quick_xml/de/mod.rs
1//! Serde `Deserializer` module.
2//!
3//! Due to the complexity of the XML standard and the fact that Serde was developed
4//! with JSON in mind, not all Serde concepts apply smoothly to XML. This leads to
5//! that fact that some XML concepts are inexpressible in terms of Serde derives
6//! and may require manual deserialization.
7//!
8//! The most notable restriction is the ability to distinguish between _elements_
9//! and _attributes_, as no other format used by serde has such a conception.
10//!
11//! Due to that the mapping is performed in a best effort manner.
12//!
13//!
14//!
15//! Table of Contents
16//! =================
17//! - [Mapping XML to Rust types](#mapping-xml-to-rust-types)
18//! - [Basics](#basics)
19//! - [Optional attributes and elements](#optional-attributes-and-elements)
20//! - [Choices (`xs:choice` XML Schema type)](#choices-xschoice-xml-schema-type)
21//! - [Sequences (`xs:all` and `xs:sequence` XML Schema types)](#sequences-xsall-and-xssequence-xml-schema-types)
22//! - [Mapping of `xsi:nil`](#mapping-of-xsinil)
23//! - [Generate Rust types from XML](#generate-rust-types-from-xml)
24//! - [Composition Rules](#composition-rules)
25//! - [Enum Representations](#enum-representations)
26//! - [Normal enum variant](#normal-enum-variant)
27//! - [`$text` enum variant](#text-enum-variant)
28//! - [`$text` and `$value` special names](#text-and-value-special-names)
29//! - [`$text`](#text)
30//! - [`$value`](#value)
31//! - [Primitives and sequences of primitives](#primitives-and-sequences-of-primitives)
32//! - [Structs and sequences of structs](#structs-and-sequences-of-structs)
33//! - [Enums and sequences of enums](#enums-and-sequences-of-enums)
34//! - [Frequently Used Patterns](#frequently-used-patterns)
35//! - [`<element>` lists](#element-lists)
36//! - [Overlapped (Out-of-Order) Elements](#overlapped-out-of-order-elements)
37//! - [Internally Tagged Enums](#internally-tagged-enums)
38//!
39//!
40//!
41//! Mapping XML to Rust types
42//! =========================
43//!
44//! Type names are never considered when deserializing, so you can name your
45//! types as you wish. Other general rules:
46//! - `struct` field name could be represented in XML only as an attribute name
47//! or an element name;
48//! - `enum` variant name could be represented in XML only as an attribute name
49//! or an element name;
50//! - the unit struct, unit type `()` and unit enum variant can be deserialized
51//! from any valid XML content:
52//! - attribute and element names;
53//! - attribute and element values;
54//! - text or CDATA content (including mixed text and CDATA content).
55//!
56//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
57//!
58//! NOTE: All tests are marked with an `ignore` option, even though they do
59//! compile. This is because rustdoc marks such blocks with an information
60//! icon unlike `no_run` blocks.
61//!
62//! </div>
63//!
64//! <table>
65//! <thead>
66//! <tr><th colspan="2">
67//!
68//! ## Basics
69//!
70//! </th></tr>
71//! <tr><th>To parse all these XML's...</th><th>...use these Rust type(s)</th></tr>
72//! </thead>
73//! <tbody style="vertical-align:top;">
74//! <tr>
75//! <td>
76//! Content of attributes and text / CDATA content of elements (including mixed
77//! text and CDATA content):
78//!
79//! ```xml
80//! <... ...="content" />
81//! ```
82//! ```xml
83//! <...>content</...>
84//! ```
85//! ```xml
86//! <...><![CDATA[content]]></...>
87//! ```
88//! ```xml
89//! <...>text<![CDATA[cdata]]>text</...>
90//! ```
91//! Mixed text / CDATA content represents one logical string, `"textcdatatext"` in that case.
92//! </td>
93//! <td>
94//!
95//! You can use any type that can be deserialized from an `&str`, for example:
96//! - [`String`] and [`&str`]
97//! - [`Cow<str>`]
98//! - [`u32`], [`f32`] and other numeric types
99//! - `enum`s, like
100//! ```
101//! # use pretty_assertions::assert_eq;
102//! # use serde::Deserialize;
103//! # #[derive(Debug, PartialEq)]
104//! #[derive(Deserialize)]
105//! enum Language {
106//! Rust,
107//! Cpp,
108//! #[serde(other)]
109//! Other,
110//! }
111//! # #[derive(Debug, PartialEq, Deserialize)]
112//! # struct X { #[serde(rename = "$text")] x: Language }
113//! # assert_eq!(X { x: Language::Rust }, quick_xml::de::from_str("<x>Rust</x>").unwrap());
114//! # assert_eq!(X { x: Language::Cpp }, quick_xml::de::from_str("<x>C<![CDATA[p]]>p</x>").unwrap());
115//! # assert_eq!(X { x: Language::Other }, quick_xml::de::from_str("<x><![CDATA[other]]></x>").unwrap());
116//! ```
117//!
118//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
119//!
120//! NOTE: deserialization to non-owned types (i.e. borrow from the input),
121//! such as `&str`, is possible only if you parse document in the UTF-8
122//! encoding and content does not contain entity references such as `&`,
123//! or character references such as `
`, as well as text content represented
124//! by one piece of [text] or [CDATA] element.
