1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
//! # Bessel Functions
//!
//! ## Description
//!
//! Bessel Functions of integer and fractional order, of first and second kind, J(nu) and Y(nu),
//! and Modified Bessel functions (of first and third kind), I(nu) and K(nu).
//!
//! ## Arguments
//!
//! * x: numeric, ≥ 0.
//! * nu: numeric; The order (maybe fractional and negative) of the corresponding Bessel function.
//! * expon.scaled: logical; if TRUE, the results are exponentially scaled in order to avoid
//! overflow (I(nu)) or underflow (K(nu)), respectively.
//!
//! ## Details
//!
//! If expon.scaled = TRUE, exp(-x) I(x;nu), or exp(x) K(x;nu) are returned.
//!
//! For nu < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
//! suboptimal), except for besselK which is symmetric in nu.
//!
//! The current algorithms will give warnings about accuracy loss for large arguments. In some
//! cases, these warnings are exaggerated, and the precision is perfect. For large nu, say in the
//! order of millions, the current algorithms are rarely useful.
//!
//! ## Value
//!
//! Numeric vector with the (scaled, if expon.scaled = TRUE) values of the corresponding Bessel
//! function.
//!
//! The length of the result is the maximum of the lengths of the parameters. All parameters are
//! recycled to that length.
//!
//! ## Author(s)
//!
//! Original Fortran code: W. J. Cody, Argonne National Laboratory
//! Translation to C and adaptation to R: Martin Maechler maechler@stat.math.ethz.ch.
//!
//! ## Source
//!
//! The C code is a translation of Fortran routines from http://!www.netlib.org/specfun/ribesl,
//! ../rjbesl, etc. The four source code files for bessel\[IJKY\] each contain a paragraph
//! “Acknowledgement” and “References”, a short summary of which is
//!
//! besselI
//! based on (code) by David J. Sookne, see Sookne (1973)... Modifications... An earlier version
//! was published in Cody (1983).
//!
//! besselJ
//! as besselI
//!
//! besselK
//! based on (code) by J. B. Campbell (1980)... Modifications...
//!
//! besselY
//! draws heavily on Temme's Algol program for Y... and on Campbell's programs for Y_ν(x) ....
//! ... heavily modified.
//!
//! ## References
//!
//! Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions. Dover, New York;
//! Chapter 9: Bessel Functions of Integer Order.
//!
//! In order of “Source” citation above:
//!
//! Sockne, David J. (1973). Bessel Functions of Real Argument and Integer Order. Journal of
//! Research of the National Bureau of Standards, 77B, 125–132.
//!
//! Cody, William J. (1983). Algorithm 597: Sequence of modified Bessel functions of the first
//! kind. ACM Transactions on Mathematical Software, 9(2), 242–245. doi: 10.1145/357456.357462.
//!
//! Campbell, J.B. (1980). On Temme's algorithm for the modified Bessel function of the third kind.
//! ACM Transactions on Mathematical Software, 6(4), 581–586. doi: 10.1145/355921.355928.
//!
//! Campbell, J.B. (1979). Bessel functions J_nu(x) and Y_nu(x) of float order and float argument.
//! Computer Physics Communications, 18, 133–142. doi: 10.1016/0010-4655(79)90030-4.
//!
//! Temme, Nico M. (1976). On the numerical evaluation of the ordinary Bessel function of the
//! second kind. Journal of Computational Physics, 21, 343–350. doi: 10.1016/0021-9991(76)90032-2.
//!
//! ## See Also
//!
//! Other special mathematical functions, such as gamma, $\Gamma$(x), and beta, $\Beta$(x).
//!
//! ## Examples
//!
//! Bessel I Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_i;
//! # use strafe_plot::prelude::*;
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let nus = [0, 1, 2, 3, 4, 5, 10, 20];
//! let x = <[f64]>::sequence(0.0, 4.0, 501);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//!     y_min: Some(0.0),
//!     y_max: Some(6.0),
//!     x_min: Some(0.0),
//!     x_max: Some(4.0),
//!     legend_x: 0.1,
//!     legend_y: 0.1,
//!     title: "Bessel Main Functions I_nu(x)".to_string(),
//!     x_axis_label: "x".to_string(),
//!     y_axis_label: " ".to_string(),
//!     ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//!     let y = x
//!         .iter()
//!         .map(|x| bessel_i(x, nus[i], false).unwrap())
//!         .collect::<Vec<_>>();
//!     plot.with_plottable(Line {
//!         x: x.clone(),
//!         y,
//!         color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//!         legend: true,
//!         label: format!("nu={}", nus[i]),
//!         ..Default::default()
//!     });
//! }
//!
