! # format!("src/func/bessel/doctest_out/bessel_k_near_zero.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_k_near_zero", "src/func/bessel/doctest_out/bessel_k_near_zero.svg")))]
#![cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Bessel K Near Zero Plot][bessel_k_near_zero]")
)]
//!
//! Bessel K Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_k;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let x = <[f64]>::sequence(1e-4, 40.0, 801);
//! let nus = [0, 1, 2, 3, 4, 5, 10, 20];
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//! y_max: Some(1e11),
//! y_log: true,
//! legend_x: 0.95,
//! legend_y: 0.05,
//! title: "Bessel Functions K_nu(x)".to_string(),
//! x_axis_label: "x".to_string(),
//! y_axis_label: " ".to_string(),
//! ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//! let y = x
//! .iter()
//! .map(|x| bessel_k(x, nus[i], false).unwrap())
//! .collect::<Vec<_>>();
//! plot.with_plottable(Line {
//! x: x.clone(),
//! y,
//! color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//! legend: true,
//! label: format!("nu={}", nus[i]),
//! ..Default::default()
//! });
//! }
//!
//! let root = SVGBackend::new("bessel_k.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! # format!("bessel_k.svg"),
//! # format!("src/func/bessel/doctest_out/bessel_k.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_k", "src/func/bessel/doctest_out/bessel_k.svg")))]
#![cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Bessel K Plot][bessel_k]")
)]
//!
//! Bessel Y Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_y;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let x = <[f64]>::sequence(1e-4, 40.0, 801);
//! let nus = [0, 1, 2, 3, 4, 5, 10, 20];
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//! y_min: Some(-1.6),
//! y_max: Some(0.6),
//! legend_x: 0.95,
//! legend_y: 0.5,
//! title: "Bessel Functions Y_nu(x)".to_string(),
//! x_axis_label: "x".to_string(),
//! y_axis_label: " ".to_string(),
//! ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//! let xx = x
//! .iter()
//! .filter(|&x| *x > x * 0.6)
//! .cloned()
//! .collect::<Vec<_>>();
//! let y = xx
//! .iter()
//! .map(|x| bessel_y(x, nus[i]).unwrap())
//! .collect::<Vec<_>>();
//! plot.with_plottable(Line {
//! x: xx,
//! y,
//! color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//! legend: true,
//! label: format!("nu={}", nus[i]),
//! ..Default::default()
//! });
//! }
//!
//! let root = SVGBackend::new("bessel_y.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! # format!("bessel_y.svg"),
//! # format!("src/func/bessel/doctest_out/bessel_y.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_y", "src/func/bessel/doctest_out/bessel_y.svg")))]
#![cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Bessel Y Plot][bessel_y]")
)]
//!
//! Bessel Y Negative Nu Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_y;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let x = <[f64]>::sequence(1e-4, 40.0, 801);
//! let nus = <[f64]>::sequence(-0.1, -2.0, 19);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//! y_min: Some(-1.6),
//! y_max: Some(0.6),
//! x_max: Some(10.0),
//! title: "Bessel Functions Y_nu(x) for -nu".to_string(),
//! x_axis_label: "x".to_string(),
//! y_axis_label: " ".to_string(),
//! ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//! let xx = x
//! .iter()
//! .filter(|&x| *x > x * 0.6)
//! .cloned()
//! .collect::<Vec<_>>();
//! let y = xx
//! .iter()
//! .map(|x| bessel_y(x, nus[i]).unwrap())
//! .collect::<Vec<_>>();
//! plot.with_plottable(Line {
//! x: xx,
//! y,
//! color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//! ..Default::default()
//! });
//! }
//!
//! let root = SVGBackend::new("bessel_y_negative_nu.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! # format!("bessel_y_negative_nu.svg"),
//! # format!("src/func/bessel/doctest_out/bessel_y_negative_nu.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_y_negative_nu", "src/func/bessel/doctest_out/bessel_y_negative_nu.svg")))]
#![cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Bessel Y Negative Nu Plot][bessel_y_negative_nu]")
)]
mod bessel_i;
mod bessel_j;
mod bessel_k;
mod bessel_y;
pub use self::{bessel_i::*, bessel_j::*, bessel_k::*, bessel_y::*};
#[cfg(test)]
mod tests;
#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;
#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;