1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
#![allow(clippy::many_single_char_names)]

use num_traits::{FromPrimitive, ToPrimitive};
use std::convert::TryFrom;

use crate::quirc::*;
use crate::version_db::*;
use crate::DecodeError;

#[derive(Copy, Clone)]
struct Datastream {
    raw: [u8; 8896],
    data_bits: i32,
    ptr: i32,
    data: [u8; 8896],
}

/// Galois Field.
#[derive(Copy, Clone)]
struct GaloisField {
    p: i32,
    log: &'static [u8],
    exp: &'static [u8],
}

static GF16_EXP: [u8; 16] = [
    0x1, 0x2, 0x4, 0x8, 0x3, 0x6, 0xc, 0xb, 0x5, 0xa, 0x7, 0xe, 0xf, 0xd, 0x9, 0x1,
];
static GF16_LOG: [u8; 16] = [
    0, 0xf, 0x1, 0x4, 0x2, 0x8, 0x5, 0xa, 0x3, 0xe, 0x9, 0x7, 0x6, 0xd, 0xb, 0xc,
];

static GF16: GaloisField = GaloisField {
    p: 15,
    log: &GF16_LOG,
    exp: &GF16_EXP,
};

static GF256_EXP: [u8; 256] = [
    0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
    0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9, 0x8f, 0x3, 0x6, 0xc, 0x18, 0x30, 0x60, 0xc0,
    0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35, 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
    0x46, 0x8c, 0x5, 0xa, 0x14, 0x28, 0x50, 0xa0, 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
    0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc, 0x65, 0xca, 0x89, 0xf, 0x1e, 0x3c, 0x78, 0xf0,
    0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f, 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
    0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88, 0xd, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
    0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93, 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
    0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9, 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
    0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa, 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
    0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e, 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
    0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4, 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
    0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x7, 0xe, 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
    0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef, 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x9,
    0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5, 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0xb, 0x16,
    0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83, 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x1,
];
static GF256_LOG: [u8; 256] = [
    0, 0xff, 0x1, 0x19, 0x2, 0x32, 0x1a, 0xc6, 0x3, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b, 0x4,
    0x64, 0xe0, 0xe, 0x34, 0x8d, 0xef, 0x81, 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x8, 0x4c, 0x71, 0x5,
    0x8a, 0x65, 0x2f, 0xe1, 0x24, 0xf, 0x21, 0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45, 0x1d,
    0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9, 0xc9, 0x9a, 0x9, 0x78, 0x4d, 0xe4, 0x72, 0xa6, 0x6,
    0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd, 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88, 0x36,
    0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd, 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40, 0x1e,
    0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e, 0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d, 0xca,
    0x5e, 0x9b, 0x9f, 0xa, 0x15, 0x79, 0x2b, 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57, 0x7,
    0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0xd, 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18, 0xe3,
    0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c, 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e, 0x37,
    0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd, 0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61, 0xf2,
    0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e, 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2, 0x1f,
    0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76, 0xc4, 0x17, 0x49, 0xec, 0x7f, 0xc, 0x6f, 0xf6, 0x6c,
    0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa, 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a, 0xcb,
    0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51, 0xb, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7, 0x4f,
    0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8, 0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf,
];

static GF256: GaloisField = GaloisField {
    p: 255,
    log: &GF256_LOG,
    exp: &GF256_EXP,
};

// -- Polynomial operations

fn poly_add(dst: &mut [u8], src: &[u8], c: u8, shift: i32, gf: &GaloisField) {
    if c == 0 {
        return;
    }

    let log_c = gf.log[c as usize] as i32;
    for (i, v) in src.iter().enumerate() {
        let p = i + shift as usize;

        if p >= 64 {
            continue;
        }
        if *v == 0 {
            continue;
        }

        dst[p] ^= (gf.exp[((gf.log[*v as usize] as i32 + log_c) % gf.p) as usize] as i32) as u8;
    }
}

fn poly_eval(s: &[u8], x: u8, gf: &GaloisField) -> u8 {
    if x == 0 {
        return s[0];
    }

    let mut sum = 0;
    let log_x = gf.log[x as usize];