//! let root = SVGBackend::new("bessel_i.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! #     format!("bessel_i.svg"),
//! #     format!("src/func/bessel/doctest_out/bessel_i.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_i", "src/func/bessel/doctest_out/bessel_i.svg")))]
#![cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Bessel I Plot][bessel_i]")
)]
//!
//! Bessel J Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_j;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let nus = [0, 1, 2, 3, 4, 5, 10, 20];
//! let x = <[f64]>::sequence(0.0, 40.0, 801);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//!     y_min: Some(-0.5),
//!     y_max: Some(1.0),
//!     x_min: Some(0.0),
//!     x_max: Some(40.0),
//!     legend_x: 0.9,
//!     legend_y: 0.1,
//!     title: "Bessel Functions J_nu(x)".to_string(),
//!     x_axis_label: "x".to_string(),
//!     y_axis_label: " ".to_string(),
//!     ..Default::default()
//! })
//! .with_plottable(HorizontalLine {
//!     y: 0.0,
//!     dash: true,
//!     color: GREY_600,
//!     ..Default::default()
//! })
//! .with_plottable(VerticalLine {
//!     x: 0.0,
//!     dash: true,
//!     color: GREY_600,
//!     ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//!     let y = x
//!         .iter()
//!         .map(|x| bessel_j(x, nus[i]).unwrap())
//!         .collect::<Vec<_>>();
//!     plot.with_plottable(Line {
//!         x: x.clone(),
//!         y,
//!         color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//!         legend: true,
//!         label: format!("nu={}", nus[i]),
//!         ..Default::default()
//!     });
//! }
//!
//! let root = SVGBackend::new("bessel_j.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! #     format!("bessel_j.svg"),
//! #     format!("src/func/bessel/doctest_out/bessel_j.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_j", "src/func/bessel/doctest_out/bessel_j.svg")))]
#![cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Bessel J Plot][bessel_j]")
)]
//!
//! Bessel I Negative Nu's Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_i;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let xx = (2..=7).collect::<Vec<_>>();
//! let nu = <[f64]>::sequence(-10.0, 9.0, 2001);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//!     y_min: Some(-50.0),
//!     y_max: Some(200.0),
//!     x_min: Some(-10.0),
//!     x_max: Some(10.0),
//!     legend_x: 0.9,
//!     legend_y: 0.1,
//!     title: "Bessel I_nu(x) for fixed x, as f(nu)".to_string(),
//!     x_axis_label: "x".to_string(),
//!     y_axis_label: " ".to_string(),
//!     ..Default::default()
//! })
//! .with_plottable(VerticalLine {
//!     x: 0.0,
//!     dash: true,
//!     color: GREY_600,
//!     ..Default::default()
//! });
//!
//! for i in 0..xx.len() {
//!     let y = nu
//!         .iter()
//!         .map(|nu| bessel_i(xx[i], nu, false).unwrap())
//!         .collect::<Vec<_>>();
//!     plot.with_plottable(Line {
//!         x: nu.clone(),
//!         y,
//!         color: ViridisRGB::get_color(i as f64 / xx.len() as f64),
//!         legend: true,
//!         label: format!("x={}", xx[i]),
//!         ..Default::default()
//!     });
//! }
//!
//! let root = SVGBackend::new("bessel_i_negative_nus.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! #     format!("bessel_i_negative_nus.svg"),
//! #     format!("src/func/bessel/doctest_out/bessel_i_negative_nus.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_i_negative_nus", "src/func/bessel/doctest_out/bessel_i_negative_nus.svg")))]
#![cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Bessel I Negative Nus Plot][bessel_i_negative_nus]")
)]
//!
//! Bessel J Negative Nu's Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_j;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let xx = (2..=7).collect::<Vec<_>>();
//! let nu = <[f64]>::sequence(-10.0, 9.0, 2001);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//!     y_min: Some(-50.0),
//!     y_max: Some(200.0),
//!     x_min: Some(-10.0),
//!     x_max: Some(10.0),
//!     legend_x: 0.9,
//!     legend_y: 0.1,
//!     title: "Bessel J_nu(x) for fixed x, as f(nu)".to_string(),
//!     x_axis_label: "x".to_string(),
//!     y_axis_label: " ".to_string(),
//!     ..Default::default()
//! })
//! .with_plottable(VerticalLine {
//!     x: 0.0,
//!     dash: true,
//!     color: GREY_600,
//!     ..Default::default()
//! });
//!
