1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
//! Tools for handling the Control Pipe with `async` (`tokio`).
//!
//! There are three main classes provided in this module:
//!
//! * [`ExtcapControlSender`] – Implements the sender side for sending control
//! packets from the extcap program you are implementing to Wireshark.
//! * [`ExtcapControlReader`] – Implements the reader side that receives control
//! packets sent from Wireshark.
//! * [`ChannelExtcapControlReader`] – A wrapper around `ExtcapControlReader`
//! that provides simpler, but less flexible, handling of the communication
//! using a Tokio channel.
//!
//! See Wireshark's [Adding Capture Interfaces And Log Sources Using
//! Extcap](https://www.wireshark.org/docs/wsdg_html_chunked/ChCaptureExtcap.html#_messages)
//! section 8.2.3.2.1 for a description of the protocol format.
use async_trait::async_trait;
use log::debug;
use nom_derive::Parse;
use std::path::{Path, PathBuf};
use thiserror::Error;
#[cfg(target_os = "windows")]
use tokio::fs::File;
#[cfg(not(target_os = "windows"))]
use tokio::net::unix::pipe::{Receiver, Sender};
use tokio::{
io::{AsyncReadExt, AsyncWriteExt},
sync::{
mpsc::{self, error::SendError},
Mutex,
},
task::JoinHandle,
};
pub mod util;
use util::AsyncReadExt as _;
use crate::controls::{ControlCommand, ControlPacket};
/// Error type returned for control packet read operations.
#[derive(Debug, Error)]
pub enum ReadControlError {
/// Error reading the incoming control pipe.
#[error(transparent)]
IoError(#[from] tokio::io::Error),
/// Error parsing the incoming data into the [`ControlPacket`] format.
#[error("Error parsing control packet: {0}")]
ParseError(String),
}
/// Error associated with [`ChannelExtcapControlReader`].
#[derive(Debug, Error)]
pub enum ControlChannelError {
/// Error returned when the control packet cannot be read. See
/// the docs on [`ReadControlError`].
#[error(transparent)]
ReadControl(#[from] ReadControlError),
/// Error returned when the control packet cannot be sent on the channel.
/// This is caused by an underlying [`SendError`].
#[error("Cannot send control packet to channel")]
CannotSend,
}
impl<T> From<SendError<T>> for ControlChannelError {
fn from(_: SendError<T>) -> Self {
ControlChannelError::CannotSend
}
}
/// A reader for an Extcap Control using a [`Channel`][mpsc::channel]. This is
/// the easier to use, but higher overhead way to read control packets. When the
/// reader is spawned, a thread is spawned to continuously read messages and
/// writes them into a bounded `channel`. This allows reading the control
/// messages without worrying about spawning async tasks, by calling
/// [`try_read_packet`][Self::try_read_packet] every once in a while.
///
/// Assuming the extcap `capture` implementation uses a loop to read or generate
/// the packets, it can repeatedly call `try_read_packet` to read and handle the
/// control packets until there are no more buffered messages before starting
/// the main capturing logic.
///
/// For example:
/// ```ignore
/// fn capture(reader: &ChannelExtcapControlReader) -> Result<()> {
/// let pcap_header = ...;
/// let mut pcap_writer = PcapWriter::with_header(fifo, pcap_header)?;
/// loop {
/// while let Some(packet) = reader.try_read_packet().await {
/// // Handle the control packet
/// }
/// pcap_writer.write_packet(...)?;
/// }
/// Ok(())
/// }
pub struct ChannelExtcapControlReader {
/// The join handle for the spawned thread. In most cases there is no need
/// to use this, as the control fifo is expected to run for the whole
/// duration of the capture.
pub join_handle: JoinHandle<Result<(), ControlChannelError>>,
/// The channel to receive control packets from.
pub read_channel: mpsc::Receiver<ControlPacket<'static>>,
}
impl ChannelExtcapControlReader {
/// Create a `ChannelExtcapControlReader` and spawns the underlying thread
/// it uses to start reading the control packets from the pipe given in
/// `in_path`.
pub fn spawn(in_path: PathBuf) -> Self {
let (tx, rx) = mpsc::channel::<ControlPacket<'static>>(10);
let join_handle = tokio::task::spawn(async move {
let mut reader = ExtcapControlReader::new(&in_path).await;
loop {
tx.send(reader.read_control_packet().await?).await?;
}
});
Self {
join_handle,
read_channel: rx,
}
}
/// Try to read a buffered control packet, or return `None` if there are no
/// incoming control packets.
pub async fn try_read_packet(&mut self) -> Option<ControlPacket<'static>> {
self.read_channel.try_recv().ok()
}
/// Reads a control packet. If the incoming channel is empty, this will
/// block and wait until an incoming packet comes in. This is typically used
/// when the extcap capture starts to wait for the `Initialized` packet from
/// the control channel.