    for i in 0..64 {
        let c = s[i as usize];
        if c == 0 {
            continue;
        }
        sum ^= gf.exp[((gf.log[c as usize] as i32 + log_x as i32 * i) % gf.p) as usize] as u8
    }

    sum
}

/// Berlekamp-Massey algorithm for finding error locator polynomials.
#[allow(non_snake_case)]
fn berlekamp_massey(s: &[u8], n: usize, gf: &GaloisField, sigma: &mut [u8]) {
    let mut C: [u8; 64] = [0; 64];
    let mut B: [u8; 64] = [0; 64];
    let mut L = 0;
    let mut m = 1;
    let mut b = 1;

    B[0] = 1;
    C[0] = 1;

    for n in 0..n {
        let mut d = s[n];
        let mult: u8;
        for i in 1..=L {
            if C[i] as i32 != 0 && s[n - i] as i32 != 0 {
                let a = gf.log[C[i] as usize] as usize;
                let b = gf.log[s[n - i] as usize] as usize;
                let index = (a + b) % gf.p as usize;

                d ^= gf.exp[index] as u8;
            }
        }

        mult = gf.exp
            [((gf.p - gf.log[b as usize] as i32 + gf.log[d as usize] as i32) % gf.p) as usize];

        if d == 0 {
            m += 1
        } else if L * 2 <= n {
            let T = C;
            poly_add(&mut C, &B, mult, m, gf);
            B.copy_from_slice(&T);
            L = n + 1 - L;
            b = d;
            m = 1
        } else {
            poly_add(&mut C, &B, mult, m, gf);
            m += 1
        }
    }

    sigma[..64].copy_from_slice(&C);
}

/// Code stream error correction
///
/// Generator polynomial for GF(2^8) is x^8 + x^4 + x^3 + x^2 + 1
fn block_syndromes(data: &[u8], bs: i32, npar: usize, s: &mut [u8]) -> i32 {
    for val in s.iter_mut().take(64) {
        *val = 0;
    }

    let mut nonzero = 0;

    for i in 0..npar {
        for j in 0..bs {
            let c = data[(bs - j - 1) as usize];
            if c == 0 {
                continue;
            }
            s[i] ^= GF256_EXP[((GF256_LOG[c as usize] as i32 + i as i32 * j) % 255) as usize] as u8;
        }

        if s[i] != 0 {
            nonzero = 1;
        }
    }

    nonzero
}

fn eloc_poly(omega: &mut [u8], s: &[u8], sigma: &[u8], npar: usize) {
    for val in omega.iter_mut().take(64) {
        *val = 0;
    }

    for i in 0..npar {
        let a = sigma[i];
        let log_a = GF256_LOG[a as usize];
        if a == 0 {
            continue;
        }
        for j in 0..64 - 1 {
            let b = s[j + 1];
            if i + j >= npar {
                break;
            }
            if b == 0 {
                continue;
            }

            omega[i + j] ^=
                GF256_EXP[((log_a as i32 + GF256_LOG[b as usize] as i32) % 255) as usize] as u8;
        }
    }
}

fn correct_block(data: &mut [u8], ecc: &RsParams) -> Result<(), DecodeError> {
    let npar = ecc.bs as usize - ecc.dw as usize;
    let mut s: [u8; 64] = [0; 64];
    let mut sigma: [u8; 64] = [0; 64];
    let mut sigma_deriv: [u8; 64] = [0; 64];
    let mut omega: [u8; 64] = [0; 64];
    /* Compute syndrome vector */
    if block_syndromes(data, ecc.bs, npar, &mut s) == 0 {
        return Ok(());
    }
    berlekamp_massey(&s, npar, &GF256, &mut sigma);
    /* Compute derivative of sigma */
    let mut i = 0;
    while i + 1 < 64 {
        sigma_deriv[i as usize] = sigma[(i + 1) as usize];
        i += 2
    }
    /* Compute error evaluator polynomial */
    eloc_poly(&mut omega, &s, &sigma, npar - 1);

