1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
use std::io::Cursor;

use polars::{
    error::PolarsResult,
    frame::DataFrame,
    prelude::{CsvReader, DataType, SerReader},
};

/// # Ability and Intelligence Tests
///
/// ## Description:
///
/// Six tests were given to 112 individuals. The covariance matrix is
/// given in this object.
///
/// ## Usage:
///
/// ability.cov
///
/// ## Details:
///
/// The tests are described as
///
/// * general: a non-verbal measure of general intelligence using
/// Cattell's culture-fair test.
/// * picture: a picture-completion test
/// * blocks: block design
/// * maze: mazes
/// * reading: reading comprehension
/// * vocab: vocabulary
/// * Bartholomew gives both covariance and correlation matrices, but
/// these are inconsistent.  Neither are in the original paper.
///
/// ## Source:
///
/// Bartholomew, D. J. (1987).  _Latent Variable Analysis and Factor
/// Analysis_.  Griffin.
///
/// Bartholomew, D. J. and Knott, M. (1990).  _Latent Variable
/// Analysis and Factor Analysis_.  Second Edition, Arnold.
///
/// ## References:
///
/// Smith, G. A. and Stanley G. (1983).  Clocking g: relating
/// intelligence and measures of timed performance.  _Intelligence_,
/// *7*, 353-368.  doi:10.1016/0160-2896(83)90010-7
/// <https://doi.org/10.1016/0160-2896%2883%2990010-7>.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// (ability.FA <- factanal(factors = 1, covmat = ability.cov))
/// update(ability.FA, factors = 2)
/// ## The signs of factors and hence the signs of correlations are
/// ## arbitrary with promax rotation.
/// update(ability.FA, factors = 2, rotation = "promax")
/// ```
pub fn ability_cov() -> PolarsResult<(DataFrame, Vec<usize>, usize)> {
    let mut center = Vec::new();
    let mut n_obs = 0;
    CsvReader::new(Cursor::new(include_str!("ability.cov.center.csv")))
        .finish()?
        .column("x")?
        .cast(&DataType::Float64)?
        .f64()?
        .for_each(|d| center.push(d.unwrap() as usize));
    CsvReader::new(Cursor::new(include_str!("ability.cov.n.obs.csv")))
        .finish()?
        .column("x")?
        .cast(&DataType::Float64)?
        .f64()?
        .for_each(|d| n_obs = d.unwrap() as usize);
    Ok((
        CsvReader::new(Cursor::new(include_str!("ability.cov.cov.csv"))).finish()?,
        center,
        n_obs,
    ))
}

/// # Passenger Miles on Commercial US Airlines, 1937-1960
///
/// ## Description:
///
/// The revenue passenger miles flown by commercial airlines in the
/// United States for each year from 1937 to 1960.
///
/// ## Usage:
///
/// airmiles
///
/// ## Format:
///
/// A time series of 24 observations; yearly, 1937-1960.
///
/// ## Source:
///
/// F.A.A. Statistical Handbook of Aviation.
///
/// ## References:
///
/// Brown, R. G. (1963) _Smoothing, Forecasting and Prediction of
/// Discrete Time Series_.  Prentice-Hall.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// plot(airmiles, main = "airmiles data",
///  xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)
/// ```
pub fn airmiles() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("airmiles.csv"))).finish()
}

/// # Monthly Airline Passenger Numbers 1949-1960
///
/// ## Description:
///
/// The classic Box & Jenkins airline data.  Monthly totals of
/// international airline passengers, 1949 to 1960.
///
/// ## Usage:
///
/// AirPassengers
///
/// ## Format:
///
/// A monthly time series, in thousands.
///
/// ## Source:
///
/// Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976) _Time
/// Series Analysis, Forecasting and Control._ Third Edition.
/// Holden-Day. Series G.
///
/// ## Examples:
///
/// ```r
/// ## Not run:
///
/// ## These are quite slow and so not run by example(AirPassengers)
///
/// ## The classic 'airline model', by full ML
/// (fit <- arima(log10(AirPassengers), c(0, 1, 1),
///  seasonal = list(order = c(0, 1, 1), period = 12)))
/// update(fit, method = "CSS")
/// update(fit, x = window(log10(AirPassengers), start = 1954))
/// pred <- predict(fit, n.ahead = 24)
/// tl <- pred$pred - 1.96 * pred$se
/// tu <- pred$pred + 1.96 * pred$se
/// ts.plot(AirPassengers, 10^tl, 10^tu, log = "y", lty = c(1, 2, 2))
///
/// ## full ML fit is the same if the series is reversed, CSS fit is not
/// ap0 <- rev(log10(AirPassengers))
/// attributes(ap0) <- attributes(AirPassengers)
/// arima(ap0, c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))
/// arima(ap0, c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12),
/// method = "CSS")
///
/// ## Structural Time Series
/// ap <- log10(AirPassengers) - 2
/// (fit <- StructTS(ap, type = "BSM"))
/// par(mfrow = c(1, 2))
/// plot(cbind(ap, fitted(fit)), plot.type = "single")
/// plot(cbind(ap, tsSmooth(fit)), plot.type = "single")
/// ## End(Not run)
/// ```
pub fn air_passengers() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("AirPassengers.csv"))).finish()
}

/// # New York Air Quality Measurements
///
/// ## Description:
///
/// Daily air quality measurements in New York, May to September 1973.
///
/// ## Usage:
///
/// airquality
///
/// ## Format:
///
/// A data frame with 153 observations on 6 variables.
///
///  * ‘\[,1\]’  ‘Ozone’ numeric  Ozone (ppb)
///  * ‘\[,2\]’  ‘Solar.R’  numeric  Solar R (lang)
///  * ‘\[,3\]’  ‘Wind’  numeric  Wind (mph)
///  * ‘\[,4\]’  ‘Temp’  numeric  Temperature (degrees F)
///  * ‘\[,5\]’  ‘Month’ numeric  Month (1-12)
///  * ‘\[,6\]’  ‘Day’numeric  Day of month (1-31)
///
/// ## Details:
///
/// Daily readings of the following air quality values for May 1, 1973
/// (a Tuesday) to September 30, 1973.
///
/// * ‘Ozone’: Mean ozone in parts per billion from 1300 to 1500
/// hours at Roosevelt Island
/// * ‘Solar.R’: Solar radiation in Langleys in the frequency band
/// 4000-7700 Angstroms from 0800 to 1200 hours at Central Park
/// * ‘Wind’: Average wind speed in miles per hour at 0700 and 1000
/// hours at LaGuardia Airport
/// * ‘Temp’: Maximum daily temperature in degrees Fahrenheit at La
/// Guardia Airport.
///
/// ## Source:
///
/// The data were obtained from the New York State Department of
/// Conservation (ozone data) and the National Weather Service
/// (meteorological data).
///
/// ## References:
///
/// Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A.
/// (1983) _Graphical Methods for Data Analysis_.  Belmont, CA:
/// Wadsworth.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// pairs(airquality, panel = panel.smooth, main = "airquality data")
/// ```
pub fn air_quality() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("airquality.csv"))).finish()
}

/// # Anscombe's Quartet of 'Identical' Simple Linear Regressions
///
/// ## Description:
///
/// Four x-y datasets which have the same traditional statistical
/// properties (mean, variance, correlation, regression line, etc.),
/// yet are quite different.
///
/// ## Usage:
///
/// anscombe
///
/// ## Format:
///
/// A data frame with 11 observations on 8 variables.
///
/// * x1 == x2 == x3  the integers 4:14, specially arranged
/// * x4  values 8 and 19
/// * y1, y2, y3, y4  numbers in (3, 12.5) with mean 7.5 and sdev 2.03
///
/// ## Source:
///
/// Tufte, Edward R. (1989).  _The Visual Display of Quantitative
/// Information_, 13-14.  Graphics Press.
///
/// ## References:
///
/// Anscombe, Francis J. (1973).  Graphs in statistical analysis.
/// _The American Statistician_, *27*, 17-21.  doi:10.2307/2682899
/// <https://doi.org/10.2307/2682899>.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// summary(anscombe)
///
/// ##-- now some "magic" to do the 4 regressions in a loop:
/// ff <- y ~ x
/// mods <- setNames(as.list(1:4), paste0("lm", 1:4))
/// for(i in 1:4) {
///  ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
///  ## orff[[2]] <- as.name(paste0("y", i))
///  ##ff[[3]] <- as.name(paste0("x", i))
///  mods[[i]] <- lmi <- lm(ff, data = anscombe)
///  print(anova(lmi))
/// }
///
/// ## See how close they are (numerically!)
/// sapply(mods, coef)
/// lapply(mods, function(fm) coef(summary(fm)))
///
/// ## Now, do what you should have done in the first place: PLOTS
/// op <- par(mfrow = c(2, 2), mar = 0.1+c(4,4,1,1), oma =  c(0, 0, 2, 0))
/// for(i in 1:4) {
///  ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
///  plot(ff, data = anscombe, col = "red", pch = 21, bg = "orange", cex = 1.2,
/// xlim = c(3, 19), ylim = c(3, 13))
///  abline(mods[[i]], col = "blue")
/// }
/// mtext("Anscombe's 4 Regression data sets", outer = TRUE, cex = 1.5)
/// par(op)
/// ```
pub fn anscombe() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("anscombe.csv"))).finish()
}

/// # The Joyner-Boore Attenuation Data
///
/// ## Description:
///
/// This data gives peak accelerations measured at various observation
/// stations for 23 earthquakes in California.  The data have been
/// used by various workers to estimate the attenuating affect of
/// distance on ground acceleration.
///
/// ## Usage:
///
/// attenu
///
/// ## Format:
///
/// A data frame with 182 observations on 5 variables.
///
/// * \[,1\]  event numeric  Event Number
/// * \[,2\]  magnumeric  Moment Magnitude
/// * \[,3\]  station  factorStation Number
/// * \[,4\]  dist  numeric  Station-hypocenter distance (km)
/// * \[,5\]  accel numeric  Peak acceleration (g)
///
/// ## Source:
///
/// Joyner, W.B., D.M. Boore and R.D. Porcella (1981).  Peak
/// horizontal acceleration and velocity from strong-motion records
/// including records from the 1979 Imperial Valley, California
/// earthquake.  USGS Open File report 81-365. Menlo Park, Ca.
///
/// ## References:
///
/// Boore, D. M. and Joyner, W. B.(1982).  The empirical prediction of
/// ground motion, _Bulletin of the Seismological Society of America_,
/// *72*, S269-S268.
///
/// Bolt, B. A. and Abrahamson, N. A. (1982).  New attenuation
/// relations for peak and expected accelerations of strong ground
/// motion.  _Bulletin of the Seismological Society of America_, *72*,
/// 2307-2321.
///
/// Bolt B. A. and Abrahamson, N. A. (1983).  Reply to W. B. Joyner &
/// D. M. Boore's “Comments on: New attenuation relations for peak and
/// expected accelerations for peak and expected accelerations of
/// strong ground motion”, _Bulletin of the Seismological Society of
/// America_, *73*, 1481-1483.
///
/// Brillinger, D. R. and Preisler, H. K. (1984).  An exploratory
/// analysis of the Joyner-Boore attenuation data, _Bulletin of the
/// Seismological Society of America_, *74*, 1441-1449.
///
/// Brillinger, D. R. and Preisler, H. K. (1984).  _Further analysis
/// of the Joyner-Boore attenuation data_.  Manuscript.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// ## check the data class of the variables
/// sapply(attenu, data.class)
/// summary(attenu)
/// pairs(attenu, main = "attenu data")
/// coplot(accel ~ dist | as.factor(event), data = attenu, show.given = FALSE)
/// coplot(log(accel) ~ log(dist) | as.factor(event),
///  data = attenu, panel = panel.smooth, show.given = FALSE)
/// ```
pub fn attenu() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("attenu.csv"))).finish()
}

/// # The Chatterjee-Price Attitude Data
///
/// ## Description:
///
/// From a survey of the clerical employees of a large financial
/// organization, the data are aggregated from the questionnaires of
/// the approximately 35 employees for each of 30 (randomly selected)
/// departments.  The numbers give the percent proportion of
/// favourable responses to seven questions in each department.
///
/// ## Usage:
///
/// attitude
///
/// ## Format:
///
/// A data frame with 30 observations on 7 variables. The first column
/// are the short names from the reference, the second one the
/// variable names in the data frame:
///
/// * Y  ratingnumeric  Overall rating
/// * X\[1\]  complaints  numeric  Handling of employee complaints
/// * X\[2\]  privileges  numeric  Does not allow special privileges
/// * X\[3\]  learning numeric  Opportunity to learn
/// * X\[4\]  raisesnumeric  Raises based on performance
/// * X\[5\]  critical numeric  Too critical
/// * X\[6\]  advance  numeric  Advancement
///
/// ## Source:
///
/// Chatterjee, S. and Price, B. (1977) _Regression Analysis by
/// Example_.  New York: Wiley.  (Section 3.7, p.68ff of 2nd
/// ed.(1991).)
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// pairs(attitude, main = "attitude data")
/// summary(attitude)
/// summary(fm1 <- lm(rating ~ ., data = attitude))
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
/// mar = c(4.1, 4.1, 2.1, 1.1))
/// plot(fm1)
/// summary(fm2 <- lm(rating ~ complaints, data = attitude))
/// plot(fm2)
/// par(opar)
/// ```
pub fn attitude() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("attitude.csv"))).finish()
}

/// # Quarterly Time Series of the Number of Australian Residents
///
/// ## Description:
///
/// Numbers (in thousands) of Australian residents measured quarterly
/// from March 1971 to March 1994.  The object is of class ‘"ts"’.
///
/// ## Usage:
///
/// austres
///
/// ## Source:
///
/// P. J. Brockwell and R. A. Davis (1996) _Introduction to Time
/// Series and Forecasting._ Springer
pub fn austres() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("austres.csv"))).finish()
}

/// # Body Temperature Series of Two Beavers
///
/// ## Description:
///
/// Reynolds (1994) describes a small part of a study of the long-term
/// temperature dynamics of beaver _Castor canadensis_ in
/// north-central Wisconsin.  Body temperature was measured by
/// telemetry every 10 minutes for four females, but data from a one
/// period of less than a day for each of two animals is used there.
///
/// ## Usage:
///
/// beaver1
/// beaver2
///
/// ## Format:
///
/// The ‘beaver1’ data frame has 114 rows and 4 columns on body
/// temperature measurements at 10 minute intervals.
///
/// The ‘beaver2’ data frame has 100 rows and 4 columns on body
/// temperature measurements at 10 minute intervals.
///
/// The variables are as follows:
///
/// * day Day of observation (in days since the beginning of 1990),
/// December 12-13 (‘beaver1’) and November 3-4 (‘beaver2’).
/// * time Time of observation, in the form ‘0330’ for 3:30am
/// * temp Measured body temperature in degrees Celsius.
/// * activ Indicator of activity outside the retreat.
///
/// ## Note:
///
/// The observation at 22:20 is missing in ‘beaver1’.
///
/// ## Source:
///
/// P. S. Reynolds (1994) Time-series analyses of beaver body
/// temperatures.  Chapter 11 of Lange, N., Ryan, L., Billard, L.,
/// Brillinger, D., Conquest, L. and Greenhouse, J. eds (1994) _Case
/// Studies in Biometry._ New York: John Wiley and Sons.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// (yl <- range(beaver1$temp, beaver2$temp))
///
/// beaver.plot <- function(bdat, ...) {
///  nam <- deparse(substitute(bdat))
///  with(bdat, {
/// # Hours since start of day:
/// hours <- time %/% 100 + 24*(day - day[1]) + (time %% 100)/60
/// plot (hours, temp, type = "l", ...,
/// main = paste(nam, "body temperature"))
/// abline(h = 37.5, col = "gray", lty = 2)
/// is.act <- activ == 1
/// points(hours[is.act], temp[is.act], col = 2, cex = .8)
///  })
/// }
/// op <- par(mfrow = c(2, 1), mar = c(3, 3, 4, 2), mgp = 0.9 * 2:0)
/// beaver.plot(beaver1, ylim = yl)
/// beaver.plot(beaver2, ylim = yl)
/// par(op)
/// ```
pub fn beaver1() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("beaver1.csv"))).finish()
}

/// # Body Temperature Series of Two Beavers
///
/// ## Description:
///
/// Reynolds (1994) describes a small part of a study of the long-term
/// temperature dynamics of beaver _Castor canadensis_ in
/// north-central Wisconsin.  Body temperature was measured by
/// telemetry every 10 minutes for four females, but data from a one
/// period of less than a day for each of two animals is used there.
///
/// ## Usage:
///
/// beaver1
/// beaver2
///
/// ## Format:
///
/// The ‘beaver1’ data frame has 114 rows and 4 columns on body
/// temperature measurements at 10 minute intervals.
///
/// The ‘beaver2’ data frame has 100 rows and 4 columns on body
/// temperature measurements at 10 minute intervals.
///
/// The variables are as follows:
///
/// * day Day of observation (in days since the beginning of 1990),
/// December 12-13 (‘beaver1’) and November 3-4 (‘beaver2’).
/// * time Time of observation, in the form ‘0330’ for 3:30am
/// * temp Measured body temperature in degrees Celsius.
/// * activ Indicator of activity outside the retreat.
///
/// ## Note:
///
/// The observation at 22:20 is missing in ‘beaver1’.
///
/// ## Source:
///
/// P. S. Reynolds (1994) Time-series analyses of beaver body
/// temperatures.  Chapter 11 of Lange, N., Ryan, L., Billard, L.,
/// Brillinger, D., Conquest, L. and Greenhouse, J. eds (1994) _Case
/// Studies in Biometry._ New York: John Wiley and Sons.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// (yl <- range(beaver1$temp, beaver2$temp))
///
/// beaver.plot <- function(bdat, ...) {
///  nam <- deparse(substitute(bdat))
///  with(bdat, {
/// # Hours since start of day:
/// hours <- time %/% 100 + 24*(day - day[1]) + (time %% 100)/60
/// plot (hours, temp, type = "l", ...,
/// main = paste(nam, "body temperature"))
/// abline(h = 37.5, col = "gray", lty = 2)
/// is.act <- activ == 1
/// points(hours[is.act], temp[is.act], col = 2, cex = .8)
///  })
/// }
/// op <- par(mfrow = c(2, 1), mar = c(3, 3, 4, 2), mgp = 0.9 * 2:0)
/// beaver.plot(beaver1, ylim = yl)
/// beaver.plot(beaver2, ylim = yl)
/// par(op)
/// ```
pub fn beaver2() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("beaver2.csv"))).finish()
}

/// # Sales Data with Leading Indicator
///
/// ## Description:
///
/// The sales time series ‘BJsales’ and leading indicator
/// ‘BJsales.lead’ each contain 150 observations.  The objects are of
/// class ‘"ts"’.
///
/// ## Usage:
///
/// BJsales
/// BJsales.lead
///
/// ## Source:
///
/// The data are given in Box & Jenkins (1976).  Obtained from the
/// Time Series Data Library at <https://robjhyndman.com/TSDL/>
///
/// ## References:
///
/// G. E. P. Box and G. M. Jenkins (1976): _Time Series Analysis,
/// Forecasting and Control_, Holden-Day, San Francisco, p. 537.
///
/// P. J. Brockwell and R. A. Davis (1991): _Time Series: Theory and
/// Methods_, Second edition, Springer Verlag, NY, pp. 414.
pub fn bjsales() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("BJsales.csv"))).finish()
}

/// # Sales Data with Leading Indicator
///
/// ## Description:
///
/// The sales time series ‘BJsales’ and leading indicator
/// ‘BJsales.lead’ each contain 150 observations.  The objects are of
/// class ‘"ts"’.
///
/// ## Usage:
///
/// BJsales
/// BJsales.lead
///
/// ## Source:
///
/// The data are given in Box & Jenkins (1976).  Obtained from the
/// Time Series Data Library at <https://robjhyndman.com/TSDL/>
///
/// ## References:
///
/// G. E. P. Box and G. M. Jenkins (1976): _Time Series Analysis,
/// Forecasting and Control_, Holden-Day, San Francisco, p. 537.
///
/// P. J. Brockwell and R. A. Davis (1991): _Time Series: Theory and
/// Methods_, Second edition, Springer Verlag, NY, pp. 414.
pub fn bjsales_lead() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("BJsales.lead.csv"))).finish()
}

/// # Biochemical Oxygen Demand
///
/// ## Description:
///
/// The ‘BOD’ data frame has 6 rows and 2 columns giving the
/// biochemical oxygen demand versus time in an evaluation of water
/// quality.
///
/// ## Usage:
///
/// BOD
///
/// ## Format:
///
/// This data frame contains the following columns:
///
/// * ‘Time’ A numeric vector giving the time of the measurement (days).
/// * ‘demand’ A numeric vector giving the biochemical oxygen demand
/// (mg/l).
///
/// ## Source:
///
/// Bates, D.M. and Watts, D.G. (1988), _Nonlinear Regression Analysis
/// and Its Applications_, Wiley, Appendix A1.4.
///
/// Originally from Marske (1967), _Biochemical Oxygen Demand Data
/// Interpretation Using Sum of Squares Surface_ M.Sc. Thesis,
/// University of Wisconsin - Madison.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// # simplest form of fitting a first-order model to these data
/// fm1 <- nls(demand ~ A*(1-exp(-exp(lrc)*Time)), data = BOD,
///   start = c(A = 20, lrc = log(.35)))
/// coef(fm1)
/// fm1
/// # using the plinear algorithm  (trace o/p differs by platform)
/// ## IGNORE_RDIFF_BEGIN
/// fm2 <- nls(demand ~ (1-exp(-exp(lrc)*Time)), data = BOD,
///   start = c(lrc = log(.35)), algorithm = "plinear", trace = TRUE)
/// ## IGNORE_RDIFF_END
/// # using a self-starting model
/// fm3 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
/// summary(fm3)
/// ```
pub fn bod() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("BOD.csv"))).finish()
}

/// # Speed and Stopping Distances of Cars
///
/// ## Description:
///
/// The data give the speed of cars and the distances taken to stop.
/// Note that the data were recorded in the 1920s.
///
/// ## Usage:
///
/// cars
///
/// ## Format:
///
/// A data frame with 50 observations on 2 variables.
///
/// * \[,1\]  speed  numeric  Speed (mph)
/// * \[,2\]  distnumeric  Stopping distance (ft)
///
/// ## Source:
///
/// Ezekiel, M. (1930) _Methods of Correlation Analysis_.  Wiley.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
///  las = 1)
/// lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
/// title(main = "cars data")
/// plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
///  las = 1, log = "xy")
/// title(main = "cars data (logarithmic scales)")
/// lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
/// summary(fm1 <- lm(log(dist) ~ log(speed), data = cars))
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
/// mar = c(4.1, 4.1, 2.1, 1.1))
/// plot(fm1)
/// par(opar)
///
/// ## An example of polynomial regression
/// plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
/// las = 1, xlim = c(0, 25))
/// d <- seq(0, 25, length.out = 200)
/// for(degree in 1:4) {
///  fm <- lm(dist ~ poly(speed, degree), data = cars)
///  assign(paste("cars", degree, sep = "."), fm)
///  lines(d, predict(fm, data.frame(speed = d)), col = degree)
/// }
/// anova(cars.1, cars.2, cars.3, cars.4)
/// ```
pub fn cars() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("cars.csv"))).finish()
}