///
/// If you are only using this method and not using `try_read_packet`,
/// consider whether you can use [`ExtcapControlReader`] directly for lower
/// overhead.
pub async fn read_packet(&mut self) -> Option<ControlPacket<'static>> {
self.read_channel.recv().await
}
}
/// A reader for the Extcap control pipe.
pub struct ExtcapControlReader {
/// The file to read the control packets from. This is the fifo passed with
/// the `--extcap-control-in` flag.
#[cfg(not(target_os = "windows"))]
in_file: Receiver,
/// The file to read the control packets from. This is the fifo passed with
/// the `--extcap-control-in` flag.
#[cfg(target_os = "windows")]
in_file: File,
}
impl ExtcapControlReader {
/// Creates a new instance of [`ExtcapControlReader`].
///
/// * `in_path`: The path of the extcap control pipe passed with
/// `--extcap-control-in`.
#[cfg(not(target_os = "windows"))]
pub async fn new(in_path: &Path) -> Self {
Self {
in_file: tokio::net::unix::pipe::OpenOptions::new()
.open_receiver(in_path)
.unwrap(),
}
}
/// Creates a new instance of [`ExtcapControlReader`].
///
/// * `in_path`: The path of the extcap control pipe passed with
/// `--extcap-control-in`.
#[cfg(target_os = "windows")]
pub async fn new(in_path: &Path) -> Self {
Self {
in_file: File::open(in_path).await.unwrap(),
}
}
/// Read one control packet, awaiting until the packet arrives. Since the
/// control packet pipe is expected to stay open for the entire duration of
/// the extcap program, if the pipe is closed prematurely in this function
/// here, `UnexpectedEof` will be returned.
pub async fn read_control_packet(
&mut self,
) -> Result<ControlPacket<'static>, ReadControlError> {
let header_bytes = self
.in_file
.try_read_exact::<6>()
.await?
.ok_or_else(|| std::io::Error::from(std::io::ErrorKind::UnexpectedEof))?;
debug!(
"Read header bytes from incoming control message, now parsing... {:?}",
header_bytes
);
let (_rem, packet) = match ControlPacket::parse(&header_bytes) {
Ok((rem, packet)) => (rem, packet.into_owned()),
Err(nom::Err::Incomplete(nom::Needed::Size(size))) => {
let mut payload_bytes = vec![0_u8; size.get()];
self.in_file.read_exact(&mut payload_bytes).await?;
let all_bytes = [header_bytes.as_slice(), payload_bytes.as_slice()].concat();
ControlPacket::parse(&all_bytes)
.map(|(_, packet)| (&[][..], packet.into_owned()))
.unwrap_or_else(|e| panic!("Unable to parse header packet: {e}"))
}
Err(e) => Err(ReadControlError::ParseError(e.to_string()))?,
};
debug!("Parsed incoming control message: {packet:?}");
Ok(packet)
}
}
const UNUSED_CONTROL_NUMBER: u8 = 255;
/// Sender for extcap control packets. These control packets controls the UI
/// generated by Wireshark. This trait also provides convenience functions for
/// sending control packets formatted for particular usages like `info_message`
/// and `status_message`. For other functions controlling various toolbar
/// controls, see the methods in the [`control`][crate::controls] module instead.
#[async_trait]
pub trait ExtcapControlSenderTrait: Send + Sync + Sized {
/// Sends the given `packet` by writing it to the given output file (or
/// fifo).
async fn send(self, packet: ControlPacket<'_>) -> Result<(), tokio::io::Error>;
/// Shows a message in an information dialog popup. The message will show on
/// the screen until the user dismisses the popup.
async fn info_message(self, message: &str) -> Result<(), tokio::io::Error> {
self.send(ControlPacket::new_with_payload(
UNUSED_CONTROL_NUMBER,
ControlCommand::InformationMessage,
message.as_bytes(),
))
.await
}
/// Shows a message in a warning dialog popup. The message will show on the
/// screen until the user dismisses the popup.