    /* Find error locations and magnitudes */
    i = 0;
    while i < ecc.bs {
        let xinv = GF256_EXP[(255 - i) as usize];
        if poly_eval(&sigma, xinv, &GF256) == 0 {
            let sd_x = poly_eval(&sigma_deriv, xinv, &GF256);
            let omega_x = poly_eval(&omega, xinv, &GF256);
            let error = GF256_EXP[((255 - GF256_LOG[sd_x as usize] as i32
                + GF256_LOG[omega_x as usize] as i32)
                % 255) as usize];

            let index = (ecc.bs - i - 1) as usize;
            data[index] ^= error as u8;
        }
        i += 1
    }
    if block_syndromes(data, ecc.bs, npar, &mut s) != 0 {
        return Err(DecodeError::DataEcc);
    }
    Ok(())
}

fn format_syndromes(u: u16, s: &mut [u8]) -> i32 {
    let mut nonzero = 0;
    for val in s.iter_mut().take(64) {
        *val = 0;
    }
    let mut i = 0;
    while i < 3 * 2 {
        s[i] = 0;
        for j in 0..15 {
            if u as i32 & 1 << j != 0 {
                s[i] ^= GF16_EXP[((i + 1) * j % 15) as usize] as u8;
            }
        }

        if s[i] != 0 {
            nonzero = 1;
        }
        i += 1
    }

    nonzero
}

fn correct_format(f_ret: &mut u16) -> Result<(), DecodeError> {
    let mut u: u16 = *f_ret;
    let mut s: [u8; 64] = [0; 64];
    let mut sigma: [u8; 64] = [0; 64];

    /* Evaluate U (received codeword) at each of alpha_1 .. alpha_6
     * to get S_1 .. S_6 (but we index them from 0).
     */
    if format_syndromes(u, &mut s) == 0 {
        return Ok(());
    }
    berlekamp_massey(&s, 3 * 2, &GF16, &mut sigma);

    /* Now, find the roots of the polynomial */
    for i in 0..15 {
        if poly_eval(&sigma, GF16_EXP[(15 - i) as usize], &GF16) == 0 {
            u ^= (1 << i) as u16;
        }
    }

    if format_syndromes(u, &mut s) != 0 {
        return Err(DecodeError::FormatEcc);
    }
    *f_ret = u;

    Ok(())
}

#[inline]
fn grid_bit(code: &Code, x: i32, y: i32) -> i32 {
    let p: i32 = y * code.size + x;
    code.cell_bitmap[(p >> 3) as usize] as i32 >> (p & 7) & 1
}

fn read_format(code: &Code, data: &mut Data, which: i32) -> Result<(), DecodeError> {
    let mut format: u16 = 0 as u16;
    if which != 0 {
        for i in 0..7 {
            format = ((format as i32) << 1 | grid_bit(code, 8, code.size - 1 - i)) as u16;
        }
        for i in 0..8 {
            format = ((format as i32) << 1 | grid_bit(code, code.size - 8 + i, 8)) as u16;
        }
    } else {
        static XS: [i32; 15] = [8, 8, 8, 8, 8, 8, 8, 8, 7, 5, 4, 3, 2, 1, 0];
        static YS: [i32; 15] = [0, 1, 2, 3, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 8];

        for i in (0..=14).rev() {
            format = ((format as i32) << 1 | grid_bit(code, XS[i as usize], YS[i as usize])) as u16;
        }
    }
    format ^= 0x5412;

    correct_format(&mut format)?;

    let fdata = (format as i32 >> 10) as u16;
    data.ecc_level = EccLevel::from_i32(fdata as i32 >> 3).unwrap();
    data.mask = fdata as i32 & 7;