125//! </div>
126//! <!-- TODO: document an error type returned -->
127//!
128//! [text]: Event::Text
129//! [CDATA]: Event::CData
130//! </td>
131//! </tr>
132//! <!-- 2 ===================================================================================== -->
133//! <tr>
134//! <td>
135//!
136//! Content of attributes and text / CDATA content of elements (including mixed
137//! text and CDATA content), which represents a space-delimited lists, as
138//! specified in the XML Schema specification for [`xs:list`] `simpleType`:
139//!
140//! ```xml
141//! <... ...="element1 element2 ..." />
142//! ```
143//! ```xml
144//! <...>
145//! element1
146//! element2
147//! ...
148//! </...>
149//! ```
150//! ```xml
151//! <...><![CDATA[
152//! element1
153//! element2
154//! ...
155//! ]]></...>
156//! ```
157//!
158//! [`xs:list`]: https://www.w3.org/TR/xmlschema11-2/#list-datatypes
159//! </td>
160//! <td>
161//!
162//! Use any type that deserialized using [`deserialize_seq()`] call, for example:
163//!
164//! ```
165//! type List = Vec<u32>;
166//! ```
167//!
168//! See the next row to learn where in your struct definition you should
169//! use that type.
170//!
171//! According to the XML Schema specification, delimiters for elements is one
172//! or more space (`' '`, `'\r'`, `'\n'`, and `'\t'`) character(s).
173//!
174//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
175//!
176//! NOTE: according to the XML Schema restrictions, you cannot escape those
177//! white-space characters, so list elements will _never_ contain them.
178//! In practice you will usually use `xs:list`s for lists of numbers or enumerated
179//! values which looks like identifiers in many languages, for example, `item`,
180//! `some_item` or `some-item`, so that shouldn't be a problem.
181//!
182//! NOTE: according to the XML Schema specification, list elements can be
183//! delimited only by spaces. Other delimiters (for example, commas) are not
184//! allowed.
185//!
186//! </div>
187//!
188//! [`deserialize_seq()`]: de::Deserializer::deserialize_seq
189//! </td>
190//! </tr>
191//! <!-- 3 ===================================================================================== -->
192//! <tr>
193//! <td>
194//! A typical XML with attributes. The root tag name does not matter:
195//!
196//! ```xml
197//! <any-tag one="..." two="..."/>
198//! ```
199//! </td>
200//! <td>
201//!
202//! A structure where each XML attribute is mapped to a field with a name
203//! starting with `@`. Because Rust identifiers do not permit the `@` character,
204//! you should use the `#[serde(rename = "@...")]` attribute to rename it.
205//! The name of the struct itself does not matter:
206//!
207//! ```
208//! # use serde::Deserialize;
209//! # type T = ();
210//! # type U = ();
211//! // Get both attributes
212//! # #[derive(Debug, PartialEq)]
213//! #[derive(Deserialize)]
214//! struct AnyName {
215//! #[serde(rename = "@one")]
216//! one: T,
217//!
218//! #[serde(rename = "@two")]
219//! two: U,
220//! }
221//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap();
222//! ```
223//! ```
224//! # use serde::Deserialize;
225//! # type T = ();
226//! // Get only the one attribute, ignore the other
227//! # #[derive(Debug, PartialEq)]
228//! #[derive(Deserialize)]
229//! struct AnyName {
230//! #[serde(rename = "@one")]
231//! one: T,
232//! }
233//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap();
234//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."/>"#).unwrap();
235//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><one>...</one></any-tag>"#).unwrap();
236//! ```
237//! ```
238//! # use serde::Deserialize;
239//! // Ignore all attributes
240//! // You can also use the `()` type (unit type)
241//! # #[derive(Debug, PartialEq)]
242//! #[derive(Deserialize)]
243//! struct AnyName;
244//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap();
245//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><one>...</one></any-tag>"#).unwrap();
246//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag><one>...</one><two>...</two></any-tag>"#).unwrap();
247//! ```
248//!
249//! All these structs can be used to deserialize from an XML on the
250//! left side depending on amount of information that you want to get.
251//! Of course, you can combine them with elements extractor structs (see below).
252//!
253//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
254//!
255//! NOTE: XML allows you to have an attribute and an element with the same name
256//! inside the one element. quick-xml deals with that by prepending a `@` prefix
257//! to the name of attributes.
258//! </div>
259//! </td>
260//! </tr>
261//! <!-- 4 ===================================================================================== -->
262//! <tr>
263//! <td>
264//! A typical XML with child elements. The root tag name does not matter:
265//!
266//! ```xml
267//! <any-tag>
268//! <one>...</one>
269//! <two>...</two>
270//! </any-tag>
271//! ```
272//! </td>
273//! <td>
274//! A structure where each XML child element is mapped to the field.
275//! Each element name becomes a name of field. The name of the struct itself
276//! does not matter:
277//!