/// # Weight versus age of chicks on different diets
///
/// ## Description:
///
/// The ‘ChickWeight’ data frame has 578 rows and 4 columns from an
/// experiment on the effect of diet on early growth of chicks.
///
/// ## Usage:
///
/// ChickWeight
///
/// ## Format:
///
/// An object of class ‘c("nfnGroupedData", "nfGroupedData",
/// "groupedData", "data.frame")’ containing the following columns:
///
/// * weight a numeric vector giving the body weight of the chick (gm).
/// * Time a numeric vector giving the number of days since birth when
/// the measurement was made.
/// * Chick an ordered factor with levels ‘18’ < ... < ‘48’ giving a
/// unique identifier for the chick.  The ordering of the levels
/// groups chicks on the same diet together and orders them
/// according to their final weight (lightest to heaviest) within
/// diet.
/// * Diet a factor with levels 1, ..., 4 indicating which experimental
/// diet the chick received.
///
/// ## Details:
///
/// The body weights of the chicks were measured at birth and every
/// second day thereafter until day 20.  They were also measured on
/// day 21.  There were four groups on chicks on different protein
/// diets.
///
/// This dataset was originally part of package ‘nlme’, and that has
/// methods (including for ‘[’, ‘as.data.frame’, ‘plot’ and ‘print’)
/// for its grouped-data classes.
///
/// ## Source:
///
/// Crowder, M. and Hand, D. (1990), _Analysis of Repeated Measures_,
/// Chapman and Hall (example 5.3)
///
/// Hand, D. and Crowder, M. (1996), _Practical Longitudinal Data
/// Analysis_, Chapman and Hall (table A.2)
///
/// Pinheiro, J. C. and Bates, D. M. (2000) _Mixed-effects Models in S
/// and S-PLUS_, Springer.
///
/// ## See Also:
///
/// ‘SSlogis’ for models fitted to this dataset.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// coplot(weight ~ Time | Chick, data = ChickWeight,
///  type = "b", show.given = FALSE)
/// ```
pub fn chick_weight() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("ChickWeight.csv"))).finish()
}

/// # Chicken Weights by Feed Type
///
/// ## Description:
///
/// An experiment was conducted to measure and compare the
/// effectiveness of various feed supplements on the growth rate of
/// chickens.
///
/// ## Usage:
///
/// chickwts
///
/// ## Format:
///
/// A data frame with 71 observations on the following 2 variables.
///
/// * ‘weight’ a numeric variable giving the chick weight.
/// * ‘feed’ a factor giving the feed type.
///
/// ## Details:
///
/// Newly hatched chicks were randomly allocated into six groups, and
/// each group was given a different feed supplement.  Their weights
/// in grams after six weeks are given along with feed types.
///
/// ## Source:
///
/// Anonymous (1948) _Biometrika_, *35*, 214.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// boxplot(weight ~ feed, data = chickwts, col = "lightgray",
/// varwidth = TRUE, notch = TRUE, main = "chickwt data",
/// ylab = "Weight at six weeks (gm)")
/// anova(fm1 <- lm(weight ~ feed, data = chickwts))
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
/// mar = c(4.1, 4.1, 2.1, 1.1))
/// plot(fm1)
/// par(opar)
/// ```
pub fn chickwts() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("chickwts.csv"))).finish()
}

/// # Mauna Loa Atmospheric CO2 Concentration
///
/// ## Description:
///
/// Atmospheric concentrations of CO2 are expressed in parts per
/// million (ppm) and reported in the preliminary 1997 SIO manometric
/// mole fraction scale.
///
/// ## Usage:
///
/// co2
///
/// ## Format:
///
/// A time series of 468 observations; monthly from 1959 to 1997.
///
/// ## Details:
///
/// The values for February, March and April of 1964 were missing and
/// have been obtained by interpolating linearly between the values
/// for January and May of 1964.
///
/// ## Source:
///
/// Keeling, C. D. and Whorf, T. P., Scripps Institution of
/// Oceanography (SIO), University of California, La Jolla, California
/// USA 92093-0220.
///
/// <https://scrippsco2.ucsd.edu/data/atmospheric_co2/>.
///
/// Note that the data are subject to revision (based on recalibration
/// of standard gases) by the Scripps institute, and hence may not
/// agree exactly with the data provided by R.
///
/// ## References:
///
/// Cleveland, W. S. (1993) _Visualizing Data_.  New Jersey: Summit
/// Press.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// plot(co2, ylab = expression("Atmospheric concentration of CO"[2]),
///   las = 1)
/// title(main = "co2 data set")
/// ```
pub fn co2_mauna() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("co2.mauna.csv"))).finish()
}

/// # Carbon Dioxide Uptake in Grass Plants
///
/// ## Description:
///
/// The ‘CO2’ data frame has 84 rows and 5 columns of data from an
/// experiment on the cold tolerance of the grass species _Echinochloa
/// crus-galli_.
///
/// ## Usage:
///
/// CO2
///
/// ## Format:
///
/// An object of class ‘c("nfnGroupedData", "nfGroupedData",
/// "groupedData", "data.frame")’ containing the following columns:
///
/// * Plant an ordered factor with levels ‘Qn1’ < ‘Qn2’ < ‘Qn3’ < ... <
/// ‘Mc1’ giving a unique identifier for each plant.
/// * Type a factor with levels ‘Quebec’ ‘Mississippi’ giving the origin
/// of the plant
/// * Treatment a factor with levels ‘nonchilled’ ‘chilled’
/// * conc a numeric vector of ambient carbon dioxide concentrations
/// (mL/L).
/// * uptake a numeric vector of carbon dioxide uptake rates (umol/m^2
/// sec).
///
/// ## Details:
///
/// The CO2 uptake of six plants from Quebec and six plants from
/// Mississippi was measured at several levels of ambient CO2
/// concentration.  Half the plants of each type were chilled
/// overnight before the experiment was conducted.
///
/// This dataset was originally part of package ‘nlme’, and that has
/// methods (including for ‘[’, ‘as.data.frame’, ‘plot’ and ‘print’)
/// for its grouped-data classes.
///
/// ## Source:
///
/// Potvin, C., Lechowicz, M. J. and Tardif, S. (1990) “The
/// statistical analysis of ecophysiological response curves obtained
/// from experiments involving repeated measures”, _Ecology_, *71*,
/// 1389-1400.
///
/// Pinheiro, J. C. and Bates, D. M. (2000) _Mixed-effects Models in S
/// and S-PLUS_, Springer.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
///
/// coplot(uptake ~ conc | Plant, data = CO2, show.given = FALSE, type = "b")
/// ## fit the data for the first plant
/// fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),
/// data = CO2, subset = Plant == "Qn1")
/// summary(fm1)
/// ## fit each plant separately
/// fmlist <- list()
/// for (pp in levels(CO2$Plant)) {
///  fmlist[[pp]] <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),
/// data = CO2, subset = Plant == pp)
/// }
/// ## check the coefficients by plant
/// print(sapply(fmlist, coef), digits = 3)
/// ```
pub fn co2_plants() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("CO2.plants.csv"))).finish()
}

/// # Student's 3000 Criminals Data
///
/// ## Description:
///
/// Data of 3000 male criminals over 20 years old undergoing their
/// sentences in the chief prisons of England and Wales.
///
/// ## Usage:
///
/// crimtab
///
/// ## Format:
///
/// A ‘table’ object of ‘integer’ counts, of dimension 42 * 22 with a
/// total count, ‘sum(crimtab)’ of 3000.
///
/// The 42 ‘rownames’ (‘"9.4"’, ‘"9.5"’, ...)  correspond to midpoints
/// of intervals of finger lengths whereas the 22 column names
/// (‘colnames’) (‘"142.24"’, ‘"144.78"’, ...) correspond to (body)
/// heights of 3000 criminals, see also below.
///
/// ## Details:
///
/// Student is the pseudonym of William Sealy Gosset.  In his 1908
/// paper he wrote (on page 13) at the beginning of section VI
/// entitled _Practical Test of the forgoing Equations_:
///
/// “Before I had succeeded in solving my problem analytically, I had
/// endeavoured to do so empirically.  The material used was a
/// correlation table containing the height and left middle finger
/// measurements of 3000 criminals, from a paper by W. R. MacDonell
/// (_Biometrika_, Vol. I., p. 219).  The measurements were written
/// out on 3000 pieces of cardboard, which were then very thoroughly
/// shuffled and drawn at random.  As each card was drawn its numbers
/// were written down in a book, which thus contains the measurements
/// of 3000 criminals in a random order.  Finally, each consecutive
/// set of 4 was taken as a sample-750 in all-and the mean, standard
/// deviation, and correlation of each sample determined.  The
/// difference between the mean of each sample and the mean of the
/// population was then divided by the standard deviation of the
/// sample, giving us the _z_ of Section III.”
///
/// The table is in fact page 216 and not page 219 in MacDonell(1902).
/// In the MacDonell table, the middle finger lengths were given in mm
/// and the heights in feet/inches intervals, they are both converted
/// into cm here.  The midpoints of intervals were used, e.g., where
/// MacDonell has 4' 7''9/16 -- 8''9/16, we have 142.24 which is
/// 2.54*56 = 2.54*(4' 8'').
///
/// MacDonell credited the source of data (page 178) as follows: _The
/// data on which the memoir is based were obtained, through the
/// kindness of Dr Garson, from the Central Metric Office, New
/// Scotland Yard..._ He pointed out on page 179 that : _The forms
/// were drawn at random from the mass on the office shelves; we are
///  therefore dealing with a random sampling._
///
/// ## Source:
///
/// <https://pbil.univ-lyon1.fr/R/donnees/criminals1902.txt> thanks to
/// Jean R. Lobry and Anne-Béatrice Dufour.
///
/// ## References:
///
/// Garson, J.G. (1900).  The metric system of identification of
/// criminals, as used in Great Britain and Ireland.  _The Journal of
/// the Anthropological Institute of Great Britain and Ireland_, *30*,
/// 161-198.  doi:10.2307/2842627 <https://doi.org/10.2307/2842627>.
///
/// MacDonell, W.R. (1902).  On criminal anthropometry and the
/// identification of criminals.  _Biometrika_, *1*(2), 177-227.
/// doi:10.2307/2331487 <https://doi.org/10.2307/2331487>.
///
/// Student (1908).  The probable error of a mean.  _Biometrika_, *6*,
/// 1-25.  doi:10.2307/2331554 <https://doi.org/10.2307/2331554>.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// dim(crimtab)
/// utils::str(crimtab)
/// ## for nicer printing:
/// local({cT <- crimtab
///  colnames(cT) <- substring(colnames(cT), 2, 3)
///  print(cT, zero.print = " ")
/// })
///
/// ## Repeat Student's experiment:
///
/// # 1) Reconstitute 3000 raw data for heights in inches and rounded to
/// # nearest integer as in Student's paper:
///
/// (heIn <- round(as.numeric(colnames(crimtab)) / 2.54))
/// d.hei <- data.frame(height = rep(heIn, colSums(crimtab)))
///
/// # 2) shuffle the data:
///
/// set.seed(1)
/// d.hei <- d.hei[sample(1:3000), , drop = FALSE]
///
/// # 3) Make 750 samples each of size 4:
///
/// d.hei$sample <- as.factor(rep(1:750, each = 4))
///
/// # 4) Compute the means and standard deviations (n) for the 750 samples:
///
/// h.mean <- with(d.hei, tapply(height, sample, FUN = mean))
/// h.sd<- with(d.hei, tapply(height, sample, FUN = sd)) * sqrt(3/4)
///
/// # 5) Compute the difference between the mean of each sample and
/// # the mean of the population and then divide by the
/// # standard deviation of the sample:
///
/// zobs <- (h.mean - mean(d.hei[,"height"]))/h.sd
///
/// # 6) Replace infinite values by +/- 6 as in Student's paper:
///
/// zobs[infZ <- is.infinite(zobs)] # none of them
/// zobs[infZ] <- 6 * sign(zobs[infZ])
///
/// # 7) Plot the distribution:
///
/// require(grDevices); require(graphics)
/// hist(x = zobs, probability = TRUE, xlab = "Student's z",
///  col = grey(0.8), border = grey(0.5),
///  main = "Distribution of Student's z score  for 'crimtab' data")
/// ```
pub fn crimtab() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("crimtab.csv"))).finish()
}

/// # Yearly Numbers of Important Discoveries
///
/// ## Description:
///
/// The numbers of “great” inventions and scientific discoveries in
/// each year from 1860 to 1959.
///
/// ## Usage:
///
/// discoveries
///
/// ## Format:
///
/// A time series of 100 values.
///
/// ## Source:
///
/// The World Almanac and Book of Facts, 1975 Edition, pages 315-318.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  Wiley.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// plot(discoveries, ylab = "Number of important discoveries",
///  las = 1)
/// title(main = "discoveries data set")
/// ```
pub fn discoveries() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("discoveries.csv"))).finish()
}

/// # Elisa assay of DNase
///
/// ## Description:
///
/// The ‘DNase’ data frame has 176 rows and 3 columns of data obtained
/// during development of an ELISA assay for the recombinant protein
/// DNase in rat serum.
///
/// ## Usage:
///
/// DNase
///
/// ## Format:
///
/// * An object of class ‘c("nfnGroupedData", "nfGroupedData",
/// "groupedData", "data.frame")’ containing the following columns:
/// * Run an ordered factor with levels ‘10’ < ... < ‘3’ indicating the
/// assay run.
/// * conc a numeric vector giving the known concentration of the
/// protein.
/// * density a numeric vector giving the measured optical density
/// (dimensionless) in the assay.  Duplicate optical density
/// measurements were obtained.
///
/// ## Details:
///
/// This dataset was originally part of package ‘nlme’, and that has
/// methods (including for ‘[’, ‘as.data.frame’, ‘plot’ and ‘print’)
/// for its grouped-data classes.
///
/// ## Source:
///
/// Davidian, M. and Giltinan, D. M. (1995) _Nonlinear Models for
/// Repeated Measurement Data_, Chapman & Hall (section 5.2.4, p. 134)
///
/// Pinheiro, J. C. and Bates, D. M. (2000) _Mixed-effects Models in S
/// and S-PLUS_, Springer.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
///
/// coplot(density ~ conc | Run, data = DNase,
/// show.given = FALSE, type = "b")
/// coplot(density ~ log(conc) | Run, data = DNase,
/// show.given = FALSE, type = "b")
/// ## fit a representative run
/// fm1 <- nls(density ~ SSlogis( log(conc), Asym, xmid, scal ),
/// data = DNase, subset = Run == 1)
/// ## compare with a four-parameter logistic
/// fm2 <- nls(density ~ SSfpl( log(conc), A, B, xmid, scal ),
/// data = DNase, subset = Run == 1)
/// summary(fm2)
/// anova(fm1, fm2)
/// ```
pub fn dnase() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("DNase.csv"))).finish()
}

/// # Smoking, Alcohol and (O)esophageal Cancer
///
/// ## Description:
///
/// Data from a case-control study of (o)esophageal cancer in
/// Ille-et-Vilaine, France.
///
/// ## Usage:
///
/// esoph
///
/// ## Format:
///
/// A data frame with records for 88 age/alcohol/tobacco combinations.
///
/// * \[,1\]  "agegp"Age group1  25-34 years
///     * 2  35-44
///     * 3  45-54
///     * 4  55-64
///     * 5  65-74
///     * 6  75+
/// * \[,2\]  "alcgp"Alcohol consumption  10-39 gm/day
///     * 2  40-79
///     * 3  80-119
///     * 4  120+
/// * \[,3\]  "tobgp"Tobacco consumption  10- 9 gm/day
///     * 2  10-19
///     * 3  20-29
///     * 4  30+
/// * \[,4\]  "ncases"  Number of cases
/// * \[,5\]  "ncontrols"  Number of controls
///
/// ## Author(s):
///
/// Thomas Lumley
///
/// ## Source:
///
/// Breslow, N. E. and Day, N. E. (1980) _Statistical Methods in
/// Cancer Research. Volume 1: The Analysis of Case-Control Studies._
/// IARC Lyon / Oxford University Press.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// require(graphics) # for mosaicplot
/// summary(esoph)
/// ## effects of alcohol, tobacco and interaction, age-adjusted
/// model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,
///  data = esoph, family = binomial())
/// anova(model1)
/// ## Try a linear effect of alcohol and tobacco
/// model2 <- glm(cbind(ncases, ncontrols) ~ agegp + unclass(tobgp)
///  + unclass(alcgp),
///  data = esoph, family = binomial())
/// summary(model2)
/// ## Re-arrange data for a mosaic plot
/// ttt <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
/// o <- with(esoph, order(tobgp, alcgp, agegp))
/// ttt[ttt == 1] <- esoph$ncases[o]
/// tt1 <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
/// tt1[tt1 == 1] <- esoph$ncontrols[o]
/// tt <- array(c(ttt, tt1), c(dim(ttt),2),
/// c(dimnames(ttt), list(c("Cancer", "control"))))
/// mosaicplot(tt, main = "esoph data set", color = TRUE)
/// ```
pub fn esoph() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("esoph.csv"))).finish()
}

/// # Conversion Rates of Euro Currencies
///
/// ## Description:
///
/// Conversion rates between the various Euro currencies.
///
/// ## Usage:
///
/// euro
/// euro.cross
///
/// ## Format:
///
/// ‘euro’ is a named vector of length 11, ‘euro.cross’ a matrix of
/// size 11 by 11, with dimnames.
///
/// ## Details:
///
/// The data set ‘euro’ contains the value of 1 Euro in all currencies
/// participating in the European monetary union (Austrian Schilling
/// ATS, Belgian Franc BEF, German Mark DEM, Spanish Peseta ESP,
/// Finnish Markka FIM, French Franc FRF, Irish Punt IEP, Italian Lira
/// ITL, Luxembourg Franc LUF, Dutch Guilder NLG and Portuguese Escudo
/// PTE).  These conversion rates were fixed by the European Union on
/// December 31, 1998.  To convert old prices to Euro prices, divide
/// by the respective rate and round to 2 digits.
///
/// The data set ‘euro.cross’ contains conversion rates between the
/// various Euro currencies, i.e., the result of ‘outer(1 / euro,
/// euro)’.
///
/// ## Examples:
///
/// ```r
/// cbind(euro)
///
/// ## These relations hold:
/// euro == signif(euro, 6) # [6 digit precision in Euro's definition]
/// all(euro.cross == outer(1/euro, euro))
///
/// ## Convert 20 Euro to Belgian Franc
/// 20 * euro["BEF"]
/// ## Convert 20 Austrian Schilling to Euro
/// 20 / euro["ATS"]
/// ## Convert 20 Spanish Pesetas to Italian Lira
/// 20 * euro.cross["ESP", "ITL"]
///
/// require(graphics)
/// dotchart(euro,
/// main = "euro data: 1 Euro in currency unit")
/// dotchart(1/euro,
/// main = "euro data: 1 currency unit in Euros")
/// dotchart(log(euro, 10),
/// main = "euro data: log10(1 Euro in currency unit)")
/// ```
pub fn euro_cross() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("euro.cross.csv"))).finish()
}

/// # Conversion Rates of Euro Currencies
///
/// ## Description:
///
/// Conversion rates between the various Euro currencies.
///
/// ## Usage:
///
/// euro
/// euro.cross
///
/// ## Format:
///
/// ‘euro’ is a named vector of length 11, ‘euro.cross’ a matrix of
/// size 11 by 11, with dimnames.
///
/// ## Details:
///
/// The data set ‘euro’ contains the value of 1 Euro in all currencies
/// participating in the European monetary union (Austrian Schilling
/// ATS, Belgian Franc BEF, German Mark DEM, Spanish Peseta ESP,
/// Finnish Markka FIM, French Franc FRF, Irish Punt IEP, Italian Lira
/// ITL, Luxembourg Franc LUF, Dutch Guilder NLG and Portuguese Escudo
/// PTE).  These conversion rates were fixed by the European Union on
/// December 31, 1998.  To convert old prices to Euro prices, divide
/// by the respective rate and round to 2 digits.
///
/// The data set ‘euro.cross’ contains conversion rates between the
/// various Euro currencies, i.e., the result of ‘outer(1 / euro,
/// euro)’.
///
/// ## Examples:
///
/// ```r
/// cbind(euro)
///
/// ## These relations hold:
/// euro == signif(euro, 6) # [6 digit precision in Euro's definition]
/// all(euro.cross == outer(1/euro, euro))
///
/// ## Convert 20 Euro to Belgian Franc
/// 20 * euro["BEF"]
/// ## Convert 20 Austrian Schilling to Euro
/// 20 / euro["ATS"]
/// ## Convert 20 Spanish Pesetas to Italian Lira
/// 20 * euro.cross["ESP", "ITL"]
///
/// require(graphics)
/// dotchart(euro,
/// main = "euro data: 1 Euro in currency unit")
/// dotchart(1/euro,
/// main = "euro data: 1 currency unit in Euros")
/// dotchart(log(euro, 10),
/// main = "euro data: log10(1 Euro in currency unit)")
/// ```
pub fn euro() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("euro.csv"))).finish()
}

/// # Distances Between European Cities and Between US Cities
///
/// ## Description:
///
/// The ‘eurodist’ gives the road distances (in km) between 21 cities
/// in Europe.  The data are taken from a table in _The Cambridge
/// Encyclopaedia_.
///
/// ‘UScitiesD’ gives “straight line” distances between 10 cities in
/// the US.
///
/// ## Usage:
///
/// eurodist
/// UScitiesD
///
/// ## Format:
///
/// ‘dist’ objects based on 21 and 10 objects, respectively.  (You
/// must have the ‘stats’ package loaded to have the methods for this
/// kind of object available).
///
/// ## Source:
///
/// Crystal, D. Ed. (1990) _The Cambridge Encyclopaedia_.  Cambridge:
/// Cambridge University Press,
///
/// The US cities distances were provided by Pierre Legendre.
pub fn eurodist() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("eurodist.csv"))).finish()
}

/// # Daily Closing Prices of Major European Stock Indices, 1991-1998
///
/// ## Description:
///
/// Contains the daily closing prices of major European stock indices:
/// Germany DAX (Ibis), Switzerland SMI, France CAC, and UK FTSE.  The
/// data are sampled in business time, i.e., weekends and holidays are
/// omitted.
///
/// ## Usage:
///
/// EuStockMarkets
///
/// ## Format:
///
/// A multivariate time series with 1860 observations on 4 variables.
/// The object is of class ‘"mts"’.
///
/// ## Source:
///
/// The data were kindly provided by Erste Bank AG, Vienna, Austria.
pub fn eu_stock_markets() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("EuStockMarkets.csv"))).finish()
}

