1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
mod d;
mod p;
mod q;
mod r;

use strafe_type::{LogProbability64, Probability64, Rational64, Real64};

pub(crate) use self::{d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};

/// # The Weibull Distribution
///
/// ## Description
///
/// Density, distribution function, quantile function and random generation for the Weibull
/// distribution with parameters shape and scale.
///
/// ## Arguments
///
/// * shape, scale: shape and scale parameters, the latter defaulting to 1.
///
/// ## Details
///
/// The Weibull distribution with shape parameter a and scale parameter b has density given by
///
/// $ f(x) = (a/b) (x/b)^{a-1} exp(- (x/b)^a) $
///
/// for x > 0. The cumulative distribution function is $F(x) = 1 - exp(- (x/b)^a)$ on x > 0, the mean
/// is $E(X) = b \Gamma(1 + 1/a)$, and the $Var(X) = b^2 * (\Gamma(1 + 2/a) - (\Gamma(1 + 1/a))^2)$.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::WeibullBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let weibull = WeibullBuilder::new().build();
/// let x = <[f64]>::sequence(-1.0, 5.0, 1000);
/// let y = x
///     .iter()
///     .map(|x| weibull.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("density.svg"),
/// #             format!("src/distribution/weibull/doctest_out/density.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/weibull/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Note
///
/// The cumulative hazard $H(t) = - log(1 - F(t))$ is
///
/// -pweibull(t, a, b, lower = FALSE, log = TRUE)
/// which is just $H(t) = (t/b)^a$.
///
/// ## Source
///
/// \[dpq\]weibull are calculated directly from the definitions. rweibull uses inversion.
///
/// References
/// Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions,
/// volume 1, chapter 21. Wiley, New York.
///
/// ## See Also
///
/// Distributions for other standard distributions, including the Exponential which is a special
/// case of the Weibull distribution.
///
/// ## Examples
///
/// Using this x for everything below
/// ```rust
/// # use num_traits::FloatConst;
/// # use r2rs_nmath::{
/// #     distribution::{ExponentialBuilder, LogNormalBuilder, WeibullBuilder},
/// #     rng::MersenneTwister,
/// #     traits::{Distribution, RNG},
/// # };
/// # use strafe_type::FloatConstraint;
/// let mut rng = MersenneTwister::new();
/// rng.set_seed(1);
///
/// let lnorm = LogNormalBuilder::new().build();
///
/// let mut x = (0..50)
///     .map(|_| lnorm.random_sample(&mut rng).unwrap())
///     .collect::<Vec<_>>();
/// x.insert(0, 0.0);
/// ```
///
/// ```rust
/// # use num_traits::FloatConst;
/// # use r2rs_nmath::{
/// #     distribution::{ExponentialBuilder, LogNormalBuilder, WeibullBuilder},
/// #     rng::MersenneTwister,
/// #     traits::{Distribution, RNG},
/// # };
/// # use strafe_type::FloatConstraint;
/// # let mut rng = MersenneTwister::new();
/// # rng.set_seed(1);
/// #
/// # let lnorm = LogNormalBuilder::new().build();
/// #
/// # let mut x = (0..50)
/// #     .map(|_| lnorm.random_sample(&mut rng).unwrap())
/// #     .collect::<Vec<_>>();
/// # x.insert(0, 0.0);
/// let weibull = WeibullBuilder::new().with_shape(1).build();
/// let r1 = x
///     .iter()
///     .map(|x| weibull.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let exp = ExponentialBuilder::new().build();
/// let r2 = x
///     .iter()
///     .map(|x| exp.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// println!("{r1:?}");
/// println!("{r2:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/weibull/doctest_out/cmp1.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r1:?}").unwrap();
/// # writeln!(f, "{r1:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/cmp1.md")))]
///
/// ```rust
/// # use num_traits::FloatConst;
/// # use r2rs_nmath::{
/// #     distribution::{ExponentialBuilder, LogNormalBuilder, WeibullBuilder},
/// #     rng::MersenneTwister,
/// #     traits::{Distribution, RNG},
/// # };
/// # use strafe_type::FloatConstraint;
/// # let mut rng = MersenneTwister::new();
/// # rng.set_seed(1);
/// #
/// # let lnorm = LogNormalBuilder::new().build();
/// #
/// # let mut x = (0..50)
/// #     .map(|_| lnorm.random_sample(&mut rng).unwrap())
/// #     .collect::<Vec<_>>();
/// # x.insert(0, 0.0);
/// let weibull = WeibullBuilder::new()
///     .with_shape(1)
///     .with_scale(f64::PI())
///     .build();
/// let r1 = x
///     .iter()
///     .map(|x| weibull.probability(x, true).unwrap())
///     .collect::<Vec<_>>();
///
/// let exp = ExponentialBuilder::new().with_rate(1.0 / f64::PI()).build();
/// let r2 = x
///     .iter()
///     .map(|x| exp.probability(x, true).unwrap())
///     .collect::<Vec<_>>();
///
/// println!("{r1:?}");
/// println!("{r2:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/weibull/doctest_out/cmp2.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r1:?}").unwrap();
/// # writeln!(f, "{r1:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/cmp2.md")))]
///
/// Cumulative hazard H()
/// ```rust
/// # use num_traits::FloatConst;
/// # use r2rs_nmath::{
/// #     distribution::{ExponentialBuilder, LogNormalBuilder, WeibullBuilder},
/// #     rng::MersenneTwister,
/// #     traits::{Distribution, RNG},
/// # };
/// # use strafe_type::FloatConstraint;
/// # let mut rng = MersenneTwister::new();
/// # rng.set_seed(1);
/// #
/// # let lnorm = LogNormalBuilder::new().build();
/// #
/// # let mut x = (0..50)
/// #     .map(|_| lnorm.random_sample(&mut rng).unwrap())
/// #     .collect::<Vec<_>>();
/// # x.insert(0, 0.0);
/// let weibull = WeibullBuilder::new()
///     .with_shape(2.5)
///     .with_scale(f64::PI())
///     .build();
/// let r1 = x
///     .iter()
///     .map(|x| weibull.log_probability(x, false).unwrap())
///     .collect::<Vec<_>>();
///
/// let r2 = x
///     .iter()
///     .map(|x| -(x / f64::PI()).powf(2.5))
///     .collect::<Vec<_>>();
///
/// println!("{r1:?}");
/// println!("{r2:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/weibull/doctest_out/cmp3.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r1:?}").unwrap();
/// # writeln!(f, "{r1:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/cmp3.md")))]
///
/// ```rust
/// # use num_traits::FloatConst;
/// # use r2rs_nmath::{
/// #     distribution::{ExponentialBuilder, LogNormalBuilder, WeibullBuilder},
/// #     rng::MersenneTwister,
/// #     traits::{Distribution, RNG},
/// # };
/// # use strafe_type::FloatConstraint;
/// # let mut rng = MersenneTwister::new();
/// # rng.set_seed(1);
/// #
/// # let lnorm = LogNormalBuilder::new().build();
/// #
/// # let mut x = (0..50)
/// #     .map(|_| lnorm.random_sample(&mut rng).unwrap())
/// #     .collect::<Vec<_>>();
/// # x.insert(0, 0.0);
/// let weibull = WeibullBuilder::new()
///     .with_shape(1)
///     .with_scale(f64::PI())
///     .build();
/// let r1 = x
///     .iter()
///     .map(|x| weibull.quantile(x / 11.0, true).unwrap())
///     .collect::<Vec<_>>();
///
/// let exp = ExponentialBuilder::new().with_rate(1.0 / f64::PI()).build();
/// let r2 = x
///     .iter()
///     .map(|x| exp.quantile(x / 11.0, true).unwrap())
///     .collect::<Vec<_>>();
///
/// println!("{r1:?}");
/// println!("{r2:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/weibull/doctest_out/cmp4.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{r1:?}").unwrap();
/// # writeln!(f, "{r1:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/cmp4.md")))]
pub struct Weibull {
    shape: Rational64,
    scale: Rational64,
}