278//! ```
279//! # use serde::Deserialize;
280//! # type T = ();
281//! # type U = ();
282//! // Get both elements
283//! # #[derive(Debug, PartialEq)]
284//! #[derive(Deserialize)]
285//! struct AnyName {
286//! one: T,
287//! two: U,
288//! }
289//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag><one>...</one><two>...</two></any-tag>"#).unwrap();
290//! #
291//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap_err();
292//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><two>...</two></any-tag>"#).unwrap_err();
293//! ```
294//! ```
295//! # use serde::Deserialize;
296//! # type T = ();
297//! // Get only the one element, ignore the other
298//! # #[derive(Debug, PartialEq)]
299//! #[derive(Deserialize)]
300//! struct AnyName {
301//! one: T,
302//! }
303//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag><one>...</one><two>...</two></any-tag>"#).unwrap();
304//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><one>...</one></any-tag>"#).unwrap();
305//! ```
306//! ```
307//! # use serde::Deserialize;
308//! // Ignore all elements
309//! // You can also use the `()` type (unit type)
310//! # #[derive(Debug, PartialEq)]
311//! #[derive(Deserialize)]
312//! struct AnyName;
313//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap();
314//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag><one>...</one><two>...</two></any-tag>"#).unwrap();
315//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><two>...</two></any-tag>"#).unwrap();
316//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><one>...</one></any-tag>"#).unwrap();
317//! ```
318//!
319//! All these structs can be used to deserialize from an XML on the
320//! left side depending on amount of information that you want to get.
321//! Of course, you can combine them with attributes extractor structs (see above).
322//!
323//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
324//!
325//! NOTE: XML allows you to have an attribute and an element with the same name
326//! inside the one element. quick-xml deals with that by prepending a `@` prefix
327//! to the name of attributes.
328//! </div>
329//! </td>
330//! </tr>
331//! <!-- 5 ===================================================================================== -->
332//! <tr>
333//! <td>
334//! An XML with an attribute and a child element named equally:
335//!
336//! ```xml
337//! <any-tag field="...">
338//! <field>...</field>
339//! </any-tag>
340//! ```
341//! </td>
342//! <td>
343//!
344//! You MUST specify `#[serde(rename = "@field")]` on a field that will be used
345//! for an attribute:
346//!
347//! ```
348//! # use pretty_assertions::assert_eq;
349//! # use serde::Deserialize;
350//! # type T = ();
351//! # type U = ();
352//! # #[derive(Debug, PartialEq)]
353//! #[derive(Deserialize)]
354//! struct AnyName {
355//! #[serde(rename = "@field")]
356//! attribute: T,
357//! field: U,
358//! }
359//! # assert_eq!(
360//! # AnyName { attribute: (), field: () },
361//! # quick_xml::de::from_str(r#"
362//! # <any-tag field="...">
363//! # <field>...</field>
364//! # </any-tag>
365//! # "#).unwrap(),
366//! # );
367//! ```
368//! </td>
369//! </tr>
370//! <!-- ======================================================================================= -->
371//! <tr><th colspan="2">
372//!
373//! ## Optional attributes and elements
374//!
375//! </th></tr>
376//! <tr><th>To parse all these XML's...</th><th>...use these Rust type(s)</th></tr>
377//! <!-- 6 ===================================================================================== -->
378//! <tr>
379//! <td>
380//! An optional XML attribute that you want to capture.
381//! The root tag name does not matter:
382//!
383//! ```xml
384//! <any-tag optional="..."/>
385//! ```
386//! ```xml
387//! <any-tag/>
388//! ```
389//! </td>
390//! <td>
391//!
392//! A structure with an optional field, renamed according to the requirements
393//! for attributes:
394//!
395//! ```
396//! # use pretty_assertions::assert_eq;
397//! # use serde::Deserialize;
398//! # type T = ();
399//! # #[derive(Debug, PartialEq)]
400//! #[derive(Deserialize)]
401//! struct AnyName {
402//! #[serde(rename = "@optional")]
403//! optional: Option<T>,
404//! }
405//! # assert_eq!(AnyName { optional: Some(()) }, quick_xml::de::from_str(r#"<any-tag optional="..."/>"#).unwrap());
406//! # assert_eq!(AnyName { optional: None }, quick_xml::de::from_str(r#"<any-tag/>"#).unwrap());
407//! ```
408//! When the XML attribute is present, type `T` will be deserialized from
409//! an attribute value (which is a string). Note, that if `T = String` or other
410//! string type, the empty attribute is mapped to a `Some("")`, whereas `None`
411//! represents the missed attribute:
412//! ```xml
413//! <any-tag optional="..."/><!-- Some("...") -->
414//! <any-tag optional=""/> <!-- Some("") -->
415//! <any-tag/> <!-- None -->
416//! ```
417//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
418//!
419//! NOTE: The behaviour is not symmetric by default. `None` will be serialized as
420//! `optional=""`. This behaviour is consistent across serde crates. You should add
421//! `#[serde(skip_serializing_if = "Option::is_none")]` attribute to the field to
422//! skip `None`s.
423//! </div>
424//! </td>
425//! </tr>
426//! <!-- 7 ===================================================================================== -->
427//! <tr>
428//! <td>
429//! An optional XML elements that you want to capture.
430//! The root tag name does not matter:
431//!