    Ok(())
}

fn mask_bit(mask: i32, i: i32, j: i32) -> i32 {
    match mask {
        0 => ((i + j) % 2 == 0) as i32,
        1 => (i % 2 == 0) as i32,
        2 => (j % 3 == 0) as i32,
        3 => ((i + j) % 3 == 0) as i32,
        4 => ((i / 2 + j / 3) % 2 == 0) as i32,
        5 => (i * j % 2 + i * j % 3 == 0) as i32,
        6 => ((i * j % 2 + i * j % 3) % 2 == 0) as i32,
        7 => ((i * j % 3 + (i + j) % 2) % 2 == 0) as i32,
        _ => 0,
    }
}

fn reserved_cell(version: usize, i: i32, j: i32) -> i32 {
    let ver = &VERSION_DB[version];
    let size = version as i32 * 4 + 17;
    let mut ai: i32 = -1;
    let mut aj: i32 = -1;
    /* Finder + format: top left */
    if i < 9 && j < 9 {
        return 1;
    }
    /* Finder + format: bottom left */
    if i + 8 >= size && j < 9 {
        return 1;
    }
    /* Finder + format: top right */
    if i < 9 && j + 8 >= size {
        return 1;
    }
    /* Exclude timing patterns */
    if i == 6 || j == 6 {
        return 1;
    }
    /* Exclude version info, if it exists. Version info sits adjacent to
     * the top-right and bottom-left finders in three rows, bounded by
     * the timing pattern.
     */
    if version >= 7 {
        if i < 6 && j + 11 >= size {
            return 1;
        }
        if i + 11 >= size && j < 6 {
            return 1;
        }
    }
    /* Exclude alignment patterns */
    let mut a = 0;
    while a < 7 && ver.apat[a as usize] != 0 {
        let p: i32 = ver.apat[a as usize];
        if (p - i).abs() < 3 {
            ai = a
        }
        if (p - j).abs() < 3 {
            aj = a
        }
        a += 1
    }
    if ai >= 0 && aj >= 0 {
        a -= 1;
        if ai > 0 && ai < a {
            return 1;
        }
        if aj > 0 && aj < a {
            return 1;
        }
        if aj == a && ai == a {
            return 1;
        }
    }

    0
}

fn read_bit(code: &Code, data: &mut Data, mut ds: &mut Datastream, i: i32, j: i32) {
    let bitpos: i32 = ds.data_bits & 7;
    let bytepos: i32 = ds.data_bits >> 3;
    let mut v: i32 = grid_bit(code, j, i);
    if mask_bit(data.mask, i, j) != 0 {
        v ^= 1
    }
    if v != 0 {
        ds.raw[bytepos as usize] = (ds.raw[bytepos as usize] as i32 | 0x80 >> bitpos) as u8;
    }
    ds.data_bits += 1;
}

fn read_data(code: &Code, data: &mut Data, ds: &mut Datastream) {
    let mut y: i32 = code.size - 1;
    let mut x: i32 = code.size - 1;
    let mut dir: i32 = -1;
    while x > 0 {
        if x == 6 {
            x -= 1
        }
        if reserved_cell(data.version, y, x) == 0 {
            read_bit(code, data, ds, y, x);
        }
        if reserved_cell(data.version, y, x - 1) == 0 {
            read_bit(code, data, ds, y, x - 1);
        }
        y += dir;
        if y < 0 || y >= code.size {
            dir = -dir;
            x -= 2;
            y += dir
        }
    }
}

fn codestream_ecc(data: &mut Data, mut ds: &mut Datastream) -> Result<(), DecodeError> {
    let ver = &VERSION_DB[data.version as usize];
    let sb_ecc = &ver.ecc[data.ecc_level as usize];

    let lb_count = (ver.data_bytes - sb_ecc.bs * sb_ecc.ns) / (sb_ecc.bs + 1);
    let bc = lb_count + sb_ecc.ns;
    let ecc_offset = sb_ecc.dw * bc + lb_count;
    let mut dst_offset = 0;

    let mut lb_ecc = sb_ecc.clone();
    lb_ecc.dw += 1;
    lb_ecc.bs += 1;

    for i in 0..bc {
        let dst = &mut ds.data[dst_offset as usize..];
        let ecc = if i < sb_ecc.ns { sb_ecc } else { &lb_ecc };
        let num_ec = ecc.bs - ecc.dw;
        for j in 0..ecc.dw {
            dst[j as usize] = ds.raw[(j * bc + i) as usize];
        }
        for j in 0..num_ec {
            dst[(ecc.dw + j) as usize] = ds.raw[(ecc_offset + j * bc + i) as usize];
        }