/// # Old Faithful Geyser Data
///
/// ## Description:
///
/// Waiting time between eruptions and the duration of the eruption
/// for the Old Faithful geyser in Yellowstone National Park, Wyoming,
/// USA.
///
/// ## Usage:
///
/// faithful
///
/// ## Format:
///
/// A data frame with 272 observations on 2 variables.
///
/// * \[,1\]  eruptions  numeric  Eruption time in mins
/// * \[,2\]  waiting numeric  Waiting time to next
/// eruption (in mins)
///
/// ## Details:
///
/// A closer look at ‘faithful$eruptions’ reveals that these are
/// heavily rounded times originally in seconds, where multiples of 5
/// are more frequent than expected under non-human measurement.  For
/// a better version of the eruption times, see the example below.
///
/// There are many versions of this dataset around: Azzalini and
/// Bowman (1990) use a more complete version.
///
/// ## Source:
///
/// W. Härdle.
///
/// ## References:
///
/// Härdle, W. (1991).  _Smoothing Techniques with Implementation in
/// S_.  New York: Springer.
///
/// Azzalini, A. and Bowman, A. W. (1990).  A look at some data on the
/// Old Faithful geyser.  _Applied Statistics_, *39*, 357-365.
/// doi:10.2307/2347385 <https://doi.org/10.2307/2347385>.
///
/// ## See Also:
///
/// ‘geyser’ in package ‘MASS’ for the Azzalini-Bowman version.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// f.tit <-  "faithful data: Eruptions of Old Faithful"
///
/// ne60 <- round(e60 <- 60 * faithful$eruptions)
/// all.equal(e60, ne60) # relative diff. ~ 1/10000
/// table(zapsmall(abs(e60 - ne60))) # 0, 0.02 or 0.04
/// faithful$better.eruptions <- ne60 / 60
/// te <- table(ne60)
/// te[te >= 4] # (too) many multiples of 5 !
/// plot(names(te), te, type = "h", main = f.tit, xlab = "Eruption time (sec)")
///
/// plot(faithful[, -3], main = f.tit,
///  xlab = "Eruption time (min)",
///  ylab = "Waiting time to next eruption (min)")
/// lines(lowess(faithful$eruptions, faithful$waiting, f = 2/3, iter = 3),
/// col = "red")
/// ```
pub fn faithful() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("faithful.csv"))).finish()
}

/// # Monthly Deaths from Lung Diseases in the UK
///
/// ## Description:
///
/// Three time series giving the monthly deaths from bronchitis,
/// emphysema and asthma in the UK, 1974-1979, both sexes (‘ldeaths’),
/// males (‘mdeaths’) and females (‘fdeaths’).
///
/// ## Usage:
///
/// ldeaths
/// fdeaths
/// mdeaths
///
/// ## Source:
///
/// P. J. Diggle (1990) _Time Series: A Biostatistical Introduction._
/// Oxford, table A.3
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics) # for time
/// plot(ldeaths)
/// plot(mdeaths, fdeaths)
/// ## Better labels:
/// yr <- floor(tt <- time(mdeaths))
/// plot(mdeaths, fdeaths,
///  xy.labels = paste(month.abb[12*(tt - yr)], yr-1900, sep = "'"))
/// ```
pub fn fdeaths() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("fdeaths.csv"))).finish()
}

/// # Determination of Formaldehyde
///
/// ## Description:
///
/// These data are from a chemical experiment to prepare a standard
/// curve for the determination of formaldehyde by the addition of
/// chromatropic acid and concentrated sulphuric acid and the reading
/// of the resulting purple color on a spectrophotometer.
///
/// ## Usage:
///
/// Formaldehyde
///
/// ## Format:
///
/// A data frame with 6 observations on 2 variables.
///
/// * \[,1\]  carb numeric  Carbohydrate (ml)
/// * \[,2\]  optden  numeric  Optical Density
///
/// ## Source:
///
/// Bennett, N. A. and N. L. Franklin (1954) _Statistical Analysis in
/// Chemistry and the Chemical Industry_.  New York: Wiley.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis._ New York: Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// plot(optden ~ carb, data = Formaldehyde,
///  xlab = "Carbohydrate (ml)", ylab = "Optical Density",
///  main = "Formaldehyde data", col = 4, las = 1)
/// abline(fm1 <- lm(optden ~ carb, data = Formaldehyde))
/// summary(fm1)
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0))
/// plot(fm1)
/// par(opar)
/// ```
pub fn formaldehyde() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("Formaldehyde.csv"))).finish()
}

/// # Freeny's Revenue Data
///
/// ## Description:
///
/// Freeny's data on quarterly revenue and explanatory variables.
///
/// ## Usage:
///
/// freeny
/// freeny.x
/// freeny.y
///
/// ## Format:
///
/// There are three ‘freeny’ data sets.
///
/// * ‘freeny.y’ is a time series with 39 observations on quarterly
/// revenue from (1962,2Q) to (1971,4Q).
/// * ‘freeny.x’ is a matrix of explanatory variables.  The columns are
/// * ‘freeny.y’ lagged 1 quarter, price index, income level, and market
/// potential.
/// * Finally, ‘freeny’ is a data frame with variables ‘y’,
/// ‘lag.quarterly.revenue’, ‘price.index’, ‘income.level’, and
/// ‘market.potential’ obtained from the above two data objects.
///
/// ## Source:
///
/// A. E. Freeny (1977) _A Portable Linear Regression Package with
/// Test Programs_.  Bell Laboratories memorandum.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// summary(freeny)
/// pairs(freeny, main = "freeny data")
/// # gives warning: freeny$y has class "ts"
///
/// summary(fm1 <- lm(y ~ ., data = freeny))
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
/// mar = c(4.1, 4.1, 2.1, 1.1))
/// plot(fm1)
/// par(opar)
/// ```
pub fn freeny() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("freeny.csv"))).finish()
}

/// # Freeny's Revenue Data
///
/// ## Description:
///
/// Freeny's data on quarterly revenue and explanatory variables.
///
/// ## Usage:
///
/// freeny
/// freeny.x
/// freeny.y
///
/// ## Format:
///
/// There are three ‘freeny’ data sets.
///
/// * ‘freeny.y’ is a time series with 39 observations on quarterly
/// revenue from (1962,2Q) to (1971,4Q).
/// * ‘freeny.x’ is a matrix of explanatory variables.  The columns are
/// * ‘freeny.y’ lagged 1 quarter, price index, income level, and market
/// potential.
/// * Finally, ‘freeny’ is a data frame with variables ‘y’,
/// ‘lag.quarterly.revenue’, ‘price.index’, ‘income.level’, and
/// ‘market.potential’ obtained from the above two data objects.
///
/// ## Source:
///
/// A. E. Freeny (1977) _A Portable Linear Regression Package with
/// Test Programs_.  Bell Laboratories memorandum.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// summary(freeny)
/// pairs(freeny, main = "freeny data")
/// # gives warning: freeny$y has class "ts"
///
/// summary(fm1 <- lm(y ~ ., data = freeny))
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
/// mar = c(4.1, 4.1, 2.1, 1.1))
/// plot(fm1)
/// par(opar)
/// ```
pub fn freeny_x() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("freeny.x.csv"))).finish()
}

/// # Freeny's Revenue Data
///
/// ## Description:
///
/// Freeny's data on quarterly revenue and explanatory variables.
///
/// ## Usage:
///
/// freeny
/// freeny.x
/// freeny.y
///
/// ## Format:
///
/// There are three ‘freeny’ data sets.
///
/// * ‘freeny.y’ is a time series with 39 observations on quarterly
/// revenue from (1962,2Q) to (1971,4Q).
/// * ‘freeny.x’ is a matrix of explanatory variables.  The columns are
/// * ‘freeny.y’ lagged 1 quarter, price index, income level, and market
/// potential.
/// * Finally, ‘freeny’ is a data frame with variables ‘y’,
/// ‘lag.quarterly.revenue’, ‘price.index’, ‘income.level’, and
/// ‘market.potential’ obtained from the above two data objects.
///
/// ## Source:
///
/// A. E. Freeny (1977) _A Portable Linear Regression Package with
/// Test Programs_.  Bell Laboratories memorandum.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// summary(freeny)
/// pairs(freeny, main = "freeny data")
/// # gives warning: freeny$y has class "ts"
///
/// summary(fm1 <- lm(y ~ ., data = freeny))
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
/// mar = c(4.1, 4.1, 2.1, 1.1))
/// plot(fm1)
/// par(opar)
/// ```
pub fn freeny_y() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("freeny.y.csv"))).finish()
}

/// # Hair and Eye Color of Statistics Students
///
/// ## Description:
///
/// Distribution of hair and eye color and sex in 592 statistics
/// students.
///
/// ## Usage:
///
/// HairEyeColor
///
/// ## Format:
///
/// A 3-dimensional array resulting from cross-tabulating 592
/// observations on 3 variables.  The variables and their levels are
/// as follows:
///
/// | No | Name  | Levels                    |
/// |----|-------|---------------------------|
/// | 1  | Hair  | Black, Brown, Red, Blond  |
/// | 2  | Eye   | Brown, Blue, Hazel, Green |
/// | 3  | Sex   | Male, Female              |
///
/// ## Details:
///
/// The Hair x Eye table comes from a survey of students at the
/// University of Delaware reported by Snee (1974).  The split by
/// ‘Sex’ was added by Friendly (1992a) for didactic purposes.
///
/// This data set is useful for illustrating various techniques for
/// the analysis of contingency tables, such as the standard
/// chi-squared test or, more generally, log-linear modelling, and
/// graphical methods such as mosaic plots, sieve diagrams or
/// association plots.
///
/// ## Source:
///
/// <http://www.datavis.ca/sas/vcd/catdata/haireye.sas>
///
/// Snee (1974) gives the two-way table aggregated over ‘Sex’.  The
/// ‘Sex’ split of the ‘Brown hair, Brown eye’ cell was changed to
/// agree with that used by Friendly (2000).
///
/// ## References:
///
/// Snee, R. D. (1974).  Graphical display of two-way contingency
/// tables.  _The American Statistician_, *28*, 9-12.
/// doi:10.2307/2683520 <https://doi.org/10.2307/2683520>.
///
/// Friendly, M. (1992a).  Graphical methods for categorical data.
/// _SAS User Group International Conference Proceedings_, *17*,
/// 190-200.  <http://datavis.ca/papers/sugi/sugi17.pdf>
///
/// Friendly, M. (1992b).  Mosaic displays for loglinear models.
/// _Proceedings of the Statistical Graphics Section_, American
/// Statistical Association, pp. 61-68.
/// <http://www.datavis.ca/papers/asa92.html>
///
/// Friendly, M. (2000).  _Visualizing Categorical Data_.  SAS
/// Institute, ISBN 1-58025-660-0.
///
/// ## See Also:
///
/// ‘chisq.test’, ‘loglin’, ‘mosaicplot’
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// ## Full mosaic
/// mosaicplot(HairEyeColor)
/// ## Aggregate over sex (as in Snee's original data)
/// x <- apply(HairEyeColor, c(1, 2), sum)
/// x
/// mosaicplot(x, main = "Relation between hair and eye color")
/// ```
pub fn hair_eye_color() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("HairEyeColor.csv"))).finish()
}

/// # Harman Example 2.3
///
/// ## Description:
///
/// A correlation matrix of eight physical measurements on 305 girls
/// between ages seven and seventeen.
///
/// ## Usage:
///
/// Harman23.cor
///
/// ## Source:
///
/// Harman, H. H. (1976) _Modern Factor Analysis_, Third Edition
/// Revised, University of Chicago Press, Table 2.3.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// (Harman23.FA <- factanal(factors = 1, covmat = Harman23.cor))
/// for(factors in 2:4) print(update(Harman23.FA, factors = factors))
/// ```
pub fn harman23_cor() -> PolarsResult<(DataFrame, Vec<usize>, usize)> {
    let mut center = Vec::new();
    let mut n_obs = 0;
    CsvReader::new(Cursor::new(include_str!("Harman23.cor.center.csv")))
        .finish()?
        .column("x")?
        .cast(&DataType::Float64)?
        .f64()?
        .for_each(|d| center.push(d.unwrap() as usize));
    CsvReader::new(Cursor::new(include_str!("Harman23.cor.n.obs.csv")))
        .finish()?
        .column("x")?
        .cast(&DataType::Float64)?
        .f64()?
        .for_each(|d| n_obs = d.unwrap() as usize);
    Ok((
        CsvReader::new(Cursor::new(include_str!("Harman23.cor.cov.csv"))).finish()?,
        center,
        n_obs,
    ))
}

/// # Harman Example 7.4
///
/// ## Description:
///
/// A correlation matrix of 24 psychological tests given to 145
/// seventh and eight-grade children in a Chicago suburb by Holzinger
/// and Swineford.
///
/// ## Usage:
///
/// Harman74.cor
///
/// ## Source:
///
/// Harman, H. H. (1976) _Modern Factor Analysis_, Third Edition
/// Revised, University of Chicago Press, Table 7.4.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// (Harman74.FA <- factanal(factors = 1, covmat = Harman74.cor))
/// for(factors in 2:5) print(update(Harman74.FA, factors = factors))
/// Harman74.FA <- factanal(factors = 5, covmat = Harman74.cor,
/// rotation = "promax")
/// print(Harman74.FA$loadings, sort = TRUE)
/// ```
pub fn harman74() -> PolarsResult<(DataFrame, Vec<usize>, usize)> {
    let mut center = Vec::new();
    let mut n_obs = 0;
    CsvReader::new(Cursor::new(include_str!("Harman74.cor.center.csv")))
        .finish()?
        .column("x")?
        .cast(&DataType::Float64)?
        .f64()?
        .for_each(|d| center.push(d.unwrap() as usize));
    CsvReader::new(Cursor::new(include_str!("Harman74.cor.n.obs.csv")))
        .finish()?
        .column("x")?
        .cast(&DataType::Float64)?
        .f64()?
        .for_each(|d| n_obs = d.unwrap() as usize);
    Ok((
        CsvReader::new(Cursor::new(include_str!("Harman74.cor.cov.csv"))).finish()?,
        center,
        n_obs,
    ))
}

/// # Pharmacokinetics of Indomethacin
///
/// ## Description:
///
/// The ‘Indometh’ data frame has 66 rows and 3 columns of data on the
/// pharmacokinetics of indometacin (or, older spelling,
/// ‘indomethacin’).
///
/// ## Usage:
///
/// Indometh
///
/// ## Format:
///
/// An object of class ‘c("nfnGroupedData", "nfGroupedData",
/// "groupedData", "data.frame")’ containing the following columns:
///
/// * Subject an ordered factor with containing the subject codes.  The
/// ordering is according to increasing maximum response.
/// * time a numeric vector of times at which blood samples were drawn
/// (hr).
/// * conc a numeric vector of plasma concentrations of indometacin
/// (mcg/ml).
///
/// ## Details:
///
/// Each of the six subjects were given an intravenous injection of
/// indometacin.
///
/// This dataset was originally part of package ‘nlme’, and that has
/// methods (including for ‘[’, ‘as.data.frame’, ‘plot’ and ‘print’)
/// for its grouped-data classes.
///
/// ## Source:
///
/// Kwan, Breault, Umbenhauer, McMahon and Duggan (1976) Kinetics of
/// Indomethacin absorption, elimination, and enterohepatic
/// circulation in man.  _Journal of Pharmacokinetics and
/// Biopharmaceutics_ *4*, 255-280.
///
/// Davidian, M. and Giltinan, D. M. (1995) _Nonlinear Models for
/// Repeated Measurement Data_, Chapman & Hall (section 5.2.4, p. 129)
///
/// Pinheiro, J. C. and Bates, D. M. (2000) _Mixed-effects Models in S
/// and S-PLUS_, Springer.
///
/// ## See Also:
///
/// ‘SSbiexp’ for models fitted to this dataset.
pub fn indometh() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("Indometh.csv"))).finish()
}

/// # Infertility after Spontaneous and Induced Abortion
///
/// ## Description:
///
/// This is a matched case-control study dating from before the
/// availability of conditional logistic regression.
///
/// ## Usage:
///
/// infert
///
/// ## Format:
///
/// 1.  Education
///     * 0 = 0-5  years
///     * 1 = 6-11 years
///     * 2 = 12+  years
/// 2.  age  age in years of case
/// 3.  parity  count
/// 4.  number of prior induced abortions
///     * 0 = 0
///     * 1 = 1
///     * 2 = 2 or more
/// 5.  case status
///     * 1 = case
///     * 0 = control
/// 6.  number of prior spontaneous abortions
///     * 0 = 0
///     * 1 = 1
///     * 2 = 2 or more
/// 7.  matched set number  1-83
/// 8.  stratum number 1-63
///
/// ## Note:
///
/// One case with two prior spontaneous abortions and two prior
/// induced abortions is omitted.
///
/// ## Source:
///
/// Trichopoulos _et al_ (1976) _Br. J. of Obst. and Gynaec._ *83*,
/// 645-650.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// model1 <- glm(case ~ spontaneous+induced, data = infert, family = binomial())
/// summary(model1)
/// ## adjusted for other potential confounders:
/// summary(model2 <- glm(case ~ age+parity+education+spontaneous+induced,
/// data = infert, family = binomial()))
/// ## Really should be analysed by conditional logistic regression
/// ## which is in the survival package
/// if(require(survival)){
///  model3 <- clogit(case ~ spontaneous+induced+strata(stratum), data = infert)
///  print(summary(model3))
///  detach()  # survival (conflicts)
/// }
/// ```
pub fn infert() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("infert.csv"))).finish()
}

/// # Effectiveness of Insect Sprays
///
/// ## Description:
///
/// The counts of insects in agricultural experimental units treated
/// with different insecticides.
///
/// ## Usage:
///
/// InsectSprays
///
/// ## Format:
///
/// A data frame with 72 observations on 2 variables.
///
/// * \[,1\]  count  numeric  Insect count
/// * \[,2\]  spray  factorThe type of spray
///
/// ## Source:
///
/// Beall, G., (1942) The Transformation of data from entomological
/// field experiments, _Biometrika_, *29*, 243-262.
///
/// ## References:
///
/// McNeil, D. (1977) _Interactive Data Analysis_.  New York: Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// boxplot(count ~ spray, data = InsectSprays,
///  xlab = "Type of spray", ylab = "Insect count",
///  main = "InsectSprays data", varwidth = TRUE, col = "lightgray")
/// fm1 <- aov(count ~ spray, data = InsectSprays)
/// summary(fm1)
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0))
/// plot(fm1)
/// fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)
/// summary(fm2)
/// plot(fm2)
/// par(opar)
/// ```
pub fn insect_sprays() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("InsectSprays.csv"))).finish()
}

/// # Edgar Anderson's Iris Data
///
/// ## Description:
///
/// This famous (Fisher's or Anderson's) iris data set gives the
/// measurements in centimeters of the variables sepal length and
/// width and petal length and width, respectively, for 50 flowers
/// from each of 3 species of iris.  The species are _Iris setosa_,
/// _versicolor_, and _virginica_.
///
/// ## Usage:
///
/// iris
/// iris3
///
/// ## Format:
///
/// ‘iris’ is a data frame with 150 cases (rows) and 5 variables
/// (columns) named ‘Sepal.Length’, ‘Sepal.Width’, ‘Petal.Length’,
/// ‘Petal.Width’, and ‘Species’.
///
/// ‘iris3’ gives the same data arranged as a 3-dimensional array of
/// size 50 by 4 by 3, as represented by S-PLUS.  The first dimension
/// gives the case number within the species subsample, the second the
/// measurements with names ‘Sepal L.’, ‘Sepal W.’, ‘Petal L.’, and
/// ‘Petal W.’, and the third the species.
///
/// ## Source:
///
/// Fisher, R. A. (1936) The use of multiple measurements in taxonomic
/// problems.  _Annals of Eugenics_, *7*, Part II, 179-188.
///
/// The data were collected by Anderson, Edgar (1935).  The irises of
/// the Gaspe Peninsula, _Bulletin of the American Iris Society_,
/// *59*, 2-5.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole. (has ‘iris3’ as ‘iris’.)
///
/// ## See Also:
///
/// ‘matplot’ some examples of which use ‘iris’.
///
/// ## Examples:
///
/// ```r
/// dni3 <- dimnames(iris3)
/// ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol = 4,
/// dimnames = list(NULL, sub(" L.",".Length",
/// sub(" W.",".Width", dni3[[2]])))),
/// Species = gl(3, 50, labels = sub("S", "s", sub("V", "v", dni3[[3]]))))
/// all.equal(ii, iris) # TRUE
/// ```
pub fn iris() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("iris.csv"))).finish()
}

/// # Edgar Anderson's Iris Data
///
/// ## Description:
///
/// This famous (Fisher's or Anderson's) iris data set gives the
/// measurements in centimeters of the variables sepal length and
/// width and petal length and width, respectively, for 50 flowers
/// from each of 3 species of iris.  The species are _Iris setosa_,
/// _versicolor_, and _virginica_.
///
/// ## Usage:
///
/// iris
/// iris3
///
/// ## Format:
///
/// ‘iris’ is a data frame with 150 cases (rows) and 5 variables
/// (columns) named ‘Sepal.Length’, ‘Sepal.Width’, ‘Petal.Length’,
/// ‘Petal.Width’, and ‘Species’.
///
/// ‘iris3’ gives the same data arranged as a 3-dimensional array of
/// size 50 by 4 by 3, as represented by S-PLUS.  The first dimension
/// gives the case number within the species subsample, the second the
/// measurements with names ‘Sepal L.’, ‘Sepal W.’, ‘Petal L.’, and
/// ‘Petal W.’, and the third the species.
///
/// ## Source:
///
/// Fisher, R. A. (1936) The use of multiple measurements in taxonomic
/// problems.  _Annals of Eugenics_, *7*, Part II, 179-188.
///
/// The data were collected by Anderson, Edgar (1935).  The irises of
/// the Gaspe Peninsula, _Bulletin of the American Iris Society_,
/// *59*, 2-5.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole. (has ‘iris3’ as ‘iris’.)
///
/// ## See Also:
///
/// ‘matplot’ some examples of which use ‘iris’.
///
/// ## Examples:
///
/// ```r
/// dni3 <- dimnames(iris3)
/// ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol = 4,
/// dimnames = list(NULL, sub(" L.",".Length",
/// sub(" W.",".Width", dni3[[2]])))),
/// Species = gl(3, 50, labels = sub("S", "s", sub("V", "v", dni3[[3]]))))
/// all.equal(ii, iris) # TRUE
/// ```
pub fn iris3_setosa() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("iris3.Setosa.csv"))).finish()
}