//! for i in 0..xx.len() {
//!     let y = nu
//!         .iter()
//!         .map(|nu| bessel_j(xx[i], nu).unwrap())
//!         .collect::<Vec<_>>();
//!     plot.with_plottable(Line {
//!         x: nu.clone(),
//!         y,
//!         color: ViridisRGB::get_color(i as f64 / xx.len() as f64),
//!         legend: true,
//!         label: format!("x={}", xx[i]),
//!         ..Default::default()
//!     });
//! }
//!
//! let root = SVGBackend::new("bessel_j_negative_nus.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! #     format!("bessel_j_negative_nus.svg"),
//! #     format!("src/func/bessel/doctest_out/bessel_j_negative_nus.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_j_negative_nus", "src/func/bessel/doctest_out/bessel_j_negative_nus.svg")))]
#![cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Bessel J Negative Nus Plot][bessel_j_negative_nus]")
)]
//!
//! Bessel J Near Zero Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_j;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let nus = [
//!     0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 10.0, 10.5, 20.0, 20.5,
//! ];
//! let x0 = <[f64]>::sequence(-16.0, 5.0, 256)
//!     .into_iter()
//!     .map(|x| 2.0_f64.powf(x))
//!     .collect::<Vec<_>>();
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//!     y_min: Some(1e-40),
//!     y_max: Some(1.0),
//!     x_log: true,
//!     y_log: true,
//!     legend_x: 0.95,
//!     legend_y: 0.4,
//!     title: "Bessel Functions J_nu(x) Near 0 log-log Scale".to_string(),
//!     x_axis_label: "x".to_string(),
//!     y_axis_label: " ".to_string(),
//!     ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//!     let y = x0
//!         .iter()
//!         .map(|x| bessel_j(x, nus[i]).unwrap())
//!         .collect::<Vec<_>>();
//!     plot.with_plottable(Line {
//!         x: x0.clone(),
//!         y,
//!         color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//!         legend: true,
//!         label: format!("nu={}", nus[i]),
//!         ..Default::default()
//!     });
//! }
//!
//! let root = SVGBackend::new("bessel_j_near_zero.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! #     format!("bessel_j_near_zero.svg"),
//! #     format!("src/func/bessel/doctest_out/bessel_j_near_zero.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_j_near_zero", "src/func/bessel/doctest_out/bessel_j_near_zero.svg")))]
#![cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Bessel J Near Zero Plot][bessel_j_near_zero]")
)]
//!
//! Bessel K Near Zero Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_k;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let nus = [
//!     0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 10.0, 10.5, 20.0, 20.5,
//! ];
//! let x0 = <[f64]>::sequence(-10.0, 8.0, 256)
//!     .into_iter()
//!     .map(|x| 2.0_f64.powf(x))
//!     .collect::<Vec<_>>();
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//!     x_log: true,
//!     y_log: true,
//!     legend_x: 0.95,
//!     legend_y: 0.05,
//!     title: "Bessel Functions K_nu(x) Near 0 log-log Scale".to_string(),
//!     x_axis_label: "x".to_string(),
//!     y_axis_label: " ".to_string(),
//!     ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//!     let y = x0
//!         .iter()
//!         .map(|x| bessel_k(x, nus[i], false).unwrap())
//!         .collect::<Vec<_>>();
//!     plot.with_plottable(Line {
//!         x: x0.clone(),
//!         y,
//!         color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//!         legend: true,
//!         label: format!("nu={}", nus[i]),
//!         ..Default::default()
//!     });
//! }
//!
//! let root = SVGBackend::new("bessel_k_near_zero.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! #     format!("bessel_k_near_zero.svg"),
//! #     format!("src/func/bessel/doctest_out/bessel_k_near_zero.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_k_near_zero", "src/func/bessel/doctest_out/bessel_k_near_zero.svg")))]
#![cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Bessel K Near Zero Plot][bessel_k_near_zero]")
)]
//!
//! Bessel K Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_k;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let x = <[f64]>::sequence(1e-4, 40.0, 801);
//! let nus = [0, 1, 2, 3, 4, 5, 10, 20];
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//!     y_max: Some(1e11),
//!     y_log: true,
//!     legend_x: 0.95,
//!     legend_y: 0.05,
//!     title: "Bessel Functions K_nu(x)".to_string(),
//!     x_axis_label: "x".to_string(),
//!     y_axis_label: " ".to_string(),
//!     ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//!     let y = x
//!         .iter()
//!         .map(|x| bessel_k(x, nus[i], false).unwrap())
//!         .collect::<Vec<_>>();
//!     plot.with_plottable(Line {
//!         x: x.clone(),
//!         y,
//!         color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//!         legend: true,
//!         label: format!("nu={}", nus[i]),
//!         ..Default::default()
//!     });
//! }
//!