432//! ```xml
433//! <any-tag/>
434//! <optional>...</optional>
435//! </any-tag>
436//! ```
437//! ```xml
438//! <any-tag/>
439//! <optional/>
440//! </any-tag>
441//! ```
442//! ```xml
443//! <any-tag/>
444//! ```
445//! </td>
446//! <td>
447//!
448//! A structure with an optional field:
449//!
450//! ```
451//! # use pretty_assertions::assert_eq;
452//! # use serde::Deserialize;
453//! # type T = ();
454//! # #[derive(Debug, PartialEq)]
455//! #[derive(Deserialize)]
456//! struct AnyName {
457//! optional: Option<T>,
458//! }
459//! # assert_eq!(AnyName { optional: Some(()) }, quick_xml::de::from_str(r#"<any-tag><optional>...</optional></any-tag>"#).unwrap());
460//! # assert_eq!(AnyName { optional: None }, quick_xml::de::from_str(r#"<any-tag/>"#).unwrap());
461//! ```
462//! When the XML element is present, type `T` will be deserialized from an
463//! element (which is a string or a multi-mapping -- i.e. mapping which can have
464//! duplicated keys).
465//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
466//!
467//! NOTE: The behaviour is not symmetric by default. `None` will be serialized as
468//! `<optional/>`. This behaviour is consistent across serde crates. You should add
469//! `#[serde(skip_serializing_if = "Option::is_none")]` attribute to the field to
470//! skip `None`s.
471//!
472//! NOTE: Deserializer will automatically handle a [`xsi:nil`] attribute and set field to `None`.
473//! For more info see [Mapping of `xsi:nil`](#mapping-of-xsinil).
474//! </div>
475//! </td>
476//! </tr>
477//! <!-- ======================================================================================= -->
478//! <tr><th colspan="2">
479//!
480//! ## Choices (`xs:choice` XML Schema type)
481//!
482//! </th></tr>
483//! <tr><th>To parse all these XML's...</th><th>...use these Rust type(s)</th></tr>
484//! <!-- 8 ===================================================================================== -->
485//! <tr>
486//! <td>
487//! An XML with different root tag names, as well as text / CDATA content:
488//!
489//! ```xml
490//! <one field1="...">...</one>
491//! ```
492//! ```xml
493//! <two>
494//! <field2>...</field2>
495//! </two>
496//! ```
497//! ```xml
498//! Text <![CDATA[or (mixed)
499//! CDATA]]> content
500//! ```
501//! </td>
502//! <td>
503//!
504//! An enum where each variant has the name of a possible root tag. The name of
505//! the enum itself does not matter.
506//!
507//! If you need to get the textual content, mark a variant with `#[serde(rename = "$text")]`.
508//!
509//! All these structs can be used to deserialize from any XML on the
510//! left side depending on amount of information that you want to get:
511//!
512//! ```
513//! # use pretty_assertions::assert_eq;
514//! # use serde::Deserialize;
515//! # type T = ();
516//! # type U = ();
517//! # #[derive(Debug, PartialEq)]
518//! #[derive(Deserialize)]
519//! #[serde(rename_all = "snake_case")]
520//! enum AnyName {
521//! One { #[serde(rename = "@field1")] field1: T },
522//! Two { field2: U },
523//!
524//! /// Use unit variant, if you do not care of a content.
525//! /// You can use tuple variant if you want to parse
526//! /// textual content as an xs:list.
527//! /// Struct variants are will pass a string to the
528//! /// struct enum variant visitor, which typically
529//! /// returns Err(Custom)
530//! #[serde(rename = "$text")]
531//! Text(String),
532//! }
533//! # assert_eq!(AnyName::One { field1: () }, quick_xml::de::from_str(r#"<one field1="...">...</one>"#).unwrap());
534//! # assert_eq!(AnyName::Two { field2: () }, quick_xml::de::from_str(r#"<two><field2>...</field2></two>"#).unwrap());
535//! # assert_eq!(AnyName::Text("text cdata ".into()), quick_xml::de::from_str(r#"text <![CDATA[ cdata ]]>"#).unwrap());
536//! ```
537//! ```
538//! # use pretty_assertions::assert_eq;
539//! # use serde::Deserialize;
540//! # type T = ();
541//! # #[derive(Debug, PartialEq)]
542//! #[derive(Deserialize)]
543//! struct Two {
544//! field2: T,
545//! }
546//! # #[derive(Debug, PartialEq)]
547//! #[derive(Deserialize)]
548//! #[serde(rename_all = "snake_case")]
549//! enum AnyName {
550//! // `field1` content discarded
551//! One,
552//! Two(Two),
553//! #[serde(rename = "$text")]
554//! Text,
555//! }
556//! # assert_eq!(AnyName::One, quick_xml::de::from_str(r#"<one field1="...">...</one>"#).unwrap());
557//! # assert_eq!(AnyName::Two(Two { field2: () }), quick_xml::de::from_str(r#"<two><field2>...</field2></two>"#).unwrap());
558//! # assert_eq!(AnyName::Text, quick_xml::de::from_str(r#"text <![CDATA[ cdata ]]>"#).unwrap());
559//! ```
560//! ```
561//! # use pretty_assertions::assert_eq;
562//! # use serde::Deserialize;
563//! # #[derive(Debug, PartialEq)]
564//! #[derive(Deserialize)]
565//! #[serde(rename_all = "snake_case")]
566//! enum AnyName {
567//! One,
568//! // the <two> and textual content will be mapped to this
569//! #[serde(other)]
570//! Other,
571//! }
572//! # assert_eq!(AnyName::One, quick_xml::de::from_str(r#"<one field1="...">...</one>"#).unwrap());
573//! # assert_eq!(AnyName::Other, quick_xml::de::from_str(r#"<two><field2>...</field2></two>"#).unwrap());
574//! # assert_eq!(AnyName::Other, quick_xml::de::from_str(r#"text <![CDATA[ cdata ]]>"#).unwrap());
575//! ```
576//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
577//!