/// # Edgar Anderson's Iris Data
///
/// ## Description:
///
/// This famous (Fisher's or Anderson's) iris data set gives the
/// measurements in centimeters of the variables sepal length and
/// width and petal length and width, respectively, for 50 flowers
/// from each of 3 species of iris.  The species are _Iris setosa_,
/// _versicolor_, and _virginica_.
///
/// ## Usage:
///
/// iris
/// iris3
///
/// ## Format:
///
/// ‘iris’ is a data frame with 150 cases (rows) and 5 variables
/// (columns) named ‘Sepal.Length’, ‘Sepal.Width’, ‘Petal.Length’,
/// ‘Petal.Width’, and ‘Species’.
///
/// ‘iris3’ gives the same data arranged as a 3-dimensional array of
/// size 50 by 4 by 3, as represented by S-PLUS.  The first dimension
/// gives the case number within the species subsample, the second the
/// measurements with names ‘Sepal L.’, ‘Sepal W.’, ‘Petal L.’, and
/// ‘Petal W.’, and the third the species.
///
/// ## Source:
///
/// Fisher, R. A. (1936) The use of multiple measurements in taxonomic
/// problems.  _Annals of Eugenics_, *7*, Part II, 179-188.
///
/// The data were collected by Anderson, Edgar (1935).  The irises of
/// the Gaspe Peninsula, _Bulletin of the American Iris Society_,
/// *59*, 2-5.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole. (has ‘iris3’ as ‘iris’.)
///
/// ## See Also:
///
/// ‘matplot’ some examples of which use ‘iris’.
///
/// ## Examples:
///
/// ```r
/// dni3 <- dimnames(iris3)
/// ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol = 4,
/// dimnames = list(NULL, sub(" L.",".Length",
/// sub(" W.",".Width", dni3[[2]])))),
/// Species = gl(3, 50, labels = sub("S", "s", sub("V", "v", dni3[[3]]))))
/// all.equal(ii, iris) # TRUE
/// ```
pub fn iris3_versicolor() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("iris3.Versicolor.csv"))).finish()
}

/// # Edgar Anderson's Iris Data
///
/// ## Description:
///
/// This famous (Fisher's or Anderson's) iris data set gives the
/// measurements in centimeters of the variables sepal length and
/// width and petal length and width, respectively, for 50 flowers
/// from each of 3 species of iris.  The species are _Iris setosa_,
/// _versicolor_, and _virginica_.
///
/// ## Usage:
///
/// iris
/// iris3
///
/// ## Format:
///
/// ‘iris’ is a data frame with 150 cases (rows) and 5 variables
/// (columns) named ‘Sepal.Length’, ‘Sepal.Width’, ‘Petal.Length’,
/// ‘Petal.Width’, and ‘Species’.
///
/// ‘iris3’ gives the same data arranged as a 3-dimensional array of
/// size 50 by 4 by 3, as represented by S-PLUS.  The first dimension
/// gives the case number within the species subsample, the second the
/// measurements with names ‘Sepal L.’, ‘Sepal W.’, ‘Petal L.’, and
/// ‘Petal W.’, and the third the species.
///
/// ## Source:
///
/// Fisher, R. A. (1936) The use of multiple measurements in taxonomic
/// problems.  _Annals of Eugenics_, *7*, Part II, 179-188.
///
/// The data were collected by Anderson, Edgar (1935).  The irises of
/// the Gaspe Peninsula, _Bulletin of the American Iris Society_,
/// *59*, 2-5.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole. (has ‘iris3’ as ‘iris’.)
///
/// ## See Also:
///
/// ‘matplot’ some examples of which use ‘iris’.
///
/// ## Examples:
///
/// ```r
/// dni3 <- dimnames(iris3)
/// ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol = 4,
/// dimnames = list(NULL, sub(" L.",".Length",
/// sub(" W.",".Width", dni3[[2]])))),
/// Species = gl(3, 50, labels = sub("S", "s", sub("V", "v", dni3[[3]]))))
/// all.equal(ii, iris) # TRUE
/// ```
pub fn iris3_virginica() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("iris3.Virginica.csv"))).finish()
}

/// # Areas of the World's Major Landmasses
///
/// ## Description:
///
/// The areas in thousands of square miles of the landmasses which
/// exceed 10,000 square miles.
///
/// ## Usage:
///
/// islands
///
/// ## Format:
///
/// A named vector of length 48.
///
/// ## Source:
///
/// The World Almanac and Book of Facts, 1975, page 406.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  Wiley.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// dotchart(log(islands, 10),
/// main = "islands data: log10(area) (log10(sq. miles))")
/// dotchart(log(islands[order(islands)], 10),
/// main = "islands data: log10(area) (log10(sq. miles))")
/// ```
pub fn islands() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("islands.csv"))).finish()
}

/// # Quarterly Earnings per Johnson & Johnson Share
///
/// ## Description:
///
/// Quarterly earnings (dollars) per Johnson & Johnson share 1960-80.
///
/// ## Usage:
///
/// JohnsonJohnson
///
/// ## Format:
///
/// A quarterly time series
///
/// ## Source:
///
/// Shumway, R. H. and Stoffer, D. S. (2000) _Time Series Analysis and
/// its Applications_.  Second Edition.  Springer.  Example 1.1.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// JJ <- log10(JohnsonJohnson)
/// plot(JJ)
/// ## This example gives a possible-non-convergence warning on some
/// ## platforms, but does seem to converge on x86 Linux and Windows.
/// (fit <- StructTS(JJ, type = "BSM"))
/// tsdiag(fit)
/// sm <- tsSmooth(fit)
/// plot(cbind(JJ, sm[, 1], sm[, 3]-0.5), plot.type = "single",
///  col = c("black", "green", "blue"))
/// abline(h = -0.5, col = "grey60")
///
/// monthplot(fit)
/// ```
pub fn johnson_johnson() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("JohnsonJohnson.csv"))).finish()
}

/// # Level of Lake Huron 1875-1972
///
/// ## Description:
///
/// Annual measurements of the level, in feet, of Lake Huron
/// 1875-1972.
///
/// ## Usage:
///
/// LakeHuron
///
/// ## Format:
///
/// A time series of length 98.
///
/// ## Source:
///
/// Brockwell, P. J. and Davis, R. A. (1991).  _Time Series and
/// Forecasting Methods_.  Second edition. Springer, New York. Series
/// A, page 555.
///
/// Brockwell, P. J. and Davis, R. A. (1996).  _Introduction to Time
/// Series and Forecasting_.  Springer, New York.  Sections 5.1 and
/// 7.6.
pub fn lake_huron() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("LakeHuron.csv"))).finish()
}

/// # Monthly Deaths from Lung Diseases in the UK
///
/// ## Description:
///
/// Three time series giving the monthly deaths from bronchitis,
/// emphysema and asthma in the UK, 1974-1979, both sexes (‘ldeaths’),
/// males (‘mdeaths’) and females (‘fdeaths’).
///
/// ## Usage:
///
/// ldeaths
/// fdeaths
/// mdeaths
///
/// ## Source:
///
/// P. J. Diggle (1990) _Time Series: A Biostatistical Introduction._
/// Oxford, table A.3
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics) # for time
/// plot(ldeaths)
/// plot(mdeaths, fdeaths)
/// ## Better labels:
/// yr <- floor(tt <- time(mdeaths))
/// plot(mdeaths, fdeaths,
///  xy.labels = paste(month.abb[12*(tt - yr)], yr-1900, sep = "'"))
/// ```
pub fn ldeaths() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("ldeaths.csv"))).finish()
}

/// # Luteinizing Hormone in Blood Samples
///
/// ## Description:
///
/// A regular time series giving the luteinizing hormone in blood
/// samples at 10 mins intervals from a human female, 48 samples.
///
/// ## Usage:
///
/// lh
///
/// ## Source:
///
/// P.J. Diggle (1990) _Time Series: A Biostatistical Introduction._
/// Oxford, table A.1, series 3
pub fn lh() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("lh.csv"))).finish()
}

/// # Intercountry Life-Cycle Savings Data
///
/// ## Description:
///
/// Data on the savings ratio 1960-1970.
///
/// ## Usage:
///
/// LifeCycleSavings
///
/// ## Format:
///
/// A data frame with 50 observations on 5 variables.
///
/// * \[,1\]  sr  numeric  aggregate personal savings
/// * \[,2\]  pop15  numeric  % of population under 15
/// * \[,3\]  pop75  numeric  % of population over 75
/// * \[,4\]  dpi numeric  real per-capita disposable
/// income
/// * \[,5\]  ddpinumeric  % growth rate of dpi
///
/// ## Details:
///
/// Under the life-cycle savings hypothesis as developed by Franco
/// Modigliani, the savings ratio (aggregate personal saving divided
/// by disposable income) is explained by per-capita disposable
/// income, the percentage rate of change in per-capita disposable
/// income, and two demographic variables: the percentage of
/// population less than 15 years old and the percentage of the
/// population over 75 years old.  The data are averaged over the
/// decade 1960-1970 to remove the business cycle or other short-term
/// fluctuations.
///
/// # Source:
///
/// The data were obtained from Belsley, Kuh and Welsch (1980).  They
/// in turn obtained the data from Sterling (1977).
///
/// ## References:
///
/// Sterling, Arnie (1977) Unpublished BS Thesis.  Massachusetts
/// Institute of Technology.
///
/// Belsley, D. A., Kuh. E. and Welsch, R. E. (1980) _Regression
/// Diagnostics_.  New York: Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// pairs(LifeCycleSavings, panel = panel.smooth,
/// main = "LifeCycleSavings data")
/// fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
/// summary(fm1)
/// ```
pub fn life_cycle_savings() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("LifeCycleSavings.csv"))).finish()
}

/// # Growth of Loblolly pine trees
///
/// ## Description:
///
/// The ‘Loblolly’ data frame has 84 rows and 3 columns of records of
/// the growth of Loblolly pine trees.
///
/// ## Usage:
///
/// Loblolly
///
/// ## Format:
///
/// An object of class ‘c("nfnGroupedData", "nfGroupedData",
/// "groupedData", "data.frame")’ containing the following columns:
///
/// * height a numeric vector of tree heights (ft).
/// * age a numeric vector of tree ages (yr).
/// * Seed an ordered factor indicating the seed source for the tree.
/// The ordering is according to increasing maximum height.
///
/// ## Details:
///
/// This dataset was originally part of package ‘nlme’, and that has
/// methods (including for ‘[’, ‘as.data.frame’, ‘plot’ and ‘print’)
/// for its grouped-data classes.
///
/// ## Source:
///
/// Kung, F. H. (1986), Fitting logistic growth curve with
/// predetermined carrying capacity, in _Proceedings of the
/// Statistical Computing Section, American Statistical Association_,
/// 340-343.
///
/// Pinheiro, J. C. and Bates, D. M. (2000) _Mixed-effects Models in S
/// and S-PLUS_, Springer.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// plot(height ~ age, data = Loblolly, subset = Seed == 329,
///  xlab = "Tree age (yr)", las = 1,
///  ylab = "Tree height (ft)",
///  main = "Loblolly data and fitted curve (Seed 329 only)")
/// fm1 <- nls(height ~ SSasymp(age, Asym, R0, lrc),
///  data = Loblolly, subset = Seed == 329)
/// age <- seq(0, 30, length.out = 101)
/// lines(age, predict(fm1, list(age = age)))
/// ```
pub fn loblolly() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("Loblolly.csv"))).finish()
}

/// # Longley's Economic Regression Data
///
/// ## Description:
///
/// A macroeconomic data set which provides a well-known example for a
/// highly collinear regression.
///
/// ## Usage:
///
/// longley
///
/// ## Format:
///
/// A data frame with 7 economical variables, observed yearly from
/// 1947 to 1962 (n=16).
///
/// * ‘GNP.deflator’ GNP implicit price deflator (1954=100)
/// * ‘GNP’ Gross National Product.
/// * ‘Unemployed’ number of unemployed.
/// * ‘Armed.Forces’ number of people in the armed forces.
/// * ‘Population’ ‘noninstitutionalized’ population >= 14 years of age.
/// * ‘Year’ the year (time).
/// * ‘Employed’ number of people employed.
/// * The regression ‘lm(Employed ~ .)’ is known to be highly collinear.
///
/// ## Source:
///
/// J. W. Longley (1967) An appraisal of least-squares programs from
/// the point of view of the user.  _Journal of the American
/// Statistical Association_ *62*, 819-841.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// ## give the data set in the form it is used in S-PLUS:
/// longley.x <- data.matrix(longley[, 1:6])
/// longley.y <- longley[, "Employed"]
/// pairs(longley, main = "longley data")
/// summary(fm1 <- lm(Employed ~ ., data = longley))
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
/// mar = c(4.1, 4.1, 2.1, 1.1))
/// plot(fm1)
/// par(opar)
/// ```
pub fn longley() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("longley.csv"))).finish()
}

/// # Annual Canadian Lynx trappings 1821-1934
///
/// ## Description:
///
/// Annual numbers of lynx trappings for 1821-1934 in Canada. Taken
/// from Brockwell & Davis (1991), this appears to be the series
/// considered by Campbell & Walker (1977).
///
/// ## Usage:
///
/// lynx
///
/// ## Source:
///
/// Brockwell, P. J. and Davis, R. A. (1991).  _Time Series and
/// Forecasting Methods_.  Second edition.  Springer. Series G (page
/// 557).
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988).  _The New
/// S Language_.  Wadsworth & Brooks/Cole.
///
/// Campbell, M. J. and Walker, A. M. (1977).  A Survey of statistical
/// work on the Mackenzie River series of annual Canadian lynx
/// trappings for the years 1821-1934 and a new analysis.  _Journal of
/// the Royal Statistical Society Series A_, *140*, 411-431.
/// doi:10.2307/2345277 <https://doi.org/10.2307/2345277>.
pub fn lynx() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("lynx.csv"))).finish()
}

/// # Michelson Speed of Light Data
///
/// ## Description:
///
/// A classical data of Michelson (but not this one with Morley) on
/// measurements done in 1879 on the speed of light.  The data
/// consists of five experiments, each consisting of 20 consecutive
/// ‘runs’.  The response is the speed of light measurement, suitably
/// coded (km/sec, with ‘299000’ subtracted).
///
/// ## Usage:
///
/// morley
///
/// ## Format:
///
/// A data frame with 100 observations on the following 3 variables.
///
/// * ‘Expt’ The experiment number, from 1 to 5.
/// * ‘Run’ The run number within each experiment.
/// * ‘Speed’ Speed-of-light measurement.
///
/// ## Details:
///
/// The data is here viewed as a randomized block experiment with
/// ‘experiment’ and ‘run’ as the factors.  ‘run’ may also be
/// considered a quantitative variate to account for linear (or
/// polynomial) changes in the measurement over the course of a single
/// experiment.
///
/// ## Note:
///
/// This is the same dataset as ‘michelson’ in package ‘MASS’.
///
/// ## Source:
///
/// A. J. Weekes (1986) _A Genstat Primer_.  London: Edward Arnold.
///
/// S. M. Stigler (1977) Do robust estimators work with real data?
/// _Annals of Statistics_ *5*, 1055-1098. (See Table 6.)
///
/// A. A. Michelson (1882) Experimental determination of the velocity
/// of light made at the United States Naval Academy, Annapolis.
/// _Astronomic Papers_ *1* 135-8.  U.S. Nautical Almanac Office.
/// (See Table 24.)
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// michelson <- transform(morley,
///  Expt = factor(Expt), Run = factor(Run))
/// xtabs(~ Expt + Run, data = michelson)  # 5 x 20 balanced (two-way)
/// plot(Speed ~ Expt, data = michelson,
///  main = "Speed of Light Data", xlab = "Experiment No.")
/// fm <- aov(Speed ~ Run + Expt, data = michelson)
/// summary(fm)
/// fm0 <- update(fm, . ~ . - Run)
/// anova(fm0, fm)
/// ```
pub fn morley() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("morley.csv"))).finish()
}

/// # Motor Trend Car Road Tests
///
/// ## Description:
///
/// The data was extracted from the 1974 _Motor Trend_ US magazine,
/// and comprises fuel consumption and 10 aspects of automobile design
/// and performance for 32 automobiles (1973-74 models).
///
/// ## Usage:
///
/// mtcars
///
/// ## Format:
///
/// A data frame with 32 observations on 11 (numeric) variables.
///
/// * \[, 1\]  mpgMiles/(US) gallon
/// * \[, 2\]  cylNumber of cylinders
/// * \[, 3\]  disp  Displacement (cu.in.)
/// * \[, 4\]  hp Gross horsepower
/// * \[, 5\]  drat  Rear axle ratio
/// * \[, 6\]  wt Weight (1000 lbs)
/// * \[, 7\]  qsec  1/4 mile time
/// * \[, 8\]  vs Engine (0 = V-shaped, 1 = straight)
/// * \[, 9\]  am Transmission (0 = automatic, 1 = manual)
/// * \[,10\]  gear  Number of forward gears
/// * \[,11\]  carb  Number of carburetors
///
/// ## Note:
///
/// Henderson and Velleman (1981) comment in a footnote to Table 1:
/// ‘Hocking [original transcriber]'s noncrucial coding of the Mazda's
/// rotary engine as a straight six-cylinder engine and the Porsche's
/// flat engine as a V engine, as well as the inclusion of the diesel
/// Mercedes 240D, have been retained to enable direct comparisons to
/// be made with previous analyses.’
///
/// ## Source:
///
/// Henderson and Velleman (1981), Building multiple regression models
/// interactively.  _Biometrics_, *37*, 391-411.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// pairs(mtcars, main = "mtcars data", gap = 1/4)
/// coplot(mpg ~ disp | as.factor(cyl), data = mtcars,
/// panel = panel.smooth, rows = 1)
/// ## possibly more meaningful, e.g., for summary() or bivariate plots:
/// mtcars2 <- within(mtcars, {
/// vs <- factor(vs, labels = c("V", "S"))
/// am <- factor(am, labels = c("automatic", "manual"))
/// cyl  <- ordered(cyl)
/// gear <- ordered(gear)
/// carb <- ordered(carb)
/// })
/// summary(mtcars2)
/// ```
pub fn mtcars() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("mtcars.csv"))).finish()
}

/// # Average Yearly Temperatures in New Haven
///
/// ## Description:
///
/// The mean annual temperature in degrees Fahrenheit in New Haven,
/// Connecticut, from 1912 to 1971.
///
/// ## Usage:
///
/// nhtemp
///
/// ## Format:
///
/// A time series of 60 observations.
///
/// ## Source:
///
/// Vaux, J. E. and Brinker, N. B. (1972) _Cycles_, *1972*, 117-121.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// plot(nhtemp, main = "nhtemp data",
///  ylab = "Mean annual temperature in New Haven, CT (deg. F)")
/// ```
pub fn nhtemp() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("nhtemp.csv"))).finish()
}

/// # Flow of the River Nile
///
/// ## Description:
///
/// Measurements of the annual flow of the river Nile at Aswan
/// (formerly ‘Assuan’), 1871-1970, in 10^8 m^3, “with apparent
/// changepoint near 1898” (Cobb(1978), Table 1, p.249).
///
/// ## Usage:
///
/// Nile
///
/// ## Format:
///
/// A time series of length 100.
///
/// ## Source:
///
/// Durbin, J. and Koopman, S. J. (2001).  _Time Series Analysis by
/// State Space Methods_.  Oxford University Press.
///
/// ## References:
///
/// Balke, N. S. (1993).  Detecting level shifts in time series.
/// _Journal of Business and Economic Statistics_, *11*, 81-92.
/// doi:10.2307/1391308 <https://doi.org/10.2307/1391308>.
///
/// Cobb, G. W. (1978).  The problem of the Nile: conditional solution
/// to a change-point problem.  _Biometrika_ *65*, 243-51.
/// doi:10.2307/2335202 <https://doi.org/10.2307/2335202>.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// par(mfrow = c(2, 2))
/// plot(Nile)
/// acf(Nile)
/// pacf(Nile)
/// ar(Nile) # selects order 2
/// cpgram(ar(Nile)$resid)
/// par(mfrow = c(1, 1))
/// arima(Nile, c(2, 0, 0))
///
/// ## Now consider missing values, following Durbin & Koopman
/// NileNA <- Nile
/// NileNA[c(21:40, 61:80)] <- NA
/// arima(NileNA, c(2, 0, 0))
/// plot(NileNA)
/// pred <-
/// predict(arima(window(NileNA, 1871, 1890), c(2, 0, 0)), n.ahead = 20)
/// lines(pred$pred, lty = 3, col = "red")
/// lines(pred$pred + 2*pred$se, lty = 2, col = "blue")
/// lines(pred$pred - 2*pred$se, lty = 2, col = "blue")
/// pred <-
/// predict(arima(window(NileNA, 1871, 1930), c(2, 0, 0)), n.ahead = 20)
/// lines(pred$pred, lty = 3, col = "red")
/// lines(pred$pred + 2*pred$se, lty = 2, col = "blue")
/// lines(pred$pred - 2*pred$se, lty = 2, col = "blue")
///
/// ## Structural time series models
/// par(mfrow = c(3, 1))
/// plot(Nile)
/// ## local level model
/// (fit <- StructTS(Nile, type = "level"))
/// lines(fitted(fit), lty = 2)  # contemporaneous smoothing
/// lines(tsSmooth(fit), lty = 2, col = 4)# fixed-interval smoothing
/// plot(residuals(fit)); abline(h = 0, lty = 3)
/// ## local trend model
/// (fit2 <- StructTS(Nile, type = "trend")) ## constant trend fitted
/// pred <- predict(fit, n.ahead = 30)
/// ## with 50% confidence interval
/// ts.plot(Nile, pred$pred,
///  pred$pred + 0.67*pred$se, pred$pred -0.67*pred$se)
///
/// ## Now consider missing values
/// plot(NileNA)
/// (fit3 <- StructTS(NileNA, type = "level"))
/// lines(fitted(fit3), lty = 2)
/// lines(tsSmooth(fit3), lty = 3)
/// plot(residuals(fit3)); abline(h = 0, lty = 3)
/// ```
pub fn nile() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("Nile.csv"))).finish()
}

/// # Average Monthly Temperatures at Nottingham, 1920-1939
///
/// ## Description:
///
/// A time series object containing average air temperatures at
/// Nottingham Castle in degrees Fahrenheit for 20 years.
///
/// ## Usage:
///
/// nottem
///
/// ## Source:
///
/// Anderson, O. D. (1976) _Time Series Analysis and Forecasting: The
/// Box-Jenkins approach._ Butterworths. Series R.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// nott <- window(nottem, end = c(1936,12))
/// fit <- arima(nott, order = c(1,0,0), list(order = c(2,1,0), period = 12))
/// nott.fore <- predict(fit, n.ahead = 36)
/// ts.plot(nott, nott.fore$pred, nott.fore$pred+2*nott.fore$se,
///  nott.fore$pred-2*nott.fore$se, gpars = list(col = c(1,1,4,4)))
/// ```
pub fn nottem() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("nottem.csv"))).finish()
}

/// # Classical N, P, K Factorial Experiment
///
/// ## Description:
///
/// A classical N, P, K (nitrogen, phosphate, potassium) factorial
/// experiment on the growth of peas conducted on 6 blocks. Each half
/// of a fractional factorial design confounding the NPK interaction
/// was used on 3 of the plots.
///
/// ## Usage:
///
/// npk
///
/// ## Format:
///
/// The ‘npk’ data frame has 24 rows and 5 columns:
///
/// * ‘block’ which block (label 1 to 6).
/// * ‘N’ indicator (0/1) for the application of nitrogen.
/// * ‘P’ indicator (0/1) for the application of phosphate.
/// * ‘K’ indicator (0/1) for the application of potassium.
/// * ‘yield’ Yield of peas, in pounds/plot (the plots were (1/70)
/// acre).
///
/// ## Source:
///
/// Imperial College, London, M.Sc. exercise sheet.
///
/// ## References:
///
/// Venables, W. N. and Ripley, B. D. (2002) _Modern Applied
/// Statistics with S._ Fourth edition.  Springer.
///
/// ## Examples:
///
/// ```r
/// options(contrasts = c("contr.sum", "contr.poly"))
/// npk.aov <- aov(yield ~ block + N*P*K, npk)
/// npk.aov
/// summary(npk.aov)
/// coef(npk.aov)
/// options(contrasts = c("contr.treatment", "contr.poly"))
/// npk.aov1 <- aov(yield ~ block + N + K, data = npk)
/// summary.lm(npk.aov1)
/// se.contrast(npk.aov1, list(N=="0", N=="1"), data = npk)
/// model.tables(npk.aov1, type = "means", se = TRUE)
/// ```
pub fn npk() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("npk.csv"))).finish()
}