//! let root = SVGBackend::new("bessel_k.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! #     format!("bessel_k.svg"),
//! #     format!("src/func/bessel/doctest_out/bessel_k.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_k", "src/func/bessel/doctest_out/bessel_k.svg")))]
#![cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Bessel K Plot][bessel_k]")
)]
//!
//! Bessel Y Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_y;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let x = <[f64]>::sequence(1e-4, 40.0, 801);
//! let nus = [0, 1, 2, 3, 4, 5, 10, 20];
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//!     y_min: Some(-1.6),
//!     y_max: Some(0.6),
//!     legend_x: 0.95,
//!     legend_y: 0.5,
//!     title: "Bessel Functions Y_nu(x)".to_string(),
//!     x_axis_label: "x".to_string(),
//!     y_axis_label: " ".to_string(),
//!     ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//!     let xx = x
//!         .iter()
//!         .filter(|&x| *x > x * 0.6)
//!         .cloned()
//!         .collect::<Vec<_>>();
//!     let y = xx
//!         .iter()
//!         .map(|x| bessel_y(x, nus[i]).unwrap())
//!         .collect::<Vec<_>>();
//!     plot.with_plottable(Line {
//!         x: xx,
//!         y,
//!         color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//!         legend: true,
//!         label: format!("nu={}", nus[i]),
//!         ..Default::default()
//!     });
//! }
//!
//! let root = SVGBackend::new("bessel_y.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! #     format!("bessel_y.svg"),
//! #     format!("src/func/bessel/doctest_out/bessel_y.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_y", "src/func/bessel/doctest_out/bessel_y.svg")))]
#![cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Bessel Y Plot][bessel_y]")
)]
//!
//! Bessel Y Negative Nu Plot
//! ```rust
//! # use r2rs_base::traits::StatisticalSlice;
//! # use r2rs_nmath::func::bessel_y;
//! # use strafe_plot::prelude::{full_palette::GREY_600, *};
//! # use strafe_type::FloatConstraint;
//! # use std::fs::rename;
//! let x = <[f64]>::sequence(1e-4, 40.0, 801);
//! let nus = <[f64]>::sequence(-0.1, -2.0, 19);
//!
//! let mut plot = Plot::new();
//! plot.with_options(PlotOptions {
//!     y_min: Some(-1.6),
//!     y_max: Some(0.6),
//!     x_max: Some(10.0),
//!     title: "Bessel Functions Y_nu(x) for -nu".to_string(),
//!     x_axis_label: "x".to_string(),
//!     y_axis_label: " ".to_string(),
//!     ..Default::default()
//! });
//!
//! for i in 0..nus.len() {
//!     let xx = x
//!         .iter()
//!         .filter(|&x| *x > x * 0.6)
//!         .cloned()
//!         .collect::<Vec<_>>();
//!     let y = xx
//!         .iter()
//!         .map(|x| bessel_y(x, nus[i]).unwrap())
//!         .collect::<Vec<_>>();
//!     plot.with_plottable(Line {
//!         x: xx,
//!         y,
//!         color: ViridisRGB::get_color(i as f64 / nus.len() as f64),
//!         ..Default::default()
//!     });
//! }
//!
//! let root = SVGBackend::new("bessel_y_negative_nu.svg", (1024, 768)).into_drawing_area();
//! plot.plot(&root).unwrap();
//! # drop(root);
//! # rename(
//! #     format!("bessel_y_negative_nu.svg"),
//! #     format!("src/func/bessel/doctest_out/bessel_y_negative_nu.svg"),
//! # )
//! # .unwrap();
//! ```
#![cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("bessel_y_negative_nu", "src/func/bessel/doctest_out/bessel_y_negative_nu.svg")))]
#![cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Bessel Y Negative Nu Plot][bessel_y_negative_nu]")
)]

mod bessel_i;
mod bessel_j;
mod bessel_k;
mod bessel_y;

pub use self::{bessel_i::*, bessel_j::*, bessel_k::*, bessel_y::*};

#[cfg(test)]
mod tests;

#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;

#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;