578//! NOTE: You should have variants for all possible tag names in your enum
579//! or have an `#[serde(other)]` variant.
580//! <!-- TODO: document an error type if that requirement is violated -->
581//! </div>
582//! </td>
583//! </tr>
584//! <!-- 9 ===================================================================================== -->
585//! <tr>
586//! <td>
587//!
588//! `<xs:choice>` embedded in the other element, and at the same time you want
589//! to get access to other attributes that can appear in the same container
590//! (`<any-tag>`). Also this case can be described, as if you want to choose
591//! Rust enum variant based on a tag name:
592//!
593//! ```xml
594//! <any-tag field="...">
595//! <one>...</one>
596//! </any-tag>
597//! ```
598//! ```xml
599//! <any-tag field="...">
600//! <two>...</two>
601//! </any-tag>
602//! ```
603//! ```xml
604//! <any-tag field="...">
605//! Text <![CDATA[or (mixed)
606//! CDATA]]> content
607//! </any-tag>
608//! ```
609//! </td>
610//! <td>
611//!
612//! A structure with a field which type is an `enum`.
613//!
614//! If you need to get a textual content, mark a variant with `#[serde(rename = "$text")]`.
615//!
616//! Names of the enum, struct, and struct field with `Choice` type does not matter:
617//!
618//! ```
619//! # use pretty_assertions::assert_eq;
620//! # use serde::Deserialize;
621//! # type T = ();
622//! # #[derive(Debug, PartialEq)]
623//! #[derive(Deserialize)]
624//! #[serde(rename_all = "snake_case")]
625//! enum Choice {
626//! One,
627//! Two,
628//!
629//! /// Use unit variant, if you do not care of a content.
630//! /// You can use tuple variant if you want to parse
631//! /// textual content as an xs:list.
632//! /// Struct variants are will pass a string to the
633//! /// struct enum variant visitor, which typically
634//! /// returns Err(Custom)
635//! #[serde(rename = "$text")]
636//! Text(String),
637//! }
638//! # #[derive(Debug, PartialEq)]
639//! #[derive(Deserialize)]
640//! struct AnyName {
641//! #[serde(rename = "@field")]
642//! field: T,
643//!
644//! #[serde(rename = "$value")]
645//! any_name: Choice,
646//! }
647//! # assert_eq!(
648//! # AnyName { field: (), any_name: Choice::One },
649//! # quick_xml::de::from_str(r#"<any-tag field="..."><one>...</one></any-tag>"#).unwrap(),
650//! # );
651//! # assert_eq!(
652//! # AnyName { field: (), any_name: Choice::Two },
653//! # quick_xml::de::from_str(r#"<any-tag field="..."><two>...</two></any-tag>"#).unwrap(),
654//! # );
655//! # assert_eq!(
656//! # AnyName { field: (), any_name: Choice::Text("text cdata ".into()) },
657//! # quick_xml::de::from_str(r#"<any-tag field="...">text <![CDATA[ cdata ]]></any-tag>"#).unwrap(),
658//! # );
659//! ```
660//! </td>
661//! </tr>
662//! <!-- 10 ==================================================================================== -->
663//! <tr>
664//! <td>
665//!
666//! `<xs:choice>` embedded in the other element, and at the same time you want
667//! to get access to other elements that can appear in the same container
668//! (`<any-tag>`). Also this case can be described, as if you want to choose
669//! Rust enum variant based on a tag name:
670//!
671//! ```xml
672//! <any-tag>
673//! <field>...</field>
674//! <one>...</one>
675//! </any-tag>
676//! ```
677//! ```xml
678//! <any-tag>
679//! <two>...</two>
680//! <field>...</field>
681//! </any-tag>
682//! ```
683//! </td>
684//! <td>
685//!
686//! A structure with a field which type is an `enum`.
687//!
688//! Names of the enum, struct, and struct field with `Choice` type does not matter:
689//!
690//! ```
691//! # use pretty_assertions::assert_eq;
692//! # use serde::Deserialize;
693//! # type T = ();
694//! # #[derive(Debug, PartialEq)]
695//! #[derive(Deserialize)]
696//! #[serde(rename_all = "snake_case")]
697//! enum Choice {
698//! One,
699//! Two,
700//! }
701//! # #[derive(Debug, PartialEq)]
702//! #[derive(Deserialize)]
703//! struct AnyName {
704//! field: T,
705//!