/// # Occupational Status of Fathers and their Sons
///
/// ## Description:
///
/// Cross-classification of a sample of British males according to
/// each subject's occupational status and his father's occupational
/// status.
///
/// ## Usage:
///
/// occupationalStatus
///
/// ## Format:
///
/// A ‘table’ of counts, with classifying factors ‘origin’ (father's
/// occupational status; levels ‘1:8’) and ‘destination’ (son's
/// occupational status; levels ‘1:8’).
///
/// ## Source:
///
/// Goodman, L. A. (1979) Simple Models for the Analysis of
/// Association in Cross-Classifications having Ordered Categories.
/// _J. Am. Stat. Assoc._, *74* (367), 537-552.
///
/// The data set has been in package ‘gnm’ and been provided by the
/// package authors.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
///
/// plot(occupationalStatus)
///
/// ##  Fit a uniform association model separating diagonal effects
/// Diag <- as.factor(diag(1:8))
/// Rscore <- scale(as.numeric(row(occupationalStatus)), scale = FALSE)
/// Cscore <- scale(as.numeric(col(occupationalStatus)), scale = FALSE)
/// modUnif <- glm(Freq ~ origin + destination + Diag + Rscore:Cscore,
/// family = poisson, data = occupationalStatus)
///
/// summary(modUnif)
/// plot(modUnif) # 4 plots, with warning about  h_ii ~= 1
/// ```
pub fn occupational_status() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("occupationalStatus.csv"))).finish()
}

/// # Growth of Orange Trees
///
/// ## Description:
///
/// The ‘Orange’ data frame has 35 rows and 3 columns of records of
/// the growth of orange trees.
///
/// ## Usage:
///
/// Orange
///
/// ## Format:
///
/// An object of class ‘c("nfnGroupedData", "nfGroupedData",
/// "groupedData", "data.frame")’ containing the following columns:
///
/// * Tree an ordered factor indicating the tree on which the
/// measurement is made.  The ordering is according to increasing
/// maximum diameter.
/// * age a numeric vector giving the age of the tree (days since
/// 1968/12/31)
/// * circumference a numeric vector of trunk circumferences (mm).  This
/// is probably “circumference at breast height”, a standard
/// measurement in forestry.
///
/// ## Details:
///
/// This dataset was originally part of package ‘nlme’, and that has
/// methods (including for ‘[’, ‘as.data.frame’, ‘plot’ and ‘print’)
/// for its grouped-data classes.
///
/// ## Source:
///
/// Draper, N. R. and Smith, H. (1998), _Applied Regression Analysis
/// (3rd ed)_, Wiley (exercise 24.N).
///
/// Pinheiro, J. C. and Bates, D. M. (2000) _Mixed-effects Models in S
/// and S-PLUS_, Springer.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// coplot(circumference ~ age | Tree, data = Orange, show.given = FALSE)
/// fm1 <- nls(circumference ~ SSlogis(age, Asym, xmid, scal),
///  data = Orange, subset = Tree == 3)
/// plot(circumference ~ age, data = Orange, subset = Tree == 3,
///  xlab = "Tree age (days since 1968/12/31)",
///  ylab = "Tree circumference (mm)", las = 1,
///  main = "Orange tree data and fitted model (Tree 3 only)")
/// age <- seq(0, 1600, length.out = 101)
/// lines(age, predict(fm1, list(age = age)))
/// ```
pub fn orange() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("Orange.csv"))).finish()
}

/// # Potency of Orchard Sprays
///
/// ## Description:
///
/// An experiment was conducted to assess the potency of various
/// constituents of orchard sprays in repelling honeybees, using a
/// Latin square design.
///
/// ## Usage:
///
/// OrchardSprays
///
/// ## Format:
///
/// A data frame with 64 observations on 4 variables.
///
/// * \[,1\]  rowpos  numeric  Row of the design
/// * \[,2\]  colpos  numeric  Column of the design
/// * \[,3\]  treatment  factorTreatment level
/// * \[,4\]  decreasenumeric  Response
///
/// ## Details:
///
/// Individual cells of dry comb were filled with measured amounts of
/// lime sulphur emulsion in sucrose solution.  Seven different
/// concentrations of lime sulphur ranging from a concentration of
/// 1/100 to 1/1,562,500 in successive factors of 1/5 were used as
/// well as a solution containing no lime sulphur.
///
/// The responses for the different solutions were obtained by
/// releasing 100 bees into the chamber for two hours, and then
/// measuring the decrease in volume of the solutions in the various
/// cells.
///
/// An 8 x 8 Latin square design was used and the treatments were
/// coded as follows:
///
/// * A  highest level of lime sulphur
/// * B  next highest level of lime sulphur
/// * ...
/// * G  lowest level of lime sulphur
/// * H  no lime sulphur
///
/// ## Source:
///
/// Finney, D. J. (1947) _Probit Analysis_.  Cambridge.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// pairs(OrchardSprays, main = "OrchardSprays data")
/// ```
pub fn orchard_sprays() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("OrchardSprays.csv"))).finish()
}

/// # Results from an Experiment on Plant Growth
///
/// ## Description:
///
/// Results from an experiment to compare yields (as measured by dried
/// weight of plants) obtained under a control and two different
/// treatment conditions.
///
/// ## Usage:
///
/// PlantGrowth
///
/// ## Format:
///
/// A data frame of 30 cases on 2 variables.
///
/// * \[, 1\]  weight  numeric
/// * \[, 2\]  groupfactor
///
/// The levels of ‘group’ are ‘ctrl’, ‘trt1’, and ‘trt2’.
///
/// ## Source:
///
/// Dobson, A. J. (1983) _An Introduction to Statistical Modelling_.
/// London: Chapman and Hall.
///
/// ## Examples:
///
/// ```r
/// ## One factor ANOVA example from Dobson's book, cf. Table 7.4:
/// require(stats); require(graphics)
/// boxplot(weight ~ group, data = PlantGrowth, main = "PlantGrowth data",
///  ylab = "Dried weight of plants", col = "lightgray",
///  notch = TRUE, varwidth = TRUE)
/// anova(lm(weight ~ group, data = PlantGrowth))
/// ```
pub fn plant_growth() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("PlantGrowth.csv"))).finish()
}

/// # Annual Precipitation in US Cities
///
/// ## Description:
///
/// The average amount of precipitation (rainfall) in inches for each
/// of 70 United States (and Puerto Rico) cities.
///
/// ## Usage:
///
/// precip
///
/// ## Format:
///
/// A named vector of length 70.
///
/// ## Note:
///
/// The dataset version up to Nov.16, 2016 had a typo in
/// ‘"Cincinnati"’'s name.  The examples show how to recreate that
/// version.
///
/// ## Source:
///
/// Statistical Abstracts of the United States, 1975.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// dotchart(precip[order(precip)], main = "precip data")
/// title(sub = "Average annual precipitation (in.)")
///
/// ## Old ("wrong") version of dataset (just name change):
/// precip.O <- local({
/// p <- precip; names(p)[names(p) == "Cincinnati"] <- "Cincinati" ; p })
/// stopifnot(all(precip == precip.O),
/// match("Cincinnati", names(precip)) == 46,
/// identical(names(precip)[-46], names(precip.O)[-46]))
/// ```
pub fn precip() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("precip.csv"))).finish()
}

/// # Quarterly Approval Ratings of US Presidents
///
/// ## Description:
///
/// The (approximately) quarterly approval rating for the President of
/// the United States from the first quarter of 1945 to the last
/// quarter of 1974.
///
/// ## Usage:
///
/// presidents
///
/// ## Format:
///
/// A time series of 120 values.
///
/// ## Details:
///
/// The data are actually a fudged version of the approval ratings.
/// See McNeil's book for details.
///
/// ## Source:
///
/// The Gallup Organisation.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// plot(presidents, las = 1, ylab = "Approval rating (%)",
///  main = "presidents data")
/// ```
pub fn presidents() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("presidents.csv"))).finish()
}

/// # Vapor Pressure of Mercury as a Function of Temperature
///
/// ## Description:
///
/// Data on the relation between temperature in degrees Celsius and
/// vapor pressure of mercury in millimeters (of mercury).
///
/// ## Usage:
///
/// pressure
///
/// ## Format:
///
/// A data frame with 19 observations on 2 variables.
///
/// * \[, 1\]  temperature  numeric  temperature (deg C)
/// * \[, 2\]  pressure  numeric  pressure (mm)
///
/// ## Source:
///
/// Weast, R. C., ed. (1973) _Handbook of Chemistry and Physics_.  CRC
/// Press.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// plot(pressure, xlab = "Temperature (deg C)",
///  ylab = "Pressure (mm of Hg)",
///  main = "pressure data: Vapor Pressure of Mercury")
/// plot(pressure, xlab = "Temperature (deg C)",  log = "y",
///  ylab = "Pressure (mm of Hg)",
///  main = "pressure data: Vapor Pressure of Mercury")
/// ```
pub fn pressure() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("pressure.csv"))).finish()
}

/// # Reaction Velocity of an Enzymatic Reaction
///
/// ## Description:
///
/// The ‘Puromycin’ data frame has 23 rows and 3 columns of the
/// reaction velocity versus substrate concentration in an enzymatic
/// reaction involving untreated cells or cells treated with
/// Puromycin.
///
/// ## Usage:
///
/// Puromycin
///
/// ## Format:
///
/// This data frame contains the following columns:
///
/// * ‘conc’ a numeric vector of substrate concentrations (ppm)
/// * ‘rate’ a numeric vector of instantaneous reaction rates
/// (counts/min/min)
/// * ‘state’ a factor with levels ‘treated’ ‘untreated’
///
/// ## Details:
///
/// Data on the velocity of an enzymatic reaction were obtained by
/// Treloar (1974).  The number of counts per minute of radioactive
/// product from the reaction was measured as a function of substrate
/// concentration in parts per million (ppm) and from these counts the
/// initial rate (or velocity) of the reaction was calculated
/// (counts/min/min).  The experiment was conducted once with the
/// enzyme treated with Puromycin, and once with the enzyme untreated.
///
/// ## Source:
///
/// Bates, D.M. and Watts, D.G. (1988), _Nonlinear Regression Analysis
/// and Its Applications_, Wiley, Appendix A1.3.
///
/// Treloar, M. A. (1974), _Effects of Puromycin on
/// Galactosyltransferase in Golgi Membranes_, M.Sc. Thesis, U. of
/// Toronto.
///
/// ## See Also:
///
/// ‘SSmicmen’ for other models fitted to this dataset.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
///
/// plot(rate ~ conc, data = Puromycin, las = 1,
///  xlab = "Substrate concentration (ppm)",
///  ylab = "Reaction velocity (counts/min/min)",
///  pch = as.integer(Puromycin$state),
///  col = as.integer(Puromycin$state),
///  main = "Puromycin data and fitted Michaelis-Menten curves")
/// ## simplest form of fitting the Michaelis-Menten model to these data
/// fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,
///  subset = state == "treated",
///  start = c(Vm = 200, K = 0.05))
/// fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,
///  subset = state == "untreated",
///  start = c(Vm = 160, K = 0.05))
/// summary(fm1)
/// summary(fm2)
/// ## add fitted lines to the plot
/// conc <- seq(0, 1.2, length.out = 101)
/// lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1)
/// lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2)
/// legend(0.8, 120, levels(Puromycin$state),
/// col = 1:2, lty = 1:2, pch = 1:2)
///
/// ## using partial linearity
/// fm3 <- nls(rate ~ conc/(K + conc), data = Puromycin,
///  subset = state == "treated", start = c(K = 0.05),
///  algorithm = "plinear")
/// ```
pub fn puromycin() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("Puromycin.csv"))).finish()
}

/// # Locations of Earthquakes off Fiji
///
/// ## Description:
///
/// The data set give the locations of 1000 seismic events of MB >
/// 4.0.  The events occurred in a cube near Fiji since 1964.
///
/// ## Usage:
///
/// quakes
///
/// ## Format:
///
/// A data frame with 1000 observations on 5 variables.
///
/// * \[,1\]  lat numeric  Latitude of event
/// * \[,2\]  longnumeric  Longitude
/// * \[,3\]  depth  numeric  Depth (km)
/// * \[,4\]  mag numeric  Richter Magnitude
/// * \[,5\]  stations  numeric  Number of stations reporting
///
/// ## Details:
///
/// There are two clear planes of seismic activity.  One is a major
/// plate junction; the other is the Tonga trench off New Zealand.
/// These data constitute a subsample from a larger dataset of
/// containing 5000 observations.
///
/// ## Source:
///
/// This is one of the Harvard PRIM-H project data sets.  They in turn
/// obtained it from Dr. John Woodhouse, Dept. of Geophysics, Harvard
/// University.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// pairs(quakes, main = "Fiji Earthquakes, N = 1000", cex.main = 1.2, pch = ".")
/// ```
pub fn quakes() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("quakes.csv"))).finish()
}

/// # Random Numbers from Congruential Generator RANDU
///
/// ## Description:
///
/// 400 triples of successive random numbers were taken from the VAX
/// FORTRAN function RANDU running under VMS 1.5.
///
/// ## Usage:
///
/// randu
///
/// ## Format:
///
/// A data frame with 400 observations on 3 variables named ‘x’, ‘y’
/// and ‘z’ which give the first, second and third random number in
/// the triple.
///
/// ## Details:
///
/// In three dimensional displays it is evident that the triples fall
/// on 15 parallel planes in 3-space. This can be shown theoretically
/// to be true for all triples from the RANDU generator.
///
/// These particular 400 triples start 5 apart in the sequence, that
/// is they are ((U\[5i+1\], U\[5i+2\], U\[5i+3\]), i= 0, ..., 399), and
/// they are rounded to 6 decimal places.
///
/// Under VMS versions 2.0 and higher, this problem has been fixed.
///
/// ## Source:
///
/// David Donoho
///
/// ## Examples:
///
/// ```r
/// ## We could re-generate the dataset by the following R code
/// seed <- as.double(1)
/// RANDU <- function() {
/// seed <<- ((2^16 + 3) * seed) %% (2^31)
/// seed/(2^31)
/// }
/// for(i in 1:400) {
/// U <- c(RANDU(), RANDU(), RANDU(), RANDU(), RANDU())
/// print(round(U[1:3], 6))
/// }
/// ```
pub fn randu() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("randu.csv"))).finish()
}

/// # Lengths of Major North American Rivers
///
/// ## Description:
///
/// This data set gives the lengths (in miles) of 141 “major” rivers
/// in North America, as compiled by the US Geological Survey.
///
/// ## Usage:
///
/// rivers
///
/// ## Format:
///
/// A vector containing 141 observations.
///
/// ## Source:
///
/// World Almanac and Book of Facts, 1975, page 406.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
pub fn rivers() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("rivers.csv"))).finish()
}

/// # Measurements on Petroleum Rock Samples
///
/// ## Description:
///
/// Measurements on 48 rock samples from a petroleum reservoir.
///
/// ## Usage:
///
/// rock
///
/// ## Format:
///
/// A data frame with 48 rows and 4 numeric columns.
///
/// * \[,1\]  areaarea of pores space, in pixels
/// out of 256 by 256
/// * \[,2\]  periperimeter in pixels
/// * \[,3\]  shape  perimeter/sqrt(area)
/// * \[,4\]  permpermeability in milli-Darcies
///
/// ## Details:
///
/// Twelve core samples from petroleum reservoirs were sampled by 4
/// cross-sections.  Each core sample was measured for permeability,
/// and each cross-section has total area of pores, total perimeter of
/// pores, and shape.
///
/// ## Source:
///
/// Data from BP Research, image analysis by Ronit Katz, U. Oxford.
pub fn rock() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("rock.csv"))).finish()
}

/// # Road Casualties in Great Britain 1969-84
///
/// ## Description:
///
/// ‘UKDriverDeaths’ is a time series giving the monthly totals of car
/// drivers in Great Britain killed or seriously injured Jan 1969 to
/// Dec 1984.  Compulsory wearing of seat belts was introduced on 31
/// Jan 1983.
///
/// ‘Seatbelts’ is more information on the same problem.
///
/// ## Usage:
///
/// UKDriverDeaths
/// Seatbelts
///
/// ## Format:
///
/// * ‘Seatbelts’ is a multiple time series, with columns
/// * ‘DriversKilled’ car drivers killed.
/// * ‘drivers’ same as ‘UKDriverDeaths’.
/// * ‘front’ front-seat passengers killed or seriously injured.
/// * ‘rear’ rear-seat passengers killed or seriously injured.
/// * ‘kms’ distance driven.
/// * ‘PetrolPrice’ petrol price.
/// * ‘VanKilled’ number of van (‘light goods vehicle’) drivers.
/// * ‘law’ 0/1: was the law in effect that month?
///
/// ## Source:
///
/// Harvey, A.C. (1989).  _Forecasting, Structural Time Series Models
/// and the Kalman Filter_.  Cambridge University Press, pp. 519-523.
///
/// Durbin, J. and Koopman, S. J. (2001).  _Time Series Analysis by
/// State Space Methods_.  Oxford University Press.
///
/// References:
///
/// Harvey, A. C. and Durbin, J. (1986).  The effects of seat belt
/// legislation on British road casualties: A case study in structural
/// time series modelling.  _Journal of the Royal Statistical Society_
/// series A, *149*, 187-227.  doi:10.2307/2981553
/// <https://doi.org/10.2307/2981553>.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// ## work with pre-seatbelt period to identify a model, use logs
/// work <- window(log10(UKDriverDeaths), end = 1982+11/12)
/// par(mfrow = c(3, 1))
/// plot(work); acf(work); pacf(work)
/// par(mfrow = c(1, 1))
/// (fit <- arima(work, c(1, 0, 0), seasonal = list(order = c(1, 0, 0))))
/// z <- predict(fit, n.ahead = 24)
/// ts.plot(log10(UKDriverDeaths), z$pred, z$pred+2*z$se, z$pred-2*z$se,
///  lty = c(1, 3, 2, 2), col = c("black", "red", "blue", "blue"))
///
/// ## now see the effect of the explanatory variables
/// X <- Seatbelts[, c("kms", "PetrolPrice", "law")]
/// X[, 1] <- log10(X[, 1]) - 4
/// arima(log10(Seatbelts[, "drivers"]), c(1, 0, 0),
/// seasonal = list(order = c(1, 0, 0)), xreg = X)
/// ```
pub fn seatbelts() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("Seatbelts.csv"))).finish()
}

/// # Student's Sleep Data
///
/// ## Description:
///
/// Data which show the effect of two soporific drugs (increase in
/// hours of sleep compared to control) on 10 patients.
///
/// ## Usage:
///
/// sleep
///
/// ## Format:
///
/// A data frame with 20 observations on 3 variables.
///
/// * \[, 1\]  extra  numeric  increase in hours of sleep
/// * \[, 2\]  group  factordrug given
/// * \[, 3\]  ID  factorpatient ID
///
/// ## Details:
///
/// The ‘group’ variable name may be misleading about the data: They
/// represent measurements on 10 persons, not in groups.
///
/// ## Source:
///
/// Cushny, A. R. and Peebles, A. R. (1905) The action of optical
/// isomers: II hyoscines.  _The Journal of Physiology_ *32*, 501-510.
///
/// Student (1908) The probable error of the mean.  _Biometrika_, *6*,
/// 20.
///
/// ## References:
///
/// Scheffé, Henry (1959) _The Analysis of Variance_.  New York, NY:
/// Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// ## Student's paired t-test
/// with(sleep,
///  t.test(extra[group == 1],
/// extra[group == 2], paired = TRUE))
///
/// ## The sleep *prolongations*
/// sleep1 <- with(sleep, extra[group == 2] - extra[group == 1])
/// summary(sleep1)
/// stripchart(sleep1, method = "stack", xlab = "hours",
///  main = "Sleep prolongation (n = 10)")
/// boxplot(sleep1, horizontal = TRUE, add = TRUE,
///  at = .6, pars = list(boxwex = 0.5, staplewex = 0.25))
/// ```
pub fn sleep() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("sleep.csv"))).finish()
}

/// # Brownlee's Stack Loss Plant Data
///
/// ## Description:
///
/// Operational data of a plant for the oxidation of ammonia to nitric
/// acid.
///
/// ## Usage:
///
/// stackloss
///
/// stack.x
/// stack.loss
///
/// ## Format:
///
/// ‘stackloss’ is a data frame with 21 observations on 4 variables.
///
/// * \[,1\]  ‘Air Flow’ Flow of cooling air
/// * \[,2\]  ‘Water Temp’  Cooling Water Inlet
/// Temperature
/// * \[,3\]  ‘Acid Conc.’  Concentration of acid \[per
/// 1000, minus 500\]
/// * \[,4\]  ‘stack.loss’  Stack loss
///
/// For compatibility with S-PLUS, the data sets ‘stack.x’, a matrix
/// with the first three (independent) variables of the data frame,
/// and ‘stack.loss’, the numeric vector giving the fourth (dependent)
/// variable, are provided as well.
///
/// ## Details:
///
/// “Obtained from 21 days of operation of a plant for the oxidation
/// of ammonia (NH3) to nitric acid (HNO3).  The nitric oxides
/// produced are absorbed in a countercurrent absorption tower”.
/// (Brownlee, cited by Dodge, slightly reformatted by MM.)
///
/// ‘Air Flow’ represents the rate of operation of the plant.  ‘Water
/// Temp’ is the temperature of cooling water circulated through coils
/// in the absorption tower.  ‘Acid Conc.’ is the concentration of the
/// acid circulating, minus 50, times 10: that is, 89 corresponds to
/// 58.9 per cent acid.  ‘stack.loss’ (the dependent variable) is 10
/// times the percentage of the ingoing ammonia to the plant that
/// escapes from the absorption column unabsorbed; that is, an
/// (inverse) measure of the over-all efficiency of the plant.
///
/// ## Source:
///
/// Brownlee, K. A. (1960, 2nd ed. 1965) _Statistical Theory and
/// Methodology in Science and Engineering_.  New York: Wiley. pp.
/// 491-500.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// Dodge, Y. (1996) The guinea pig of multiple regression. In:
/// _Robust Statistics, Data Analysis, and Computer Intensive Methods;
/// In Honor of Peter Huber's 60th Birthday_, 1996, _Lecture Notes in
/// Statistics_ *109*, Springer-Verlag, New York.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// summary(lm.stack <- lm(stack.loss ~ stack.x))
/// ```
pub fn stack_loss() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("stack.loss.csv"))).finish()
}

