1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
//! Now we can draw all manner of colorful geometry, but that's not enough for an interesting
//! application.
//!
//! If we wanted to add keyboard support to our previous example, so that the user can use the left
//! and right arrow keys to move the square back ond forth, it would look like this:
//! ```no_run
//! extern crate quicksilver;
//!
//! use quicksilver::{
//!     Result,
//!     geom::{Rectangle, Vector},
//!     graphics::{Background, Color},
//!     input::Key, // We need the Key enum
//!     lifecycle::{State, Window, run}
//! };
//!
//! struct Screen {
//!     position: Vector // We need to store the position as state
//! }
//!
//! impl State for Screen {
//!     fn new() -> Result<Screen> {
//!         Ok(Screen {
//!             position: Vector::new(50, 50)
//!         })
//!     }
//!
//!     fn update(&mut self, window: &mut Window) -> Result<()> {
//!         if window.keyboard()[Key::Right].is_down() {
//!             self.position.x += 2.5;
//!         }
//!         if window.keyboard()[Key::Left].is_down() {
//!             self.position.x -= 2.5;
//!         }
//!         Ok(())
//!     }
//!
//!     fn draw(&mut self, window: &mut Window) -> Result<()> {
//!         window.clear(Color::WHITE)?;
//!         window.draw(&Rectangle::new(self.position, (100, 200)), Background::Col(Color::RED));
//!         Ok(())
//!     }
//! }
//!
//! fn main() {
//!     run::<Screen>("Hello World", Vector::new(800, 600), Default::default());
//! }
//! ```
//! Now we have very basic keyboard input controls. Every frame that the right arrow is held down,
//! the box will move 2.5 pixels to the right, and the same for left.
//!
//! The input API generally follows this principal: an input source is indexed by a button enum,
//! and returns a `ButtonState` enum. A button state can be `Pressed`, `Held`, `Released` or
//! `NotPressed`, and a convenience method `is_down` checks if the button is either pressed or
//! held. 
//!
//! If we wanted to give the user more freedom, and allow them to use the mouse buttons or gamepad triggers instead of the arrow
//! keys, we could do that fairly easily:
//! ```no_run
//! extern crate quicksilver;
//!
//! use quicksilver::{
//!     Result,
//!     geom::{Rectangle, Vector},
//!     graphics::{Background, Color},
//!     input::{GamepadButton, Key, MouseButton}, // We need the mouse and gamepad buttons
//!     lifecycle::{State, Window, run}
//! };
//!
//! struct Screen {
//!     position: Vector // We need to store the position as state
//! }
//!
//! impl State for Screen {
//!     fn new() -> Result<Screen> {
//!         Ok(Screen {
//!             position: Vector::new(50, 50)
//!         })
//!     }
//!
//!     fn update(&mut self, window: &mut Window) -> Result<()> {
//!         if window.keyboard()[Key::Right].is_down() ||
//!             window.mouse()[MouseButton::Right].is_down() ||
//!             window.gamepads().iter().any(|pad| pad[GamepadButton::TriggerRight].is_down())
//!             {
//!             self.position.x += 2.5;
//!         }
//!         if window.keyboard()[Key::Left].is_down() ||
//!             window.mouse()[MouseButton::Left].is_down() ||
//!             window.gamepads().iter().any(|pad| pad[GamepadButton::TriggerLeft].is_down())
//!             {
//!             self.position.x -= 2.5;
//!         }
//!         Ok(())
//!     }
//!
//!     fn draw(&mut self, window: &mut Window) -> Result<()> {
//!         window.clear(Color::WHITE)?;
//!         window.draw(&Rectangle::new(self.position, (100, 200)), Background::Col(Color::RED));
//!         Ok(())
//!     }
//! }
//!
//! fn main() {
//!     run::<Screen>("Hello World", Vector::new(800, 600), Default::default());
//! }
//! ```
//! Unlike mice and keyboards, which generally are one-per-system, a machine may have many gamepads
//! connected. More advanced applications may wish to assign specific gamepads to specific
//! The input API generally follows this principal: an input source is indexed by a button enum,
//! and returns a `ButtonState` enum. A button state can be `Pressed`, `Held`, `Released` or
//! `NotPressed`, and a convenience method `is_down` checks if the button is either pressed or
//! held. 
//! functions or specific users, but for our case checking against any gamepad does just fine.
//!
//! If we want to only apply an effect once per input submission, we have two options. One is to
//! check if the button state is exactly `Pressed`: that is, the button was not pressed the last
//! update, but now is. The other is to implement the `event` method of State, and listen for a
//! keypress event. To compare, here is an implementation that checks for `Pressed` for up and uses
//! an event for down:
//! ```no_run
//! extern crate quicksilver;
//!
//! use quicksilver::{
//!     Result,
//!     geom::{Rectangle, Vector},
//!     graphics::{Background, Color},
//!     input::{ButtonState, GamepadButton, Key, MouseButton}, // We need to match ButtonState
//!     lifecycle::{Event, State, Window, run} // We need to match against Event
//! };
//!
//! struct Screen {
//!     position: Vector // We need to store the position as state
//! }
//!
//! impl State for Screen {
//!     fn new() -> Result<Screen> {
//!         Ok(Screen {
//!             position: Vector::new(50, 50)
//!         })
//!     }
//!
//!     fn event(&mut self, event: &Event, window: &mut Window) -> Result<()> {
//!         if let Event::Key(Key::Down, ButtonState::Pressed) = event {
//!             self.position.y += 10.0;
//!         }
//!         Ok(())
//!     }
//!
//!     fn update(&mut self, window: &mut Window) -> Result<()> {
//!         if window.keyboard()[Key::Right].is_down() ||
//!             window.mouse()[MouseButton::Right].is_down() ||
//!             window.gamepads().iter().any(|pad| pad[GamepadButton::TriggerRight].is_down())
//!             {
//!             self.position.x += 2.5;
//!         }
//!         if window.keyboard()[Key::Left].is_down() ||
//!             window.mouse()[MouseButton::Left].is_down() ||
//!             window.gamepads().iter().any(|pad| pad[GamepadButton::TriggerLeft].is_down())
//!             {
//!             self.position.x -= 2.5;
//!         }
//!         if window.keyboard()[Key::Up] == ButtonState::Pressed {
//!             self.position.y -= 10.0;
//!         }
//!         Ok(())
//!     }
//!
//!     fn draw(&mut self, window: &mut Window) -> Result<()> {
//!         window.clear(Color::WHITE)?;
//!         window.draw(&Rectangle::new(self.position, (100, 200)), Background::Col(Color::RED));
//!         Ok(())
//!     }
//! }
//!
//! fn main() {
//!     run::<Screen>("Hello World", Vector::new(800, 600), Default::default());
//! }
//! ```