706//! #[serde(rename = "$value")]
707//! any_name: Choice,
708//! }
709//! # assert_eq!(
710//! # AnyName { field: (), any_name: Choice::One },
711//! # quick_xml::de::from_str(r#"<any-tag><field>...</field><one>...</one></any-tag>"#).unwrap(),
712//! # );
713//! # assert_eq!(
714//! # AnyName { field: (), any_name: Choice::Two },
715//! # quick_xml::de::from_str(r#"<any-tag><two>...</two><field>...</field></any-tag>"#).unwrap(),
716//! # );
717//! ```
718//!
719//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
720//!
721//! NOTE: if your `Choice` enum would contain an `#[serde(other)]`
722//! variant, element `<field>` will be mapped to the `field` and not to the enum
723//! variant.
724//! </div>
725//!
726//! </td>
727//! </tr>
728//! <!-- 11 ==================================================================================== -->
729//! <tr>
730//! <td>
731//!
732//! `<xs:choice>` encapsulated in other element with a fixed name:
733//!
734//! ```xml
735//! <any-tag field="...">
736//! <choice>
737//! <one>...</one>
738//! </choice>
739//! </any-tag>
740//! ```
741//! ```xml
742//! <any-tag field="...">
743//! <choice>
744//! <two>...</two>
745//! </choice>
746//! </any-tag>
747//! ```
748//! </td>
749//! <td>
750//!
751//! A structure with a field of an intermediate type with one field of `enum` type.
752//! Actually, this example is not necessary, because you can construct it by yourself
753//! using the composition rules that were described above. However the XML construction
754//! described here is very common, so it is shown explicitly.
755//!
756//! Names of the enum and struct does not matter:
757//!
758//! ```
759//! # use pretty_assertions::assert_eq;
760//! # use serde::Deserialize;
761//! # type T = ();
762//! # #[derive(Debug, PartialEq)]
763//! #[derive(Deserialize)]
764//! #[serde(rename_all = "snake_case")]
765//! enum Choice {
766//! One,
767//! Two,
768//! }
769//! # #[derive(Debug, PartialEq)]
770//! #[derive(Deserialize)]
771//! struct Holder {
772//! #[serde(rename = "$value")]
773//! any_name: Choice,
774//! }
775//! # #[derive(Debug, PartialEq)]
776//! #[derive(Deserialize)]
777//! struct AnyName {
778//! #[serde(rename = "@field")]
779//! field: T,
780//!
781//! choice: Holder,
782//! }
783//! # assert_eq!(
784//! # AnyName { field: (), choice: Holder { any_name: Choice::One } },
785//! # quick_xml::de::from_str(r#"<any-tag field="..."><choice><one>...</one></choice></any-tag>"#).unwrap(),
786//! # );
787//! # assert_eq!(
788//! # AnyName { field: (), choice: Holder { any_name: Choice::Two } },
789//! # quick_xml::de::from_str(r#"<any-tag field="..."><choice><two>...</two></choice></any-tag>"#).unwrap(),
790//! # );
791//! ```
792//! </td>
793//! </tr>
794//! <!-- 12 ==================================================================================== -->
795//! <tr>
796//! <td>
797//!
798//! `<xs:choice>` encapsulated in other element with a fixed name:
799//!
800//! ```xml
801//! <any-tag>
802//! <field>...</field>
803//! <choice>
804//! <one>...</one>
805//! </choice>
806//! </any-tag>
807//! ```
808//! ```xml
809//! <any-tag>
810//! <choice>
811//! <two>...</two>
812//! </choice>
813//! <field>...</field>
814//! </any-tag>
815//! ```
816//! </td>
817//! <td>
818//!
819//! A structure with a field of an intermediate type with one field of `enum` type.
820//! Actually, this example is not necessary, because you can construct it by yourself
821//! using the composition rules that were described above. However the XML construction
822//! described here is very common, so it is shown explicitly.
823//!
824//! Names of the enum and struct does not matter:
825//!
826//! ```
827//! # use pretty_assertions::assert_eq;
828//! # use serde::Deserialize;
829//! # type T = ();
830//! # #[derive(Debug, PartialEq)]
831//! #[derive(Deserialize)]
832//! #[serde(rename_all = "snake_case")]
833//! enum Choice {
834//! One,
835//! Two,
836//! }
837//! # #[derive(Debug, PartialEq)]
838//! #[derive(Deserialize)]
839//! struct Holder {
840//! #[serde(rename = "$value")]
841//! any_name: Choice,
842//! }
843//! # #[derive(Debug, PartialEq)]
844//! #[derive(Deserialize)]
845//! struct AnyName {
846//! field: T,
847//!
848//! choice: Holder,
849//! }
850//! # assert_eq!(
851//! # AnyName { field: (), choice: Holder { any_name: Choice::One } },
852//! # quick_xml::de::from_str(r#"<any-tag><field>...</field><choice><one>...</one></choice></any-tag>"#).unwrap(),
853//! # );
854//! # assert_eq!(
855//! # AnyName { field: (), choice: Holder { any_name: Choice::Two } },
856//! # quick_xml::de::from_str(r#"<any-tag><choice><two>...</two></choice><field>...</field></any-tag>"#).unwrap(),
857//! # );
858//! ```
859//! </td>
860//! </tr>
861//! <!-- ======================================================================================== -->
862//! <tr><th colspan="2">
863//!
864//! ## Sequences (`xs:all` and `xs:sequence` XML Schema types)
865//!