/// # Brownlee's Stack Loss Plant Data
///
/// ## Description:
///
/// Operational data of a plant for the oxidation of ammonia to nitric
/// acid.
///
/// ## Usage:
///
/// stackloss
///
/// stack.x
/// stack.loss
///
/// ## Format:
///
/// ‘stackloss’ is a data frame with 21 observations on 4 variables.
///
/// * \[,1\]  ‘Air Flow’ Flow of cooling air
/// * \[,2\]  ‘Water Temp’  Cooling Water Inlet
/// Temperature
/// * \[,3\]  ‘Acid Conc.’  Concentration of acid \[per
/// 1000, minus 500\]
/// * \[,4\]  ‘stack.loss’  Stack loss
///
/// For compatibility with S-PLUS, the data sets ‘stack.x’, a matrix
/// with the first three (independent) variables of the data frame,
/// and ‘stack.loss’, the numeric vector giving the fourth (dependent)
/// variable, are provided as well.
///
/// ## Details:
///
/// “Obtained from 21 days of operation of a plant for the oxidation
/// of ammonia (NH3) to nitric acid (HNO3).  The nitric oxides
/// produced are absorbed in a countercurrent absorption tower”.
/// (Brownlee, cited by Dodge, slightly reformatted by MM.)
///
/// ‘Air Flow’ represents the rate of operation of the plant.  ‘Water
/// Temp’ is the temperature of cooling water circulated through coils
/// in the absorption tower.  ‘Acid Conc.’ is the concentration of the
/// acid circulating, minus 50, times 10: that is, 89 corresponds to
/// 58.9 per cent acid.  ‘stack.loss’ (the dependent variable) is 10
/// times the percentage of the ingoing ammonia to the plant that
/// escapes from the absorption column unabsorbed; that is, an
/// (inverse) measure of the over-all efficiency of the plant.
///
/// ## Source:
///
/// Brownlee, K. A. (1960, 2nd ed. 1965) _Statistical Theory and
/// Methodology in Science and Engineering_.  New York: Wiley. pp.
/// 491-500.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// Dodge, Y. (1996) The guinea pig of multiple regression. In:
/// _Robust Statistics, Data Analysis, and Computer Intensive Methods;
/// In Honor of Peter Huber's 60th Birthday_, 1996, _Lecture Notes in
/// Statistics_ *109*, Springer-Verlag, New York.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// summary(lm.stack <- lm(stack.loss ~ stack.x))
/// ```
pub fn stack_x() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("stack.x.csv"))).finish()
}

/// # Brownlee's Stack Loss Plant Data
///
/// ## Description:
///
/// Operational data of a plant for the oxidation of ammonia to nitric
/// acid.
///
/// ## Usage:
///
/// stackloss
///
/// stack.x
/// stack.loss
///
/// ## Format:
///
/// ‘stackloss’ is a data frame with 21 observations on 4 variables.
///
/// * \[,1\]  ‘Air Flow’ Flow of cooling air
/// * \[,2\]  ‘Water Temp’  Cooling Water Inlet
/// Temperature
/// * \[,3\]  ‘Acid Conc.’  Concentration of acid \[per
/// 1000, minus 500\]
/// * \[,4\]  ‘stack.loss’  Stack loss
///
/// For compatibility with S-PLUS, the data sets ‘stack.x’, a matrix
/// with the first three (independent) variables of the data frame,
/// and ‘stack.loss’, the numeric vector giving the fourth (dependent)
/// variable, are provided as well.
///
/// ## Details:
///
/// “Obtained from 21 days of operation of a plant for the oxidation
/// of ammonia (NH3) to nitric acid (HNO3).  The nitric oxides
/// produced are absorbed in a countercurrent absorption tower”.
/// (Brownlee, cited by Dodge, slightly reformatted by MM.)
///
/// ‘Air Flow’ represents the rate of operation of the plant.  ‘Water
/// Temp’ is the temperature of cooling water circulated through coils
/// in the absorption tower.  ‘Acid Conc.’ is the concentration of the
/// acid circulating, minus 50, times 10: that is, 89 corresponds to
/// 58.9 per cent acid.  ‘stack.loss’ (the dependent variable) is 10
/// times the percentage of the ingoing ammonia to the plant that
/// escapes from the absorption column unabsorbed; that is, an
/// (inverse) measure of the over-all efficiency of the plant.
///
/// ## Source:
///
/// Brownlee, K. A. (1960, 2nd ed. 1965) _Statistical Theory and
/// Methodology in Science and Engineering_.  New York: Wiley. pp.
/// 491-500.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// Dodge, Y. (1996) The guinea pig of multiple regression. In:
/// _Robust Statistics, Data Analysis, and Computer Intensive Methods;
/// In Honor of Peter Huber's 60th Birthday_, 1996, _Lecture Notes in
/// Statistics_ *109*, Springer-Verlag, New York.
///
/// ## Examples:
///
/// ```r
/// require(stats)
/// summary(lm.stack <- lm(stack.loss ~ stack.x))
/// ```
pub fn stackloss() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("stackloss.csv"))).finish()
}

/// # US State Facts and Figures
///
/// ## Description:
///
/// Data sets related to the 50 states of the United States of
/// America.
///
/// ## Usage:
///
/// state.abb
/// state.area
/// state.center
/// state.division
/// state.name
/// state.region
/// state.x77
///
/// ## Details:
///
/// R currently contains the following “state” data sets.  Note that
/// all data are arranged according to alphabetical order of the state
/// names.
///
/// * ‘state.abb’: character vector of 2-letter abbreviations for the
/// state names.
/// * ‘state.area’: numeric vector of state areas (in square miles).
/// * ‘state.center’: list with components named ‘x’ and ‘y’ giving the
/// approximate geographic center of each state in negative
/// longitude and latitude.  Alaska and Hawaii are placed just
/// off the West Coast.  See ‘Examples’ on how to “correct”.
/// * ‘state.division’: ‘factor’ giving state divisions (New England,
/// Middle Atlantic, South Atlantic, East South Central, West
/// South Central, East North Central, West North Central,
/// Mountain, and Pacific).
/// * ‘state.name’: character vector giving the full state names.
/// * ‘state.region’: ‘factor’ giving the region (Northeast, South,
/// North Central, West) that each state belongs to.
/// * ‘state.x77’: matrix with 50 rows and 8 columns giving the
/// following statistics in the respective columns.
/// * ‘Population’: population estimate as of July 1, 1975
/// * ‘Income’: per capita income (1974)
/// * ‘Illiteracy’: illiteracy (1970, percent of population)
/// * ‘Life Exp’: life expectancy in years (1969-71)
/// * ‘Murder’: murder and non-negligent manslaughter rate per
/// 100,000 population (1976)
/// * ‘HS Grad’: percent high-school graduates (1970)
/// * ‘Frost’: mean number of days with minimum temperature below
/// freezing (1931-1960) in capital or large city
/// * ‘Area’: land area in square miles
///
/// Note that a square mile is by definition exactly ‘(cm(1760 * 3 *
/// 12) / 100 / 1000)^2’ km^2, i.e., 2.589988110336 km^2.
///
/// ## Source:
///
/// U.S. Department of Commerce, Bureau of the Census (1977)
/// _Statistical Abstract of the United States_.
///
/// U.S. Department of Commerce, Bureau of the Census (1977) _County
/// and City Data Book_.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// (dst <- dxy <- data.frame(state.center, row.names=state.abb))
/// ## Alaska and Hawaii are placed just off the West Coast (for compact map drawing):
/// dst[c("AK", "HI"),]
/// ## state.center2 := version of state.center with "correct" coordinates for AK & HI:
/// ## From https://pubs.usgs.gov/gip/Elevations-Distances/elvadist.html#Geographic%20Centers
/// ##Alaska63°50' N., 152°00' W., 60 miles northwest of Mount McKinley
/// ##Hawaii20°15' N., 156°20' W., off Maui Island
/// dxy["AK",] <- c(-152.  , 63.83) # or  c(-152.11, 65.17)
/// dxy["HI",] <- c(-156.33, 20.25) # or  c(-156.69, 20.89)
/// state.center2 <- as.list(dxy)
///
/// plot(dxy, asp=1.2, pch=3, col=2)
/// text(state.center2, state.abb, cex=1/2, pos=4, offset=1/4)
/// i <- c("AK","HI")
/// do.call(arrows, c(setNames(c(dst[i,], dxy[i,]), c("x0","y0", "x1","y1")),
/// col=adjustcolor(4, .7), length=1/8))
/// points(dst[i,], col=2)
/// if(FALSE) { # if(require("maps")) {
/// map("state", interior = FALSE, add = TRUE)
/// map("state", boundary = FALSE, lty = 2, add = TRUE)
/// }
/// ```
pub fn state_abb() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("state.abb.csv"))).finish()
}

/// # US State Facts and Figures
///
/// ## Description:
///
/// Data sets related to the 50 states of the United States of
/// America.
///
/// ## Usage:
///
/// state.abb
/// state.area
/// state.center
/// state.division
/// state.name
/// state.region
/// state.x77
///
/// ## Details:
///
/// R currently contains the following “state” data sets.  Note that
/// all data are arranged according to alphabetical order of the state
/// names.
///
/// * ‘state.abb’: character vector of 2-letter abbreviations for the
/// state names.
/// * ‘state.area’: numeric vector of state areas (in square miles).
/// * ‘state.center’: list with components named ‘x’ and ‘y’ giving the
/// approximate geographic center of each state in negative
/// longitude and latitude.  Alaska and Hawaii are placed just
/// off the West Coast.  See ‘Examples’ on how to “correct”.
/// * ‘state.division’: ‘factor’ giving state divisions (New England,
/// Middle Atlantic, South Atlantic, East South Central, West
/// South Central, East North Central, West North Central,
/// Mountain, and Pacific).
/// * ‘state.name’: character vector giving the full state names.
/// * ‘state.region’: ‘factor’ giving the region (Northeast, South,
/// North Central, West) that each state belongs to.
/// * ‘state.x77’: matrix with 50 rows and 8 columns giving the
/// following statistics in the respective columns.
/// * ‘Population’: population estimate as of July 1, 1975
/// * ‘Income’: per capita income (1974)
/// * ‘Illiteracy’: illiteracy (1970, percent of population)
/// * ‘Life Exp’: life expectancy in years (1969-71)
/// * ‘Murder’: murder and non-negligent manslaughter rate per
/// 100,000 population (1976)
/// * ‘HS Grad’: percent high-school graduates (1970)
/// * ‘Frost’: mean number of days with minimum temperature below
/// freezing (1931-1960) in capital or large city
/// * ‘Area’: land area in square miles
///
/// Note that a square mile is by definition exactly ‘(cm(1760 * 3 *
/// 12) / 100 / 1000)^2’ km^2, i.e., 2.589988110336 km^2.
///
/// ## Source:
///
/// U.S. Department of Commerce, Bureau of the Census (1977)
/// _Statistical Abstract of the United States_.
///
/// U.S. Department of Commerce, Bureau of the Census (1977) _County
/// and City Data Book_.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// (dst <- dxy <- data.frame(state.center, row.names=state.abb))
/// ## Alaska and Hawaii are placed just off the West Coast (for compact map drawing):
/// dst[c("AK", "HI"),]
/// ## state.center2 := version of state.center with "correct" coordinates for AK & HI:
/// ## From https://pubs.usgs.gov/gip/Elevations-Distances/elvadist.html#Geographic%20Centers
/// ##Alaska63°50' N., 152°00' W., 60 miles northwest of Mount McKinley
/// ##Hawaii20°15' N., 156°20' W., off Maui Island
/// dxy["AK",] <- c(-152.  , 63.83) # or  c(-152.11, 65.17)
/// dxy["HI",] <- c(-156.33, 20.25) # or  c(-156.69, 20.89)
/// state.center2 <- as.list(dxy)
///
/// plot(dxy, asp=1.2, pch=3, col=2)
/// text(state.center2, state.abb, cex=1/2, pos=4, offset=1/4)
/// i <- c("AK","HI")
/// do.call(arrows, c(setNames(c(dst[i,], dxy[i,]), c("x0","y0", "x1","y1")),
/// col=adjustcolor(4, .7), length=1/8))
/// points(dst[i,], col=2)
/// if(FALSE) { # if(require("maps")) {
/// map("state", interior = FALSE, add = TRUE)
/// map("state", boundary = FALSE, lty = 2, add = TRUE)
/// }
/// ```
pub fn state_area() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("state.area.csv"))).finish()
}

/// # US State Facts and Figures
///
/// ## Description:
///
/// Data sets related to the 50 states of the United States of
/// America.
///
/// ## Usage:
///
/// state.abb
/// state.area
/// state.center
/// state.division
/// state.name
/// state.region
/// state.x77
///
/// ## Details:
///
/// R currently contains the following “state” data sets.  Note that
/// all data are arranged according to alphabetical order of the state
/// names.
///
/// * ‘state.abb’: character vector of 2-letter abbreviations for the
/// state names.
/// * ‘state.area’: numeric vector of state areas (in square miles).
/// * ‘state.center’: list with components named ‘x’ and ‘y’ giving the
/// approximate geographic center of each state in negative
/// longitude and latitude.  Alaska and Hawaii are placed just
/// off the West Coast.  See ‘Examples’ on how to “correct”.
/// * ‘state.division’: ‘factor’ giving state divisions (New England,
/// Middle Atlantic, South Atlantic, East South Central, West
/// South Central, East North Central, West North Central,
/// Mountain, and Pacific).
/// * ‘state.name’: character vector giving the full state names.
/// * ‘state.region’: ‘factor’ giving the region (Northeast, South,
/// North Central, West) that each state belongs to.
/// * ‘state.x77’: matrix with 50 rows and 8 columns giving the
/// following statistics in the respective columns.
/// * ‘Population’: population estimate as of July 1, 1975
/// * ‘Income’: per capita income (1974)
/// * ‘Illiteracy’: illiteracy (1970, percent of population)
/// * ‘Life Exp’: life expectancy in years (1969-71)
/// * ‘Murder’: murder and non-negligent manslaughter rate per
/// 100,000 population (1976)
/// * ‘HS Grad’: percent high-school graduates (1970)
/// * ‘Frost’: mean number of days with minimum temperature below
/// freezing (1931-1960) in capital or large city
/// * ‘Area’: land area in square miles
///
/// Note that a square mile is by definition exactly ‘(cm(1760 * 3 *
/// 12) / 100 / 1000)^2’ km^2, i.e., 2.589988110336 km^2.
///
/// ## Source:
///
/// U.S. Department of Commerce, Bureau of the Census (1977)
/// _Statistical Abstract of the United States_.
///
/// U.S. Department of Commerce, Bureau of the Census (1977) _County
/// and City Data Book_.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// (dst <- dxy <- data.frame(state.center, row.names=state.abb))
/// ## Alaska and Hawaii are placed just off the West Coast (for compact map drawing):
/// dst[c("AK", "HI"),]
/// ## state.center2 := version of state.center with "correct" coordinates for AK & HI:
/// ## From https://pubs.usgs.gov/gip/Elevations-Distances/elvadist.html#Geographic%20Centers
/// ##Alaska63°50' N., 152°00' W., 60 miles northwest of Mount McKinley
/// ##Hawaii20°15' N., 156°20' W., off Maui Island
/// dxy["AK",] <- c(-152.  , 63.83) # or  c(-152.11, 65.17)
/// dxy["HI",] <- c(-156.33, 20.25) # or  c(-156.69, 20.89)
/// state.center2 <- as.list(dxy)
///
/// plot(dxy, asp=1.2, pch=3, col=2)
/// text(state.center2, state.abb, cex=1/2, pos=4, offset=1/4)
/// i <- c("AK","HI")
/// do.call(arrows, c(setNames(c(dst[i,], dxy[i,]), c("x0","y0", "x1","y1")),
/// col=adjustcolor(4, .7), length=1/8))
/// points(dst[i,], col=2)
/// if(FALSE) { # if(require("maps")) {
/// map("state", interior = FALSE, add = TRUE)
/// map("state", boundary = FALSE, lty = 2, add = TRUE)
/// }
/// ```
pub fn state_center() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("state.center.csv"))).finish()
}

/// # US State Facts and Figures
///
/// ## Description:
///
/// Data sets related to the 50 states of the United States of
/// America.
///
/// ## Usage:
///
/// state.abb
/// state.area
/// state.center
/// state.division
/// state.name
/// state.region
/// state.x77
///
/// ## Details:
///
/// R currently contains the following “state” data sets.  Note that
/// all data are arranged according to alphabetical order of the state
/// names.
///
/// * ‘state.abb’: character vector of 2-letter abbreviations for the
/// state names.
/// * ‘state.area’: numeric vector of state areas (in square miles).
/// * ‘state.center’: list with components named ‘x’ and ‘y’ giving the
/// approximate geographic center of each state in negative
/// longitude and latitude.  Alaska and Hawaii are placed just
/// off the West Coast.  See ‘Examples’ on how to “correct”.
/// * ‘state.division’: ‘factor’ giving state divisions (New England,
/// Middle Atlantic, South Atlantic, East South Central, West
/// South Central, East North Central, West North Central,
/// Mountain, and Pacific).
/// * ‘state.name’: character vector giving the full state names.
/// * ‘state.region’: ‘factor’ giving the region (Northeast, South,
/// North Central, West) that each state belongs to.
/// * ‘state.x77’: matrix with 50 rows and 8 columns giving the
/// following statistics in the respective columns.
/// * ‘Population’: population estimate as of July 1, 1975
/// * ‘Income’: per capita income (1974)
/// * ‘Illiteracy’: illiteracy (1970, percent of population)
/// * ‘Life Exp’: life expectancy in years (1969-71)
/// * ‘Murder’: murder and non-negligent manslaughter rate per
/// 100,000 population (1976)
/// * ‘HS Grad’: percent high-school graduates (1970)
/// * ‘Frost’: mean number of days with minimum temperature below
/// freezing (1931-1960) in capital or large city
/// * ‘Area’: land area in square miles
///
/// Note that a square mile is by definition exactly ‘(cm(1760 * 3 *
/// 12) / 100 / 1000)^2’ km^2, i.e., 2.589988110336 km^2.
///
/// ## Source:
///
/// U.S. Department of Commerce, Bureau of the Census (1977)
/// _Statistical Abstract of the United States_.
///
/// U.S. Department of Commerce, Bureau of the Census (1977) _County
/// and City Data Book_.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// (dst <- dxy <- data.frame(state.center, row.names=state.abb))
/// ## Alaska and Hawaii are placed just off the West Coast (for compact map drawing):
/// dst[c("AK", "HI"),]
/// ## state.center2 := version of state.center with "correct" coordinates for AK & HI:
/// ## From https://pubs.usgs.gov/gip/Elevations-Distances/elvadist.html#Geographic%20Centers
/// ##Alaska63°50' N., 152°00' W., 60 miles northwest of Mount McKinley
/// ##Hawaii20°15' N., 156°20' W., off Maui Island
/// dxy["AK",] <- c(-152.  , 63.83) # or  c(-152.11, 65.17)
/// dxy["HI",] <- c(-156.33, 20.25) # or  c(-156.69, 20.89)
/// state.center2 <- as.list(dxy)
///
/// plot(dxy, asp=1.2, pch=3, col=2)
/// text(state.center2, state.abb, cex=1/2, pos=4, offset=1/4)
/// i <- c("AK","HI")
/// do.call(arrows, c(setNames(c(dst[i,], dxy[i,]), c("x0","y0", "x1","y1")),
/// col=adjustcolor(4, .7), length=1/8))
/// points(dst[i,], col=2)
/// if(FALSE) { # if(require("maps")) {
/// map("state", interior = FALSE, add = TRUE)
/// map("state", boundary = FALSE, lty = 2, add = TRUE)
/// }
/// ```
pub fn state_division() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("state.division.csv"))).finish()
}

/// # US State Facts and Figures
///
/// ## Description:
///
/// Data sets related to the 50 states of the United States of
/// America.
///
/// ## Usage:
///
/// state.abb
/// state.area
/// state.center
/// state.division
/// state.name
/// state.region
/// state.x77
///
/// ## Details:
///
/// R currently contains the following “state” data sets.  Note that
/// all data are arranged according to alphabetical order of the state
/// names.
///
/// * ‘state.abb’: character vector of 2-letter abbreviations for the
/// state names.
/// * ‘state.area’: numeric vector of state areas (in square miles).
/// * ‘state.center’: list with components named ‘x’ and ‘y’ giving the
/// approximate geographic center of each state in negative
/// longitude and latitude.  Alaska and Hawaii are placed just
/// off the West Coast.  See ‘Examples’ on how to “correct”.
/// * ‘state.division’: ‘factor’ giving state divisions (New England,
/// Middle Atlantic, South Atlantic, East South Central, West
/// South Central, East North Central, West North Central,
/// Mountain, and Pacific).
/// * ‘state.name’: character vector giving the full state names.
/// * ‘state.region’: ‘factor’ giving the region (Northeast, South,
/// North Central, West) that each state belongs to.
/// * ‘state.x77’: matrix with 50 rows and 8 columns giving the
/// following statistics in the respective columns.
/// * ‘Population’: population estimate as of July 1, 1975
/// * ‘Income’: per capita income (1974)
/// * ‘Illiteracy’: illiteracy (1970, percent of population)
/// * ‘Life Exp’: life expectancy in years (1969-71)
/// * ‘Murder’: murder and non-negligent manslaughter rate per
/// 100,000 population (1976)
/// * ‘HS Grad’: percent high-school graduates (1970)
/// * ‘Frost’: mean number of days with minimum temperature below
/// freezing (1931-1960) in capital or large city
/// * ‘Area’: land area in square miles
///
/// Note that a square mile is by definition exactly ‘(cm(1760 * 3 *
/// 12) / 100 / 1000)^2’ km^2, i.e., 2.589988110336 km^2.
///
/// ## Source:
///
/// U.S. Department of Commerce, Bureau of the Census (1977)
/// _Statistical Abstract of the United States_.
///
/// U.S. Department of Commerce, Bureau of the Census (1977) _County
/// and City Data Book_.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// (dst <- dxy <- data.frame(state.center, row.names=state.abb))
/// ## Alaska and Hawaii are placed just off the West Coast (for compact map drawing):
/// dst[c("AK", "HI"),]
/// ## state.center2 := version of state.center with "correct" coordinates for AK & HI:
/// ## From https://pubs.usgs.gov/gip/Elevations-Distances/elvadist.html#Geographic%20Centers
/// ##Alaska63°50' N., 152°00' W., 60 miles northwest of Mount McKinley
/// ##Hawaii20°15' N., 156°20' W., off Maui Island
/// dxy["AK",] <- c(-152.  , 63.83) # or  c(-152.11, 65.17)
/// dxy["HI",] <- c(-156.33, 20.25) # or  c(-156.69, 20.89)
/// state.center2 <- as.list(dxy)
///
/// plot(dxy, asp=1.2, pch=3, col=2)
/// text(state.center2, state.abb, cex=1/2, pos=4, offset=1/4)
/// i <- c("AK","HI")
/// do.call(arrows, c(setNames(c(dst[i,], dxy[i,]), c("x0","y0", "x1","y1")),
/// col=adjustcolor(4, .7), length=1/8))
/// points(dst[i,], col=2)
/// if(FALSE) { # if(require("maps")) {
/// map("state", interior = FALSE, add = TRUE)
/// map("state", boundary = FALSE, lty = 2, add = TRUE)
/// }
/// ```
pub fn state_name() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("state.name.csv"))).finish()
}