impl Distribution for Weibull {
    fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dweibull(x, self.shape, self.scale, false)
    }

    fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dweibull(x, self.shape, self.scale, true)
    }

    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        pweibull(q, self.shape, self.scale, lower_tail)
    }

    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        log_pweibull(q, self.shape, self.scale, lower_tail)
    }

    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        qweibull(p, self.shape, self.scale, lower_tail)
    }

    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        log_qweibull(p, self.shape, self.scale, lower_tail)
    }

    fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
        rweibull(self.shape, self.scale, rng)
    }
}

pub struct WeibullBuilder {
    shape: Option<Rational64>,
    scale: Option<Rational64>,
}

impl WeibullBuilder {
    pub fn new() -> Self {
        Self {
            shape: None,
            scale: None,
        }
    }

    pub fn with_shape<R: Into<Rational64>>(&mut self, shape: R) -> &mut Self {
        self.shape = Some(shape.into());
        self
    }

    pub fn with_scale<R: Into<Rational64>>(&mut self, scale: R) -> &mut Self {
        self.scale = Some(scale.into());
        self
    }

    pub fn build(&self) -> Weibull {
        let shape = self.shape.unwrap_or(1.0.into());
        let scale = self.scale.unwrap_or(1.0.into());

        Weibull { shape, scale }
    }
}

#[cfg(test)]
mod tests;

#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;

#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;