866//! </th></tr>
867//! <tr><th>To parse all these XML's...</th><th>...use these Rust type(s)</th></tr>
868//! <!-- 13 ==================================================================================== -->
869//! <tr>
870//! <td>
871//! A sequence inside of a tag without a dedicated name:
872//!
873//! ```xml
874//! <any-tag/>
875//! ```
876//! ```xml
877//! <any-tag>
878//! <item/>
879//! </any-tag>
880//! ```
881//! ```xml
882//! <any-tag>
883//! <item/>
884//! <item/>
885//! <item/>
886//! </any-tag>
887//! ```
888//! </td>
889//! <td>
890//!
891//! A structure with a field which is a sequence type, for example, [`Vec`].
892//! Because XML syntax does not distinguish between empty sequences and missed
893//! elements, we should indicate that on the Rust side, because serde will require
894//! that field `item` exists. You can do that in two possible ways:
895//!
896//! Use the `#[serde(default)]` attribute for a [field] or the entire [struct]:
897//! ```
898//! # use pretty_assertions::assert_eq;
899//! # use serde::Deserialize;
900//! # type Item = ();
901//! # #[derive(Debug, PartialEq)]
902//! #[derive(Deserialize)]
903//! struct AnyName {
904//! #[serde(default)]
905//! item: Vec<Item>,
906//! }
907//! # assert_eq!(
908//! # AnyName { item: vec![] },
909//! # quick_xml::de::from_str(r#"<any-tag/>"#).unwrap(),
910//! # );
911//! # assert_eq!(
912//! # AnyName { item: vec![()] },
913//! # quick_xml::de::from_str(r#"<any-tag><item/></any-tag>"#).unwrap(),
914//! # );
915//! # assert_eq!(
916//! # AnyName { item: vec![(), (), ()] },
917//! # quick_xml::de::from_str(r#"<any-tag><item/><item/><item/></any-tag>"#).unwrap(),
918//! # );
919//! ```
920//!
921//! Use the [`Option`]. In that case inner array will always contains at least one
922//! element after deserialization:
923//! ```ignore
924//! # use pretty_assertions::assert_eq;
925//! # use serde::Deserialize;
926//! # type Item = ();
927//! # #[derive(Debug, PartialEq)]
928//! #[derive(Deserialize)]
929//! struct AnyName {
930//! item: Option<Vec<Item>>,
931//! }
932//! # assert_eq!(
933//! # AnyName { item: None },
934//! # quick_xml::de::from_str(r#"<any-tag/>"#).unwrap(),
935//! # );
936//! # assert_eq!(
937//! # AnyName { item: Some(vec![()]) },
938//! # quick_xml::de::from_str(r#"<any-tag><item/></any-tag>"#).unwrap(),
939//! # );
940//! # assert_eq!(
941//! # AnyName { item: Some(vec![(), (), ()]) },
942//! # quick_xml::de::from_str(r#"<any-tag><item/><item/><item/></any-tag>"#).unwrap(),
943//! # );
944//! ```
945//!
946//! See also [Frequently Used Patterns](#element-lists).
947//!
948//! [field]: https://serde.rs/field-attrs.html#default
949//! [struct]: https://serde.rs/container-attrs.html#default
950//! </td>
951//! </tr>
952//! <!-- 14 ==================================================================================== -->
953//! <tr>
954//! <td>
955//! A sequence with a strict order, probably with mixed content
956//! (text / CDATA and tags):
957//!
958//! ```xml
959//! <one>...</one>
960//! text
961//! <![CDATA[cdata]]>
962//! <two>...</two>
963//! <one>...</one>
964//! ```
965//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
966//!
967//! NOTE: this is just an example for showing mapping. XML does not allow
968//! multiple root tags -- you should wrap the sequence into a tag.
969//! </div>
970//! </td>
971//! <td>
972//!
973//! All elements mapped to the heterogeneous sequential type: tuple or named tuple.
974//! Each element of the tuple should be able to be deserialized from the nested
975//! element content (`...`), except the enum types which would be deserialized
976//! from the full element (`<one>...</one>`), so they could use the element name
977//! to choose the right variant:
978//!
979//! ```
980//! # use pretty_assertions::assert_eq;
981//! # use serde::Deserialize;
982//! # type One = ();
983//! # type Two = ();
984//! # /*
985//! type One = ...;
986//! type Two = ...;
987//! # */
988//! # #[derive(Debug, PartialEq)]
989//! #[derive(Deserialize)]
990//! struct AnyName(One, String, Two, One);
991//! # assert_eq!(
992//! # AnyName((), "text cdata".into(), (), ()),
993//! # quick_xml::de::from_str(r#"<one>...</one>text <![CDATA[cdata]]><two>...</two><one>...</one>"#).unwrap(),
994//! # );
995//! ```
996//! ```
997//! # use pretty_assertions::assert_eq;
998//! # use serde::Deserialize;
999//! # #[derive(Debug, PartialEq)]
1000//! #[derive(Deserialize)]
1001//! #[serde(rename_all = "snake_case")]
1002//! enum Choice {
1003//! One,
1004//! }
1005//! # type Two = ();
1006//! # /*
1007//! type Two = ...;
1008//! # */
1009//! type AnyName = (Choice, String, Two, Choice);
1010//! # assert_eq!(
1011//! # (Choice::One, "text cdata".to_string(), (), Choice::One),
1012//! # quick_xml::de::from_str(r#"<one>...</one>text <![CDATA[cdata]]><two>...</two><one>...</one>"#).unwrap(),
1013//! # );
1014//! ```
1015//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1016//!