/// # US State Facts and Figures
///
/// ## Description:
///
/// Data sets related to the 50 states of the United States of
/// America.
///
/// ## Usage:
///
/// state.abb
/// state.area
/// state.center
/// state.division
/// state.name
/// state.region
/// state.x77
///
/// ## Details:
///
/// R currently contains the following “state” data sets.  Note that
/// all data are arranged according to alphabetical order of the state
/// names.
///
/// * ‘state.abb’: character vector of 2-letter abbreviations for the
/// state names.
/// * ‘state.area’: numeric vector of state areas (in square miles).
/// * ‘state.center’: list with components named ‘x’ and ‘y’ giving the
/// approximate geographic center of each state in negative
/// longitude and latitude.  Alaska and Hawaii are placed just
/// off the West Coast.  See ‘Examples’ on how to “correct”.
/// * ‘state.division’: ‘factor’ giving state divisions (New England,
/// Middle Atlantic, South Atlantic, East South Central, West
/// South Central, East North Central, West North Central,
/// Mountain, and Pacific).
/// * ‘state.name’: character vector giving the full state names.
/// * ‘state.region’: ‘factor’ giving the region (Northeast, South,
/// North Central, West) that each state belongs to.
/// * ‘state.x77’: matrix with 50 rows and 8 columns giving the
/// following statistics in the respective columns.
/// * ‘Population’: population estimate as of July 1, 1975
/// * ‘Income’: per capita income (1974)
/// * ‘Illiteracy’: illiteracy (1970, percent of population)
/// * ‘Life Exp’: life expectancy in years (1969-71)
/// * ‘Murder’: murder and non-negligent manslaughter rate per
/// 100,000 population (1976)
/// * ‘HS Grad’: percent high-school graduates (1970)
/// * ‘Frost’: mean number of days with minimum temperature below
/// freezing (1931-1960) in capital or large city
/// * ‘Area’: land area in square miles
///
/// Note that a square mile is by definition exactly ‘(cm(1760 * 3 *
/// 12) / 100 / 1000)^2’ km^2, i.e., 2.589988110336 km^2.
///
/// ## Source:
///
/// U.S. Department of Commerce, Bureau of the Census (1977)
/// _Statistical Abstract of the United States_.
///
/// U.S. Department of Commerce, Bureau of the Census (1977) _County
/// and City Data Book_.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// (dst <- dxy <- data.frame(state.center, row.names=state.abb))
/// ## Alaska and Hawaii are placed just off the West Coast (for compact map drawing):
/// dst[c("AK", "HI"),]
/// ## state.center2 := version of state.center with "correct" coordinates for AK & HI:
/// ## From https://pubs.usgs.gov/gip/Elevations-Distances/elvadist.html#Geographic%20Centers
/// ##Alaska63°50' N., 152°00' W., 60 miles northwest of Mount McKinley
/// ##Hawaii20°15' N., 156°20' W., off Maui Island
/// dxy["AK",] <- c(-152.  , 63.83) # or  c(-152.11, 65.17)
/// dxy["HI",] <- c(-156.33, 20.25) # or  c(-156.69, 20.89)
/// state.center2 <- as.list(dxy)
///
/// plot(dxy, asp=1.2, pch=3, col=2)
/// text(state.center2, state.abb, cex=1/2, pos=4, offset=1/4)
/// i <- c("AK","HI")
/// do.call(arrows, c(setNames(c(dst[i,], dxy[i,]), c("x0","y0", "x1","y1")),
/// col=adjustcolor(4, .7), length=1/8))
/// points(dst[i,], col=2)
/// if(FALSE) { # if(require("maps")) {
/// map("state", interior = FALSE, add = TRUE)
/// map("state", boundary = FALSE, lty = 2, add = TRUE)
/// }
/// ```
pub fn state_region() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("state.region.csv"))).finish()
}

/// # US State Facts and Figures
///
/// ## Description:
///
/// Data sets related to the 50 states of the United States of
/// America.
///
/// ## Usage:
///
/// state.abb
/// state.area
/// state.center
/// state.division
/// state.name
/// state.region
/// state.x77
///
/// ## Details:
///
/// R currently contains the following “state” data sets.  Note that
/// all data are arranged according to alphabetical order of the state
/// names.
///
/// * ‘state.abb’: character vector of 2-letter abbreviations for the
/// state names.
/// * ‘state.area’: numeric vector of state areas (in square miles).
/// * ‘state.center’: list with components named ‘x’ and ‘y’ giving the
/// approximate geographic center of each state in negative
/// longitude and latitude.  Alaska and Hawaii are placed just
/// off the West Coast.  See ‘Examples’ on how to “correct”.
/// * ‘state.division’: ‘factor’ giving state divisions (New England,
/// Middle Atlantic, South Atlantic, East South Central, West
/// South Central, East North Central, West North Central,
/// Mountain, and Pacific).
/// * ‘state.name’: character vector giving the full state names.
/// * ‘state.region’: ‘factor’ giving the region (Northeast, South,
/// North Central, West) that each state belongs to.
/// * ‘state.x77’: matrix with 50 rows and 8 columns giving the
/// following statistics in the respective columns.
/// * ‘Population’: population estimate as of July 1, 1975
/// * ‘Income’: per capita income (1974)
/// * ‘Illiteracy’: illiteracy (1970, percent of population)
/// * ‘Life Exp’: life expectancy in years (1969-71)
/// * ‘Murder’: murder and non-negligent manslaughter rate per
/// 100,000 population (1976)
/// * ‘HS Grad’: percent high-school graduates (1970)
/// * ‘Frost’: mean number of days with minimum temperature below
/// freezing (1931-1960) in capital or large city
/// * ‘Area’: land area in square miles
///
/// Note that a square mile is by definition exactly ‘(cm(1760 * 3 *
/// 12) / 100 / 1000)^2’ km^2, i.e., 2.589988110336 km^2.
///
/// ## Source:
///
/// U.S. Department of Commerce, Bureau of the Census (1977)
/// _Statistical Abstract of the United States_.
///
/// U.S. Department of Commerce, Bureau of the Census (1977) _County
/// and City Data Book_.
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// (dst <- dxy <- data.frame(state.center, row.names=state.abb))
/// ## Alaska and Hawaii are placed just off the West Coast (for compact map drawing):
/// dst[c("AK", "HI"),]
/// ## state.center2 := version of state.center with "correct" coordinates for AK & HI:
/// ## From https://pubs.usgs.gov/gip/Elevations-Distances/elvadist.html#Geographic%20Centers
/// ##Alaska63°50' N., 152°00' W., 60 miles northwest of Mount McKinley
/// ##Hawaii20°15' N., 156°20' W., off Maui Island
/// dxy["AK",] <- c(-152.  , 63.83) # or  c(-152.11, 65.17)
/// dxy["HI",] <- c(-156.33, 20.25) # or  c(-156.69, 20.89)
/// state.center2 <- as.list(dxy)
///
/// plot(dxy, asp=1.2, pch=3, col=2)
/// text(state.center2, state.abb, cex=1/2, pos=4, offset=1/4)
/// i <- c("AK","HI")
/// do.call(arrows, c(setNames(c(dst[i,], dxy[i,]), c("x0","y0", "x1","y1")),
/// col=adjustcolor(4, .7), length=1/8))
/// points(dst[i,], col=2)
/// if(FALSE) { # if(require("maps")) {
/// map("state", interior = FALSE, add = TRUE)
/// map("state", boundary = FALSE, lty = 2, add = TRUE)
/// }
/// ```
pub fn state_x77() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("state.x77.csv"))).finish()
}

/// # Monthly Sunspot Data, from 1749 to "Present"
///
/// ## Description:
///
/// Monthly numbers of sunspots, as from the World Data Center, aka
/// SIDC.  This is the version of the data that will occasionally be
/// updated when new counts become available.
///
/// ## Usage:
///
/// sunspot.month
///
/// ## Format:
///
/// The univariate time series ‘sunspot.year’ and ‘sunspot.month’
/// contain 289 and 2988 observations, respectively.  The objects are
/// of class ‘"ts"’.
///
/// ## Author(s):
///
/// R
///
/// ## Source:
///
/// WDC-SILSO, Solar Influences Data Analysis Center (SIDC), Royal
/// Observatory of Belgium, Av. Circulaire, 3, B-1180 BRUSSELS
/// Currently at <http://www.sidc.be/silso/datafiles>
///
/// ## See Also:
///
/// ‘sunspot.month’ is a longer version of ‘sunspots’; the latter runs
/// until 1983 and is kept fixed (for reproducibility as example
/// dataset).
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// ## Compare the monthly series
/// plot (sunspot.month,
/// main="sunspot.month & sunspots [package'datasets']", col=2)
/// lines(sunspots) # -> faint differences where they overlap
///
/// ## Now look at the difference :
/// all(tsp(sunspots)  [c(1,3)] ==
/// tsp(sunspot.month)[c(1,3)]) ## Start & Periodicity are the same
/// n1 <- length(sunspots)
/// table(eq <- sunspots == sunspot.month[1:n1]) #>  132  are different !
/// i <- which(!eq)
/// rug(time(eq)[i])
/// s1 <- sunspots[i] ; s2 <- sunspot.month[i]
/// cbind(i = i, time = time(sunspots)[i], sunspots = s1, ss.month = s2,
/// perc.diff = round(100*2*abs(s1-s2)/(s1+s2), 1))
///
/// ## How to recreate the "old" sunspot.month (R <= 3.0.3):
/// .sunspot.diff <- cbind(
/// i = c(1202L, 1256L, 1258L, 1301L, 1407L, 1429L, 1452L, 1455L,
/// 1663L, 2151L, 2329L, 2498L, 2594L, 2694L, 2819L),
/// res10 = c(1L, 1L, 1L, -1L, -1L, -1L, 1L, -1L,
/// 1L, 1L, 1L, 1L, 1L, 20L, 1L))
/// ssm0 <- sunspot.month[1:2988]
/// with(as.data.frame(.sunspot.diff), ssm0[i] <<- ssm0[i] - res10/10)
/// sunspot.month.0 <- ts(ssm0, start = 1749, frequency = 12)
/// ```
pub fn sunspot_month() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("sunspot.month.csv"))).finish()
}

/// # Yearly Sunspot Data, 1700-1988
///
/// ## Description:
///
/// Yearly numbers of sunspots from 1700 to 1988 (rounded to one
/// digit).
///
/// Note that monthly numbers are available as ‘sunspot.month’, though
/// starting slightly later.
///
/// ## Usage:
///
/// sunspot.year
///
/// ### Format:
///
/// The univariate time series ‘sunspot.year’ contains 289
/// observations, and is of class ‘"ts"’.
///
/// ## Source:
///
/// H. Tong (1996) _Non-Linear Time Series_. Clarendon Press, Oxford,
/// p. 471.
///
/// ## See Also:
///
/// For _monthly_ sunspot numbers, see ‘sunspot.month’ and ‘sunspots’.
///
/// Regularly updated yearly sunspot numbers are available from
/// WDC-SILSO, Royal Observatory of Belgium, at
/// <http://www.sidc.be/silso/datafiles>
///
/// ## Examples:
///
/// ```r
/// utils::str(sm <- sunspots)# the monthly version we keep unchanged
/// utils::str(sy <- sunspot.year)
/// ## The common time interval
/// (t1 <- c(max(start(sm), start(sy)),  1)) # Jan 1749
/// (t2 <- c(min(  end(sm)[1],end(sy)[1]), 12)) # Dec 1983
/// s.m <- window(sm, start=t1, end=t2)
/// s.y <- window(sy, start=t1, end=t2[1]) # {irrelevant warning}
/// stopifnot(length(s.y) * 12 == length(s.m),
/// ## The yearly series *is* close to the averages of the monthly one:
/// all.equal(s.y, aggregate(s.m, FUN = mean), tolerance = 0.0020))
/// ## NOTE: Strangely, correctly weighting the number of days per month
/// ## (using 28.25 for February) is *not* closer than the simple mean:
/// ndays <- c(31, 28.25, rep(c(31,30, 31,30, 31), 2))
/// all.equal(s.y, aggregate(s.m, FUN = mean))# 0.0013
/// all.equal(s.y, aggregate(s.m, FUN = weighted.mean, w = ndays)) # 0.0017
/// ```
pub fn sunspot_year() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("sunspot.year.csv"))).finish()
}

/// # Monthly Sunspot Numbers, 1749-1983
///
/// ## Description:
///
/// Monthly mean relative sunspot numbers from 1749 to 1983.
/// Collected at Swiss Federal Observatory, Zurich until 1960, then
/// Tokyo Astronomical Observatory.
///
/// ## Usage:
///
/// sunspots
///
/// ## Format:
///
/// A time series of monthly data from 1749 to 1983.
///
/// ## Source:
///
/// Andrews, D. F. and Herzberg, A. M. (1985) _Data: A Collection of
/// Problems from Many Fields for the Student and Research Worker_.
/// New York: Springer-Verlag.
///
/// ## See Also:
///
/// ‘sunspot.month’ has a longer (and a bit different) series,
/// ‘sunspot.year’ is a much shorter one.  See there for getting more
/// current sunspot numbers.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// plot(sunspots, main = "sunspots data", xlab = "Year",
///  ylab = "Monthly sunspot numbers")
/// ```
pub fn sunspots() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("sunspots.csv"))).finish()
}

/// # Swiss Fertility and Socioeconomic Indicators (1888) Data
///
/// ## Description:
///
/// Standardized fertility measure and socio-economic indicators for
/// each of 47 French-speaking provinces of Switzerland at about 1888.
///
/// ## Usage:
///
/// swiss
///
/// ## Format:
///
/// A data frame with 47 observations on 6 variables, _each_ of which
/// is in percent, i.e., in [0, 100].
///
/// * \[,1\]  FertilityIg,‘common standardized fertility measure’
/// * \[,2\]  Agriculture % of males involved in agriculture
/// as occupation
/// * \[,3\]  Examination % draftees receiving highest mark
/// on army examination
/// * \[,4\]  Education% education beyond primary school for draftees.
/// * \[,5\]  Catholic % ‘catholic’ (as opposed to ‘protestant’).
/// * \[,6\]  Infant.Mortality  live births who live less than 1year.
///
/// All variables but ‘Fertility’ give proportions of the population.
///
/// ## Details:
///
/// (paraphrasing Mosteller and Tukey):
///
/// Switzerland, in 1888, was entering a period known as the
/// _demographic transition_; i.e., its fertility was beginning to
/// fall from the high level typical of underdeveloped countries.
///
/// The data collected are for 47 French-speaking “provinces” at about
/// 1888.
///
/// Here, all variables are scaled to \[0, 100\], where in the original,
/// all but ‘"Catholic"’ were scaled to \[0, 1\].
///
/// ## Note:
///
/// Files for all 182 districts in 1888 and other years have been
/// available at <https://opr.princeton.edu/archive/pefp/switz.aspx>.
///
/// They state that variables ‘Examination’ and ‘Education’ are
/// averages for 1887, 1888 and 1889.
///
/// ## Source:
///
/// Project “16P5”, pages 549-551 in
///
/// Mosteller, F. and Tukey, J. W. (1977) _Data Analysis and
/// Regression: A Second Course in Statistics_.  Addison-Wesley,
/// Reading Mass.
///
/// indicating their source as “Data used by permission of Franice van
/// de Walle. Office of Population Research, Princeton University,
/// 1976.  Unpublished data assembled under NICHD contract number No
/// 1-HD-O-2077.”
///
/// ## References:
///
/// Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
/// Language_.  Wadsworth & Brooks/Cole.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// pairs(swiss, panel = panel.smooth, main = "swiss data",
/// col = 3 + (swiss$Catholic > 50))
/// summary(lm(Fertility ~ . , data = swiss))
/// ```
pub fn swiss() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("swiss.csv"))).finish()
}

/// # Pharmacokinetics of Theophylline
///
/// ## Description:
///
/// The ‘Theoph’ data frame has 132 rows and 5 columns of data from an
/// experiment on the pharmacokinetics of theophylline.
///
/// ## Usage:
///
/// Theoph
///
/// ## Format:
///
/// An object of class ‘c("nfnGroupedData", "nfGroupedData",
/// "groupedData", "data.frame")’ containing the following columns:
///
/// Subject an ordered factor with levels ‘1’, ..., ‘12’ identifying
///  the subject on whom the observation was made.  The ordering
///  is by increasing maximum concentration of theophylline
///  observed.
///
/// * Wt weight of the subject (kg).
/// * Dose dose of theophylline administered orally to the subject
/// (mg/kg).
/// * Time time since drug administration when the sample was drawn
/// (hr).
/// * conc theophylline concentration in the sample (mg/L).
///
/// ## Details:
///
/// Boeckmann, Sheiner and Beal (1994) report data from a study by Dr.
/// Robert Upton of the kinetics of the anti-asthmatic drug
/// theophylline.  Twelve subjects were given oral doses of
/// theophylline then serum concentrations were measured at 11 time
/// points over the next 25 hours.
///
/// These data are analyzed in Davidian and Giltinan (1995) and
/// Pinheiro and Bates (2000) using a two-compartment open
/// pharmacokinetic model, for which a self-starting model function,
/// ‘SSfol’, is available.
///
/// This dataset was originally part of package ‘nlme’, and that has
/// methods (including for ‘[’, ‘as.data.frame’, ‘plot’ and ‘print’)
/// for its grouped-data classes.
///
/// ## Source:
///
/// Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994), _NONMEM
/// Users Guide: Part V_, NONMEM Project Group, University of
/// California, San Francisco.
///
/// Davidian, M. and Giltinan, D. M. (1995) _Nonlinear Models for
/// Repeated Measurement Data_, Chapman & Hall (section 5.5, p. 145
/// and section 6.6, p. 176)
///
/// Pinheiro, J. C. and Bates, D. M. (2000) _Mixed-effects Models in S
/// and S-PLUS_, Springer (Appendix A.29)
///
/// ## See Also:
///
/// ‘SSfol’
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
///
/// coplot(conc ~ Time | Subject, data = Theoph, show.given = FALSE)
/// Theoph.4 <- subset(Theoph, Subject == 4)
/// fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
///  data = Theoph.4)
/// summary(fm1)
/// plot(conc ~ Time, data = Theoph.4,
///  xlab = "Time since drug administration (hr)",
///  ylab = "Theophylline concentration (mg/L)",
///  main = "Observed concentrations and fitted model",
///  sub  = "Theophylline data - Subject 4 only",
///  las = 1, col = 4)
/// xvals <- seq(0, par("usr")[2], length.out = 55)
/// lines(xvals, predict(fm1, newdata = list(Time = xvals)),
/// col = 4)
/// ```
pub fn theoph() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("Theoph.csv"))).finish()
}

/// # Survival of passengers on the Titanic
///
/// ## Description:
///
/// This data set provides information on the fate of passengers on
/// the fatal maiden voyage of the ocean liner ‘Titanic’, summarized
/// according to economic status (class), sex, age and survival.
///
/// ## Usage:
///
/// Titanic
///
/// ## Format:
///
/// A 4-dimensional array resulting from cross-tabulating 2201
/// observations on 4 variables.  The variables and their levels are
/// as follows:
///
/// | No | Name     | Levels              |
/// |----|----------|---------------------|
/// | 1  | Class    | 1st, 2nd, 3rd, Crew |
/// | 2  | Sex      | Male, Female        |
/// | 3  | Age      | Child, Adult        |
/// | 4  | Survived | No, Yes             |
///
/// ## Details:
///
/// The sinking of the Titanic is a famous event, and new books are
/// still being published about it.  Many well-known facts-from the
/// proportions of first-class passengers to the ‘women and children
/// first’ policy, and the fact that that policy was not entirely
/// successful in saving the women and children in the third class-are
/// reflected in the survival rates for various classes of passenger.
///
/// These data were originally collected by the British Board of Trade
/// in their investigation of the sinking.  Note that there is not
/// complete agreement among primary sources as to the exact numbers
/// on board, rescued, or lost.
///
/// Due in particular to the very successful film ‘Titanic’, the last
/// years saw a rise in public interest in the Titanic.  Very detailed
/// data about the passengers is now available on the Internet, at
/// sites such as _Encyclopedia Titanica_
/// (<https://www.encyclopedia-titanica.org/>).
///
/// ## Source:
///
/// Dawson, Robert J. MacG. (1995), The ‘Unusual Episode’ Data
/// Revisited.  _Journal of Statistics Education_, *3*.
/// doi:10.1080/10691898.1995.11910499
/// <https://doi.org/10.1080/10691898.1995.11910499>.
///
/// The source provides a data set recording class, sex, age, and
/// survival status for each person on board of the Titanic, and is
/// based on data originally collected by the British Board of Trade
/// and reprinted in:
///
/// British Board of Trade (1990), _Report on the Loss of the
/// ‘Titanic’ (S.S.)_.  British Board of Trade Inquiry Report
/// (reprint).  Gloucester, UK: Allan Sutton Publishing.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// mosaicplot(Titanic, main = "Survival on the Titanic")
/// ## Higher survival rates in children?
/// apply(Titanic, c(3, 4), sum)
/// ## Higher survival rates in females?
/// apply(Titanic, c(2, 4), sum)
/// ## Use loglm() in package 'MASS' for further analysis ...
/// ```
pub fn titanic() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("Titanic.csv"))).finish()
}

/// # The Effect of Vitamin C on Tooth Growth in Guinea Pigs
///
/// ## Description:
///
/// The response is the length of odontoblasts (cells responsible for
/// tooth growth) in 60 guinea pigs.  Each animal received one of
/// three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of
/// two delivery methods, orange juice or ascorbic acid (a form of
/// vitamin C and coded as ‘VC’).
///
/// ## Usage:
///
/// ToothGrowth
///
/// ## Format:
///
/// A data frame with 60 observations on 3 variables.
///
/// * \[,1\]  lennumeric  Tooth length
/// * \[,2\]  supp  factorSupplement type (VC or OJ).
/// * \[,3\]  dose  numeric  Dose in milligrams/day
///
/// ## Source:
///
/// C. I. Bliss (1952).  _The Statistics of Bioassay_.  Academic
/// Press.
///
/// ## References:
///
/// McNeil, D. R. (1977).  _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// Crampton, E. W. (1947).  The growth of the odontoblast of the
/// incisor teeth as a criterion of vitamin C intake of the guinea
/// pig.  _The Journal of Nutrition_, *33*(5), 491-504.
/// doi:10.1093/jn/33.5.491 <https://doi.org/10.1093/jn/33.5.491>.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// coplot(len ~ dose | supp, data = ToothGrowth, panel = panel.smooth,
/// xlab = "ToothGrowth data: length vs dose, given type of supplement")
/// ```
pub fn tooth_growth() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("ToothGrowth.csv"))).finish()
}

