1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use strafe_type::{FloatConstraint, LogProbability64, Positive64, Probability64, Real64};

use crate::{
    distribution::tukey::{p::ptukey, q::qtukey},
    traits::{Distribution, RNG},
};

mod p;
mod q;

/// # The Studentized Range Distribution
///
/// ## Description
///
/// Functions of the distribution of the studentized range, $ R/s $, where $ R $ is the range of a
/// standard normal sample and $ df*s^2 $ is independently distributed as chi-squared with df
/// degrees of freedom, see pchisq.
///
/// ## Arguments
///
/// * nmeans: sample size for range (same for each group).
/// * df: degrees of freedom for s (see below).
/// * nranges: number of groups whose maximum range is considered.
///
/// ## Details
///
/// If ng = nranges is greater than one, R is the maximum of ng groups of nmeans observations each.
///
/// ## Note
///
/// A Legendre 16-point formula is used for the integral of ptukey. The computations are relatively
/// expensive, especially for qtukey which uses a simple secant method for finding the inverse of
/// ptukey. qtukey will be accurate to the 4th decimal place.
///
/// ## Source
///
/// qtukey is in part adapted from Odeh and Evans (1974).
///
/// ## References
///
/// Copenhaver, Margaret Diponzio and Holland, Burt S. (1988). Computation of the distribution of
/// the maximum studentized range statistic with application to multiple significance testing of
/// simple effects. Journal of Statistical Computation and Simulation, 30, 1–15.
/// doi: 10.1080/00949658808811082.
///
/// Odeh, R. E. and Evans, J. O. (1974). Algorithm AS 70: Percentage Points of the Normal
/// Distribution. Applied Statistics, 23, 96–97. doi: 10.2307/2347061.
///
/// ## See Also
///
/// Distributions for standard distributions, including pnorm and qnorm for the corresponding
/// functions for the normal distribution.
///
/// ## Examples
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::TukeyBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let tukey = TukeyBuilder::new().with_means(6).with_df(5).build();
/// let x = <[f64]>::sequence(-1.0, 8.0, 1000);
/// let y = x
///     .iter()
///     .map(|x| tukey.probability(x, true).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("prob.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "probability".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("prob.svg"),
/// #             format!("src/distribution/tukey/doctest_out/prob.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("prob", "src/distribution/tukey/doctest_out/prob.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Probability][prob]"))]
///
/// The precision may be not much more than about 8 digits
/// ```rust
/// # use r2rs_nmath::{distribution::TukeyBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let tukey = TukeyBuilder::new().with_means(2).with_df(5).build();
/// let x = (0..=10).collect::<Vec<_>>();
/// let p = x
///     .iter()
///     .map(|x| tukey.probability(x, true).unwrap())
///     .collect::<Vec<_>>();
/// println!("{p:?}");
///
/// let df = (2..=11).collect::<Vec<_>>();
/// let q = df
///     .iter()
///     .map(|df| {
///         TukeyBuilder::new()
///             .with_means(2)
///             .with_df(df)
///             .build()
///             .quantile(0.95, true)
///             .unwrap()
///     })
///     .collect::<Vec<_>>();
/// println!("{q:?}");
///
/// let err = q
///     .iter()
///     .zip(df.iter())
///     .map(|(q, df)| {
///         0.95 - TukeyBuilder::new()
///             .with_means(2)
///             .with_df(df)
///             .build()
///             .probability(q, true)
///             .unwrap()
///     })
///     .collect::<Vec<_>>();
/// println!("{err:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/tukey/doctest_out/err.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{p:?}").unwrap();
/// # writeln!(f, "{q:?}").unwrap();
/// # writeln!(f, "{err:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/err.md")))]
pub struct Tukey {
    ranges: Positive64,
    means: Positive64,
    df: Positive64,
}

impl Distribution for Tukey {
    fn density<R: Into<Real64>>(&self, _x: R) -> Real64 {
        unimplemented!()
    }

    fn log_density<R: Into<Real64>>(&self, _x: R) -> Real64 {
        unimplemented!()
    }

    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        let ret = ptukey(q, self.ranges, self.means, self.df, lower_tail, false);
        ret.unwrap().into()
    }

    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        let ret = ptukey(q, self.ranges, self.means, self.df, lower_tail, true);
        ret.unwrap().into()
    }

    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        qtukey(
            p.into().unwrap(),
            self.ranges,
            self.means,
            self.df,
            lower_tail,
            false,
        )
    }

    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        qtukey(
            p.into().unwrap(),
            self.ranges,
            self.means,
            self.df,
            lower_tail,
            true,
        )
    }

    fn random_sample<R: RNG>(&self, _rng: &mut R) -> Real64 {
        unimplemented!()
    }
}

pub struct TukeyBuilder {
    ranges: Option<Positive64>,
    means: Option<Positive64>,
    df: Option<Positive64>,
}

impl TukeyBuilder {
    pub fn new() -> Self {
        Self {
            ranges: None,
            means: None,
            df: None,
        }
    }

    pub fn with_ranges<P: Into<Positive64>>(&mut self, ranges: P) -> &mut Self {
        self.ranges = Some(ranges.into());
        self
    }

    pub fn with_means<P: Into<Positive64>>(&mut self, means: P) -> &mut Self {
        self.means = Some(means.into());
        self
    }

    pub fn with_df<P: Into<Positive64>>(&mut self, df: P) -> &mut Self {
        self.df = Some(df.into());
        self
    }

    pub fn build(&self) -> Tukey {
        let ranges = self.ranges.unwrap_or(1.0.into());
        let means = self.means.unwrap_or(2.0.into());
        let df = self.df.unwrap_or(2.0.into());

        Tukey { ranges, means, df }
    }
}

#[cfg(test)]
mod tests;

#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;

#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;