async fn warning_message(self, message: &str) -> Result<(), tokio::io::Error> {
self.send(ControlPacket::new_with_payload(
UNUSED_CONTROL_NUMBER,
ControlCommand::WarningMessage,
message.as_bytes(),
))
.await
}
/// Shows a message in an error dialog popup. The message will show on the
/// screen until the user dismisses the popup.
async fn error_message(self, message: &str) -> Result<(), tokio::io::Error> {
self.send(ControlPacket::new_with_payload(
UNUSED_CONTROL_NUMBER,
ControlCommand::ErrorMessage,
message.as_bytes(),
))
.await
}
/// Shows a message in the status bar at the bottom of the Wireshark window.
/// When the message is shown, the status bar will also flash yellow to
/// bring it to the user's attention. The message will stay on the status
/// bar for a few seconds, or until another message overwrites it.
async fn status_message(self, message: &str) -> Result<(), tokio::io::Error> {
self.send(ControlPacket::new_with_payload(
UNUSED_CONTROL_NUMBER,
ControlCommand::StatusbarMessage,
message.as_bytes(),
))
.await
}
}
/// A sender for the extcap control packets. `out_file` should be the file given
/// by the `--extcap-control-out` flag.
pub struct ExtcapControlSender {
#[cfg(not(target_os = "windows"))]
out_file: Sender,
#[cfg(target_os = "windows")]
out_file: File,
}
impl ExtcapControlSender {
#[cfg(not(target_os = "windows"))]
/// Creates a new instance of [`ExtcapControlSender`].
///
/// * `out_path`: The path specified by the `--extcap-control-out` flag.
pub async fn new(out_path: &Path) -> Self {
use std::time::Duration;
for i in 0..50 {
match tokio::net::unix::pipe::OpenOptions::new().open_sender(out_path) {
Ok(out_file) => return Self { out_file },
Err(e) => {
if let Some(libc::ENXIO) = e.raw_os_error() {
// This seems sketchy, but the docs for pipe::Sender says "The file is a
// FIFO, but no process has it open for reading. Sleep for a while and try
// again"
// https://docs.rs/tokio/latest/tokio/net/unix/pipe/struct.Sender.html
tokio::time::sleep(Duration::from_millis(i * 100)).await;
} else {
panic!("{e:?}");
}
}
};
}
panic!("Failed waiting for extcap-control-out to be opened");
}
#[cfg(target_os = "windows")]
/// Creates a new instance of [`ExtcapControlSender`].
///
/// * `out_path`: The path specified by the `--extcap-control-out` flag.
pub async fn new(out_path: &Path) -> Self {
Self {
out_file: File::create(out_path).await.unwrap(),
}
}
}
#[async_trait]
impl<'a> ExtcapControlSenderTrait for &'a mut ExtcapControlSender {
async fn send(self, packet: ControlPacket<'_>) -> Result<(), tokio::io::Error> {
debug!("Sending extcap control message: {packet:#?}");
self.out_file.write_all(&packet.to_header_bytes()).await?;
self.out_file.write_all(&packet.payload).await?;
self.out_file.flush().await?;
Ok(())
}
}
/// An implementation of ExtcapControlSenderTrait that is no-op when the
/// `Option` is `None`. Since Wireshark may not include the
/// `--extcap-control-out` flag (e.g. when no controls are returned during
/// `--extcap-interfaces`, or when running in tshark), this allows an easier but
/// less efficient way to say `option_extcap_sender.status_message(...)` without
/// constantly checking for the option.
#[async_trait]
impl<T> ExtcapControlSenderTrait for &mut Option<T>
where
T: Send + Sync,
for<'a> &'a mut T: ExtcapControlSenderTrait,
{
async fn send(self, packet: ControlPacket<'_>) -> Result<(), tokio::io::Error> {
if let Some(s) = self {
s.send(packet).await
} else {
Ok(())
}
}
}
/// Just for syntactic niceness when working with a control sender behind a
/// mutex. This usage allows the sender to be locked only for the duration of
/// that one control packet, so it can be interleaved in between other async
/// function calls.
#[async_trait]
impl<T> ExtcapControlSenderTrait for &Mutex<T>
where
T: Send,
for<'a> &'a mut T: ExtcapControlSenderTrait,
{
/// Sends a control message to Wireshark.
async fn send(self, packet: ControlPacket<'_>) -> Result<(), tokio::io::Error> {
self.lock().await.send(packet).await
}
}