/// # Yearly Treering Data, -6000-1979
///
/// ## Description:
///
/// Contains normalized tree-ring widths in dimensionless units.
///
/// ## Usage:
///
/// treering
///
/// ## Format:
///
/// A univariate time series with 7981 observations. The object is of
/// class ‘"ts"’.
///
/// Each tree ring corresponds to one year.
///
/// ## Details:
///
/// The data were recorded by Donald A. Graybill, 1980, from Gt Basin
/// Bristlecone Pine 2805M, 3726-11810 in Methuselah Walk, California.
///
/// ## Source:
///
/// Time Series Data Library: <https://robjhyndman.com/TSDL/>, series
/// ‘CA535.DAT’
///
/// ## References:
///
/// For some photos of Methuselah Walk see
/// <https://web.archive.org/web/20110523225828/http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html>
pub fn tree_ring() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("treering.csv"))).finish()
}

/// # Diameter, Height and Volume for Black Cherry Trees
///
/// ## Description:
///
/// This data set provides measurements of the diameter, height and
/// volume of timber in 31 felled black cherry trees.  Note that the
/// diameter (in inches) is erroneously labelled Girth in the data. It
/// is measured at 4 ft 6 in above the ground.
///
/// ## Usage:
///
/// trees
///
/// ## Format:
///
/// A data frame with 31 observations on 3 variables.
///
/// * ‘\[,1\]’  ‘Girth’numeric  Tree diameter (rather than girth, actually) in inches
/// * ‘\[,2\]’  ‘Height’  numeric  Height in ft
/// * ‘\[,3\]’  ‘Volume’  numeric  Volume of timber in cubic ft
///
/// ##  Source:
///
/// Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976) _The Minitab
/// Student Handbook_.  Duxbury Press.
///
/// ## References:
///
/// Atkinson, A. C. (1985) _Plots, Transformations and Regression_.
/// Oxford University Press.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// pairs(trees, panel = panel.smooth, main = "trees data")
/// plot(Volume ~ Girth, data = trees, log = "xy")
/// coplot(log(Volume) ~ log(Girth) | Height, data = trees,
/// panel = panel.smooth)
/// summary(fm1 <- lm(log(Volume) ~ log(Girth), data = trees))
/// summary(fm2 <- update(fm1, ~ . + log(Height), data = trees))
/// step(fm2)
/// ## i.e., Volume ~= c * Height * Girth^2  seems reasonable
/// ```
pub fn trees() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("trees.csv"))).finish()
}

/// # Student Admissions at UC Berkeley
///
/// ## Description:
///
/// Aggregate data on applicants to graduate school at Berkeley for
/// the six largest departments in 1973 classified by admission and
/// sex.
///
/// ## Usage:
///
/// UCBAdmissions
///
/// ## Format:
///
/// A 3-dimensional array resulting from cross-tabulating 4526
/// observations on 3 variables.  The variables and their levels are
/// as follows:
///
/// | No | Name   | Levels             |
/// |----|--------|--------------------|
/// | 1  | Admit  | Admitted, Rejected |
/// | 2  | Gender | Male, Female       |
/// | 3  | Dept   | A, B, C, D, E, F   |
///
/// ## Details:
///
/// This data set is frequently used for illustrating Simpson's
/// paradox, see Bickel _et al_ (1975).  At issue is whether the data
/// show evidence of sex bias in admission practices.  There were 2691
/// male applicants, of whom 1198 (44.5%) were admitted, compared with
/// 1835 female applicants of whom 557 (30.4%) were admitted.  This
/// gives a sample odds ratio of 1.83, indicating that males were
/// almost twice as likely to be admitted.  In fact, graphical methods
/// (as in the example below) or log-linear modelling show that the
/// apparent association between admission and sex stems from
/// differences in the tendency of males and females to apply to the
/// individual departments (females used to apply _more_ to
/// departments with higher rejection rates).
///
/// This data set can also be used for illustrating methods for
/// graphical display of categorical data, such as the general-purpose
/// mosaicplot or the fourfoldplot for 2-by-2-by-k tables.
///
/// ## References:
///
/// Bickel, P. J., Hammel, E. A., and O'Connell, J. W. (1975).  Sex
/// bias in graduate admissions: Data from Berkeley.  _Science_,
/// *187*, 398-403.  doi:10.1126/science.187.4175.398
/// <https://doi.org/10.1126/science.187.4175.398>.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// ## Data aggregated over departments
/// apply(UCBAdmissions, c(1, 2), sum)
/// mosaicplot(apply(UCBAdmissions, c(1, 2), sum),
///  main = "Student admissions at UC Berkeley")
/// ## Data for individual departments
/// opar <- par(mfrow = c(2, 3), oma = c(0, 0, 2, 0))
/// for(i in 1:6)
///  mosaicplot(UCBAdmissions[,,i],
/// xlab = "Admit", ylab = "Sex",
/// main = paste("Department", LETTERS[i]))
/// mtext(expression(bold("Student admissions at UC Berkeley")),
/// outer = TRUE, cex = 1.5)
/// par(opar)
/// ```
pub fn ucb_admissions() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("UCBAdmissions.csv"))).finish()
}

/// # Road Casualties in Great Britain 1969-84
///
/// ## Description:
///
/// ‘UKDriverDeaths’ is a time series giving the monthly totals of car
/// drivers in Great Britain killed or seriously injured Jan 1969 to
/// Dec 1984.  Compulsory wearing of seat belts was introduced on 31
/// Jan 1983.
///
/// ‘Seatbelts’ is more information on the same problem.
///
/// ## Usage:
///
/// UKDriverDeaths
/// Seatbelts
///
/// ## Format:
///
/// * ‘Seatbelts’ is a multiple time series, with columns
/// * ‘DriversKilled’ car drivers killed.
/// * ‘drivers’ same as ‘UKDriverDeaths’.
/// * ‘front’ front-seat passengers killed or seriously injured.
/// * ‘rear’ rear-seat passengers killed or seriously injured.
/// * ‘kms’ distance driven.
/// * ‘PetrolPrice’ petrol price.
/// * ‘VanKilled’ number of van (‘light goods vehicle’) drivers.
/// * ‘law’ 0/1: was the law in effect that month?
///
/// ##  Source:
///
/// Harvey, A.C. (1989).  _Forecasting, Structural Time Series Models
/// and the Kalman Filter_.  Cambridge University Press, pp. 519-523.
///
/// Durbin, J. and Koopman, S. J. (2001).  _Time Series Analysis by
/// State Space Methods_.  Oxford University Press.
///
/// ## References:
///
/// Harvey, A. C. and Durbin, J. (1986).  The effects of seat belt
/// legislation on British road casualties: A case study in structural
/// time series modelling.  _Journal of the Royal Statistical Society_
/// series A, *149*, 187-227.  doi:10.2307/2981553
/// <https://doi.org/10.2307/2981553>.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// ## work with pre-seatbelt period to identify a model, use logs
/// work <- window(log10(UKDriverDeaths), end = 1982+11/12)
/// par(mfrow = c(3, 1))
/// plot(work); acf(work); pacf(work)
/// par(mfrow = c(1, 1))
/// (fit <- arima(work, c(1, 0, 0), seasonal = list(order = c(1, 0, 0))))
/// z <- predict(fit, n.ahead = 24)
/// ts.plot(log10(UKDriverDeaths), z$pred, z$pred+2*z$se, z$pred-2*z$se,
///  lty = c(1, 3, 2, 2), col = c("black", "red", "blue", "blue"))
///
/// ## now see the effect of the explanatory variables
/// X <- Seatbelts[, c("kms", "PetrolPrice", "law")]
/// X[, 1] <- log10(X[, 1]) - 4
/// arima(log10(Seatbelts[, "drivers"]), c(1, 0, 0),
/// seasonal = list(order = c(1, 0, 0)), xreg = X)
/// ```
pub fn uk_driver_deaths() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("UKDriverDeaths.csv"))).finish()
}

/// # UK Quarterly Gas Consumption
///
/// ## Description:
///
/// Quarterly UK gas consumption from 1960Q1 to 1986Q4, in millions of
/// therms.
///
/// ## Usage:
///
/// UKgas
///
/// ## Format:
///
/// A quarterly time series of length 108.
///
/// ## Source:
///
/// Durbin, J. and Koopman, S. J. (2001).  _Time Series Analysis by
/// State Space Methods_.  Oxford University Press.
///
/// ## Examples:
///
/// ```r
/// ## maybe str(UKgas) ; plot(UKgas) ...
/// ```
pub fn uk_gas() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("UKgas.csv"))).finish()
}

/// # Accidental Deaths in the US 1973-1978
///
/// ## Description:
///
/// A time series giving the monthly totals of accidental deaths in
/// the USA.  The values for the first six months of 1979 are 7798
/// 7406 8363 8460 9217 9316.
///
/// ## Usage:
///
/// USAccDeaths
///
/// ## Source:
///
/// P. J. Brockwell and R. A. Davis (1991) _Time Series: Theory and
/// Methods._ Springer, New York.
pub fn us_acc_deaths() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("USAccDeaths.csv"))).finish()
}

/// # Violent Crime Rates by US State
///
/// ## Description:
///
/// This data set contains statistics, in arrests per 100,000
/// residents for assault, murder, and rape in each of the 50 US
/// states in 1973.  Also given is the percent of the population
/// living in urban areas.
///
/// ## Usage:
///
/// USArrests
///
/// ## Format:
///
/// A data frame with 50 observations on 4 variables.
///
/// * \[,1\]  Murder numeric  Murder arrests (per 100,000)
/// * \[,2\]  Assaultnumeric  Assault arrests (per 100,000)
/// * \[,3\]  UrbanPop  numeric  Percent urban population
/// * \[,4\]  Rapenumeric  Rape arrests (per 100,000)
///
/// ## Note:
///
/// ‘USArrests’ contains the data as in McNeil's monograph.  For the
/// ‘UrbanPop’ percentages, a review of the table (No. 21) in the
/// Statistical Abstracts 1975 reveals a transcription error for
/// Maryland (and that McNeil used the same “round to even” rule that
/// R's ‘round()’ uses), as found by Daniel S Coven (Arizona).
///
/// See the example below on how to correct the error and improve
/// accuracy for the ‘<n>.5’ percentages.
///
/// ## Source:
///
/// World Almanac and Book of facts 1975.  (Crime rates).
///
/// Statistical Abstracts of the United States 1975, p.20, (Urban
/// rates), possibly available as
/// <https://books.google.ch/books?id=zl9qAAAAMAAJ&pg=PA20>.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// ## See Also:
///
/// The ‘state’ data sets.
///
/// ## Examples:
///
/// ```r
/// summary(USArrests)
///
/// require(graphics)
/// pairs(USArrests, panel = panel.smooth, main = "USArrests data")
///
/// ## Difference between 'USArrests' and its correction
/// USArrests["Maryland", "UrbanPop"] # 67 -- the transcription error
/// UA.C <- USArrests
/// UA.C["Maryland", "UrbanPop"] <- 76.6
///
/// ## also +/- 0.5 to restore the original  <n>.5  percentages
/// s5u <- c("Colorado", "Florida", "Mississippi", "Wyoming")
/// s5d <- c("Nebraska", "Pennsylvania")
/// UA.C[s5u, "UrbanPop"] <- UA.C[s5u, "UrbanPop"] + 0.5
/// UA.C[s5d, "UrbanPop"] <- UA.C[s5d, "UrbanPop"] - 0.5
///
/// ## ==> UA.C  is now a *C*orrected version of  USArrests
/// ```
pub fn us_arrests() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("USArrests.csv"))).finish()
}

/// # Distances Between European Cities and Between US Cities
///
/// ## Description:
///
/// The ‘eurodist’ gives the road distances (in km) between 21 cities
/// in Europe.  The data are taken from a table in _The Cambridge
/// Encyclopaedia_.
///
/// ‘UScitiesD’ gives “straight line” distances between 10 cities in
/// the US.
///
/// ## Usage:
///
/// eurodist
/// UScitiesD
///
/// ## Format:
///
/// ‘dist’ objects based on 21 and 10 objects, respectively.  (You
/// must have the ‘stats’ package loaded to have the methods for this
/// kind of object available).
///
/// ## Source:
///
/// Crystal, D. Ed. (1990) _The Cambridge Encyclopaedia_.  Cambridge:
/// Cambridge University Press,
///
/// The US cities distances were provided by Pierre Legendre.
pub fn us_cities_d() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("UScitiesD.csv"))).finish()
}

/// # Lawyers' Ratings of State Judges in the US Superior Court
///
/// ## Description:
///
/// Lawyers' ratings of state judges in the US Superior Court.
///
/// ## Usage:
///
/// USJudgeRatings
///
/// ## Format:
///
/// A data frame containing 43 observations on 12 numeric variables.
///
/// * \[,1\]  CONT  Number of contacts of lawyer with judge.
/// * \[,2\]  INTG  Judicial integrity.
/// * \[,3\]  DMNR  Demeanor.
/// * \[,4\]  DILG  Diligence.
/// * \[,5\]  CFMG  Case flow managing.
/// * \[,6\]  DECI  Prompt decisions.
/// * \[,7\]  PREP  Preparation for trial.
/// * \[,8\]  FAMI  Familiarity with law.
/// * \[,9\]  ORAL  Sound oral rulings.
/// * \[,10\]  WRIT  Sound written rulings.
/// * \[,11\]  PHYS  Physical ability.
/// * \[,12\]  RTEN  Worthy of retention.
///
/// ## Source:
///
/// New Haven Register, 14 January, 1977 (from John Hartigan).
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// pairs(USJudgeRatings, main = "USJudgeRatings data")
/// ```
pub fn us_judge_ratings() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("USJudgeRatings.csv"))).finish()
}

/// # Personal Expenditure Data
///
/// ## Description:
///
/// This data set consists of United States personal expenditures (in
/// billions of dollars) in the categories; food and tobacco,
/// household operation, medical and health, personal care, and
/// private education for the years 1940, 1945, 1950, 1955 and 1960.
///
/// ## Usage:
///
/// USPersonalExpenditure
///
/// ## Format:
///
/// A matrix with 5 rows and 5 columns.
///
/// ## Source:
///
/// The World Almanac and Book of Facts, 1962, page 756.
///
/// ## References:
///
/// Tukey, J. W. (1977) _Exploratory Data Analysis_.  Addison-Wesley.
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats) # for medpolish
/// USPersonalExpenditure
/// medpolish(log10(USPersonalExpenditure))
/// ```
pub fn us_personal_expenditure() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("USPersonalExpenditure.csv"))).finish()
}

/// # Populations Recorded by the US Census
///
/// ## Description:
///
/// This data set gives the population of the United States (in
/// millions) as recorded by the decennial census for the period
/// 1790-1970.
///
/// ## Usage:
///
/// uspop
///
/// ## Format:
///
/// A time series of 19 values.
///
/// ## Source:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// plot(uspop, log = "y", main = "uspop data", xlab = "Year",
///  ylab = "U.S. Population (millions)")
/// ```
pub fn us_pop() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("uspop.csv"))).finish()
}

/// # Death Rates in Virginia (1940)
///
/// ## Description:
///
/// Death rates per 1000 in Virginia in 1940.
///
/// ## Usage:
///
/// VADeaths
///
/// ## Format:
///
/// A matrix with 5 rows and 4 columns.
///
/// ## Details:
///
/// The death rates are measured per 1000 population per year.  They
/// are cross-classified by age group (rows) and population group
/// (columns).  The age groups are: 50-54, 55-59, 60-64, 65-69, 70-74
/// and the population groups are Rural/Male, Rural/Female, Urban/Male
/// and Urban/Female.
///
/// This provides a rather nice 3-way analysis of variance example.
///
/// ## Source:
///
/// Molyneaux, L., Gilliam, S. K., and Florant, L. C.(1947)
/// Differences in Virginia death rates by color, sex, age, and rural
/// or urban residence.  _American Sociological Review_, *12*,
/// 525-535.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  Wiley.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// n <- length(dr <- c(VADeaths))
/// nam <- names(VADeaths)
/// d.VAD <- data.frame(
/// Drate = dr,
/// age = rep(ordered(rownames(VADeaths)), length.out = n),
/// gender = gl(2, 5, n, labels = c("M", "F")),
/// site =  gl(2, 10, labels = c("rural", "urban")))
/// coplot(Drate ~ as.numeric(age) | gender * site, data = d.VAD,
/// panel = panel.smooth, xlab = "VADeaths data - Given: gender")
/// summary(aov.VAD <- aov(Drate ~ .^2, data = d.VAD))
/// opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0))
/// plot(aov.VAD)
/// par(opar)
/// ```
pub fn va_deaths() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("VADeaths.csv"))).finish()
}

/// # Topographic Information on Auckland's Maunga Whau Volcano
///
/// ## Description:
///
/// Maunga Whau (Mt Eden) is one of about 50 volcanos in the Auckland
/// volcanic field.  This data set gives topographic information for
/// Maunga Whau on a 10m by 10m grid.
///
/// ## Usage:
///
/// volcano
///
/// ## Format:
///
/// A matrix with 87 rows and 61 columns, rows corresponding to grid
/// lines running east to west and columns to grid lines running south
/// to north.
///
/// ## Source:
///
/// Digitized from a topographic map by Ross Ihaka.  These data should
/// not be regarded as accurate.
///
/// ## See Also:
///
/// ‘filled.contour’ for a nice plot.
///
/// ## Examples:
///
/// ```r
/// require(grDevices); require(graphics)
/// filled.contour(volcano, color.palette = terrain.colors, asp = 1)
/// title(main = "volcano data: filled contour map")
/// ```
pub fn volcano() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("volcano.csv"))).finish()
}

/// # The Number of Breaks in Yarn during Weaving
///
/// ## Description:
///
/// This data set gives the number of warp breaks per loom, where a
/// loom corresponds to a fixed length of yarn.
///
/// ## Usage:
///
/// warpbreaks
///
/// ## Format:
///
/// A data frame with 54 observations on 3 variables.
///
/// * ‘\[,1\]’  ‘breaks’numeric  The number of breaks
/// * ‘\[,2\]’  ‘wool’  factorThe type of wool (A or B)
/// * ‘\[,3\]’  ‘tension’  factorThe level of tension (L, M, H)
///
/// There are measurements on 9 looms for each of the six types of
/// warp (‘AL’, ‘AM’, ‘AH’, ‘BL’, ‘BM’, ‘BH’).
///
/// ## Source:
///
/// Tippett, L. H. C. (1950) _Technological Applications of
/// Statistics_.  Wiley.  Page 106.
///
/// ## References:
///
/// Tukey, J. W. (1977) _Exploratory Data Analysis_.  Addison-Wesley.
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  Wiley.
///
/// ## See Also:
///
/// ‘xtabs’ for ways to display these data as a table.
///
/// ## Examples:
///
/// ```r
/// require(stats); require(graphics)
/// summary(warpbreaks)
/// opar <- par(mfrow = c(1, 2), oma = c(0, 0, 1.1, 0))
/// plot(breaks ~ tension, data = warpbreaks, col = "lightgray",
///  varwidth = TRUE, subset = wool == "A", main = "Wool A")
/// plot(breaks ~ tension, data = warpbreaks, col = "lightgray",
///  varwidth = TRUE, subset = wool == "B", main = "Wool B")
/// mtext("warpbreaks data", side = 3, outer = TRUE)
/// par(opar)
/// summary(fm1 <- lm(breaks ~ wool*tension, data = warpbreaks))
/// anova(fm1)
/// ```
pub fn warp_breaks() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("warpbreaks.csv"))).finish()
}

/// # Average Heights and Weights for American Women
///
/// ## Description:
///
/// This data set gives the average heights and weights for American
/// women aged 30-39.
///
/// ## Usage:
///
/// women
///
/// ## Format:
///
/// A data frame with 15 observations on 2 variables.
///
/// * ‘\[,1\]’  ‘height’  numeric  Height (in)
/// * ‘\[,2\]’  ‘weight’  numeric  Weight (lbs)
///
/// ## Details:
///
/// The data set appears to have been taken from the American Society
/// of Actuaries _Build and Blood Pressure Study_ for some (unknown to
/// us) earlier year.
///
/// The World Almanac notes: “The figures represent weights in
/// ordinary indoor clothing and shoes, and heights with shoes”.
///
/// ## Source:
///
/// The World Almanac and Book of Facts, 1975.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  Wiley.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// plot(women, xlab = "Height (in)", ylab = "Weight (lb)",
///  main = "women data: American women aged 30-39")
/// ```
pub fn women() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("women.csv"))).finish()
}

/// # The World's Telephones
///
/// ## Description:
///
/// The number of telephones in various regions of the world (in
/// thousands).
///
/// ## Usage:
///
/// WorldPhones
///
/// ## Format:
///
/// A matrix with 7 rows and 8 columns.  The columns of the matrix
/// give the figures for a given region, and the rows the figures for
/// a year.
///
/// The regions are: North America, Europe, Asia, South America,
/// Oceania, Africa, Central America.
///
/// The years are: 1951, 1956, 1957, 1958, 1959, 1960, 1961.
///
/// ## Source:
///
/// AT&T (1961) _The World's Telephones_.
///
/// ## References:
///
/// McNeil, D. R. (1977) _Interactive Data Analysis_.  New York:
/// Wiley.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// matplot(rownames(WorldPhones), WorldPhones, type = "b", log = "y",
///  xlab = "Year", ylab = "Number of telephones (1000's)")
/// legend(1951.5, 80000, colnames(WorldPhones), col = 1:6, lty = 1:5,
/// pch = rep(21, 7))
/// title(main = "World phones data: log scale for response")
/// ```
pub fn world_phones() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("WorldPhones.csv"))).finish()
}

/// # Internet Usage per Minute
///
/// ## Description:
///
/// A time series of the numbers of users connected to the Internet
/// through a server every minute.
///
/// ## Usage:
///
/// WWWusage
///
/// ## Format:
///
/// A time series of length 100.
///
/// ## Source:
///
/// Durbin, J. and Koopman, S. J. (2001).  _Time Series Analysis by
/// State Space Methods_.  Oxford University Press.
///
/// ## References:
///
/// Makridakis, S., Wheelwright, S. C. and Hyndman, R. J. (1998).
/// _Forecasting: Methods and Applications_.  Wiley.
///
/// ## Examples:
///
/// ```r
/// require(graphics)
/// work <- diff(WWWusage)
/// par(mfrow = c(2, 1)); plot(WWWusage); plot(work)
/// ## Not run:
///
/// require(stats)
/// aics <- matrix(, 6, 6, dimnames = list(p = 0:5, q = 0:5))
/// for(q in 1:5) aics[1, 1+q] <- arima(WWWusage, c(0, 1, q),
/// optim.control = list(maxit = 500))$aic
/// for(p in 1:5)
/// for(q in 0:5) aics[1+p, 1+q] <- arima(WWWusage, c(p, 1, q),
/// optim.control = list(maxit = 500))$aic
/// round(aics - min(aics, na.rm = TRUE), 2)
/// ## End(Not run)
/// ```
pub fn www_usage() -> PolarsResult<DataFrame> {
    CsvReader::new(Cursor::new(include_str!("WWWusage.csv"))).finish()
}