        correct_block(dst, ecc)?;
        dst_offset += ecc.dw;
    }

    ds.data_bits = dst_offset * 8;
    Ok(())
}

#[inline]
fn bits_remaining(ds: &Datastream) -> i32 {
    ds.data_bits - ds.ptr
}

fn take_bits(mut ds: &mut Datastream, mut len: i32) -> i32 {
    let mut ret: i32 = 0;
    while len != 0 && ds.ptr < ds.data_bits {
        let b: u8 = ds.data[(ds.ptr >> 3) as usize];
        let bitpos: i32 = ds.ptr & 7;
        ret <<= 1;
        if (b as i32) << bitpos & 0x80 != 0 {
            ret |= 1
        }
        ds.ptr += 1;
        len -= 1
    }

    ret
}

fn numeric_tuple(data: &mut Data, ds: &mut Datastream, bits: i32, digits: usize) -> i32 {
    if bits_remaining(ds) < bits {
        return -1;
    }
    let mut tuple = take_bits(ds, bits);
    let len = data.payload.len();
    data.payload.resize(len + digits, 0);

    for val in data.payload[len..].iter_mut().rev() {
        *val = (tuple % 10 + '0' as i32) as u8;
        tuple /= 10;
    }

    0
}

fn decode_numeric(data: &mut Data, ds: &mut Datastream) -> Result<(), DecodeError> {
    let mut bits: i32 = 14;
    if data.version < 10 {
        bits = 10;
    } else if data.version < 27 {
        bits = 12;
    }
    let mut count = take_bits(ds, bits);
    if data.payload.len() + count as usize + 1 > 8896 {
        return Err(DecodeError::DataOverflow);
    }
    while count >= 3 {
        if numeric_tuple(data, ds, 10, 3) < 0 {
            return Err(DecodeError::DataUnderflow);
        }
        count -= 3;
    }
    if count >= 2 {
        if numeric_tuple(data, ds, 7, 2) < 0 {
            return Err(DecodeError::DataUnderflow);
        }
        count -= 2;
    }

    if count != 0 && numeric_tuple(data, ds, 4, 1) < 0 {
        return Err(DecodeError::DataUnderflow);
    }

    Ok(())
}

fn alpha_tuple(data: &mut Data, ds: &mut Datastream, bits: i32, digits: usize) -> i32 {
    if bits_remaining(ds) < bits {
        return -1;
    }
    let mut tuple = take_bits(ds, bits);
    static ALPHA_MAP: &[u8] = b"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";

    let len = data.payload.len();
    data.payload.resize(len + digits, 0);

    for val in data.payload[len..].iter_mut().rev() {
        *val = ALPHA_MAP[(tuple % 45) as usize] as u8;
        tuple /= 45;
    }

    0
}

fn decode_alpha(data: &mut Data, ds: &mut Datastream) -> Result<(), DecodeError> {
    let mut bits: i32 = 13;
    if data.version < 10 {
        bits = 9
    } else if data.version < 27 {
        bits = 11
    }
    let mut count = take_bits(ds, bits);
    if data.payload.len() + count as usize + 1 > 8896 {
        return Err(DecodeError::DataOverflow);
    }
    while count >= 2 {
        if alpha_tuple(data, ds, 11, 2) < 0 {
            return Err(DecodeError::DataUnderflow);
        }
        count -= 2
    }
    if count != 0 && alpha_tuple(data, ds, 6, 1) < 0 {
        return Err(DecodeError::DataUnderflow);
    }

    Ok(())
}

fn decode_byte(data: &mut Data, ds: &mut Datastream) -> Result<(), DecodeError> {
    let bits = if data.version < 10 { 8 } else { 16 };
    let count = take_bits(ds, bits);
    if data.payload.len() + count as usize + 1 > 8896 {
        return Err(DecodeError::DataOverflow);
    }
    if bits_remaining(ds) < count * 8 {
        return Err(DecodeError::DataUnderflow);
    }

    for _i in 0..count {
        data.payload.push(take_bits(ds, 8) as u8);
    }

    Ok(())
}

fn decode_kanji(data: &mut Data, ds: &mut Datastream) -> Result<(), DecodeError> {
    let mut bits = 12;
    if data.version < 10 {
        bits = 8;
    } else if data.version < 27 {
        bits = 10;
    }

    let count = take_bits(ds, bits);
    if data.payload.len() + count as usize * 2 + 1 > 8896 {
        return Err(DecodeError::DataOverflow);
    }
    if bits_remaining(ds) < count * 13 {
        return Err(DecodeError::DataUnderflow);
    }

    for _i in 0..count {
        let d = take_bits(ds, 13);
        let msb = d / 0xc0;
        let lsb = d % 0xc0;
        let intermediate = msb << 8 | lsb;
        let sjw = if intermediate + 0x8140 <= 0x9ffc {
            /* bytes are in the range 0x8140 to 0x9FFC */
            (intermediate + 0x8140) as u16
        } else {
            /* bytes are in the range 0xE040 to 0xEBBF */
            (intermediate + 0xc140) as u16
        };

        data.payload.push((sjw as i32 >> 8) as u8);
        data.payload.push((sjw as i32 & 0xff) as u8);
    }

    Ok(())
}

fn decode_eci(mut data: &mut Data, ds: &mut Datastream) -> Result<(), DecodeError> {
    if bits_remaining(ds) < 8 {
        return Err(DecodeError::DataUnderflow);
    }
    data.eci = Eci::from_u32(take_bits(ds, 8) as u32);
    if data.eci.and_then(|e| e.to_u32()).unwrap_or_default() & 0xc0 as u32 == 0x80 as u32 {
        if bits_remaining(ds) < 8 {
            return Err(DecodeError::DataUnderflow);
        }
        data.eci = Eci::from_u32(
            data.eci.and_then(|e| e.to_u32()).unwrap_or_default() << 8 | take_bits(ds, 8) as u32,
        );
    } else if data.eci.and_then(|e| e.to_u32()).unwrap_or_default() & 0xe0 as u32 == 0xc0 as u32 {
        if bits_remaining(ds) < 16 {
            return Err(DecodeError::DataUnderflow);
        }
        data.eci = Eci::from_u32(
            data.eci.and_then(|e| e.to_u32()).unwrap_or_default() << 16 | take_bits(ds, 16) as u32,
        );
    }

    Ok(())
}

fn decode_payload(mut data: &mut Data, ds: &mut Datastream) -> Result<(), DecodeError> {
    while bits_remaining(ds) >= 4 {
        let type_0 = DataType::from_i32(take_bits(ds, 4));
        match type_0 {
            Some(DataType::Numeric) => decode_numeric(data, ds)?,
            Some(DataType::Alpha) => decode_alpha(data, ds)?,
            Some(DataType::Byte) => decode_byte(data, ds)?,
            Some(DataType::Kanji) => decode_kanji(data, ds)?,
            Some(DataType::Eci) => decode_eci(data, ds)?,
            _ => {
                break;
            }
        }

        let t = type_0.map(|t| t as i32).unwrap_or_default();
        let d = data.data_type.map(|t| t as i32).unwrap_or_default();
        if t & (t - 1) == 0 && t > d {
            data.data_type = type_0;
        }
    }

    Ok(())
}

impl Code {
    /// Decode a QR-code, returning the payload data.
    pub fn decode(&self) -> Result<Data, DecodeError> {
        let mut ds: Datastream = Datastream {
            raw: [0; 8896],
            data_bits: 0,
            ptr: 0,
            data: [0; 8896],
        };

        if (self.size - 17) % 4 != 0 {
            return Err(DecodeError::InvalidGridSize);
        }

        let mut data = Data::default();
        data.version =
            usize::try_from((self.size - 17) / 4).map_err(|_| DecodeError::InvalidVersion)?;
        if data.version < VERSION_MIN || data.version > VERSION_MAX {
            return Err(DecodeError::InvalidVersion);
        }

        /* Read format information -- try both locations */
        let mut res = read_format(self, &mut data, 0);
        if res.is_err() {
            res = read_format(self, &mut data, 1);
        }
        res?;

        read_data(self, &mut data, &mut ds);
        codestream_ecc(&mut data, &mut ds)?;
        decode_payload(&mut data, &mut ds)?;

        Ok(data)
    }
}