1017//! NOTE: consequent text and CDATA nodes are merged into the one text node,
1018//! so you cannot have two adjacent string types in your sequence.
1019//!
1020//! NOTE: In the case that the list might contain tags that are overlapped with
1021//! tags that do not correspond to the list you should add the feature [`overlapped-lists`].
1022//! </div>
1023//! </td>
1024//! </tr>
1025//! <!-- 15 ==================================================================================== -->
1026//! <tr>
1027//! <td>
1028//! A sequence with a non-strict order, probably with a mixed content
1029//! (text / CDATA and tags).
1030//!
1031//! ```xml
1032//! <one>...</one>
1033//! text
1034//! <![CDATA[cdata]]>
1035//! <two>...</two>
1036//! <one>...</one>
1037//! ```
1038//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1039//!
1040//! NOTE: this is just an example for showing mapping. XML does not allow
1041//! multiple root tags -- you should wrap the sequence into a tag.
1042//! </div>
1043//! </td>
1044//! <td>
1045//! A homogeneous sequence of elements with a fixed or dynamic size:
1046//!
1047//! ```
1048//! # use pretty_assertions::assert_eq;
1049//! # use serde::Deserialize;
1050//! # #[derive(Debug, PartialEq)]
1051//! #[derive(Deserialize)]
1052//! #[serde(rename_all = "snake_case")]
1053//! enum Choice {
1054//! One,
1055//! Two,
1056//! #[serde(other)]
1057//! Other,
1058//! }
1059//! type AnyName = [Choice; 4];
1060//! # assert_eq!(
1061//! # [Choice::One, Choice::Other, Choice::Two, Choice::One],
1062//! # quick_xml::de::from_str::<AnyName>(r#"<one>...</one>text <![CDATA[cdata]]><two>...</two><one>...</one>"#).unwrap(),
1063//! # );
1064//! ```
1065//! ```
1066//! # use pretty_assertions::assert_eq;
1067//! # use serde::Deserialize;
1068//! # #[derive(Debug, PartialEq)]
1069//! #[derive(Deserialize)]
1070//! #[serde(rename_all = "snake_case")]
1071//! enum Choice {
1072//! One,
1073//! Two,
1074//! #[serde(rename = "$text")]
1075//! Other(String),
1076//! }
1077//! type AnyName = Vec<Choice>;
1078//! # assert_eq!(
1079//! # vec![
1080//! # Choice::One,
1081//! # Choice::Other("text cdata".into()),
1082//! # Choice::Two,
1083//! # Choice::One,
1084//! # ],
1085//! # quick_xml::de::from_str::<AnyName>(r#"<one>...</one>text <![CDATA[cdata]]><two>...</two><one>...</one>"#).unwrap(),
1086//! # );
1087//! ```
1088//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1089//!
1090//! NOTE: consequent text and CDATA nodes are merged into the one text node,
1091//! so you cannot have two adjacent string types in your sequence.
1092//! </div>
1093//! </td>
1094//! </tr>
1095//! <!-- 16 ==================================================================================== -->
1096//! <tr>
1097//! <td>
1098//! A sequence with a strict order, probably with a mixed content,
1099//! (text and tags) inside of the other element:
1100//!
1101//! ```xml
1102//! <any-tag attribute="...">
1103//! <one>...</one>
1104//! text
1105//! <![CDATA[cdata]]>
1106//! <two>...</two>
1107//! <one>...</one>
1108//! </any-tag>
1109//! ```
1110//! </td>
1111//! <td>
1112//!
1113//! A structure where all child elements mapped to the one field which have
1114//! a heterogeneous sequential type: tuple or named tuple. Each element of the
1115//! tuple should be able to be deserialized from the full element (`<one>...</one>`).
1116//!
1117//! You MUST specify `#[serde(rename = "$value")]` on that field:
1118//!
1119//! ```
1120//! # use pretty_assertions::assert_eq;
1121//! # use serde::Deserialize;
1122//! # type One = ();
1123//! # type Two = ();
1124//! # /*
1125//! type One = ...;
1126//! type Two = ...;
1127//! # */
1128//!
1129//! # #[derive(Debug, PartialEq)]
1130//! #[derive(Deserialize)]
1131//! struct AnyName {
1132//! #[serde(rename = "@attribute")]
1133//! # attribute: (),
1134//! # /*
1135//! attribute: ...,
1136//! # */
1137//! // Does not (yet?) supported by the serde
1138//! // https://github.com/serde-rs/serde/issues/1905
1139//! // #[serde(flatten)]
1140//! #[serde(rename = "$value")]
1141//! any_name: (One, String, Two, One),
1142//! }
1143//! # assert_eq!(
1144//! # AnyName { attribute: (), any_name: ((), "text cdata".into(), (), ()) },
1145//! # quick_xml::de::from_str("\
1146//! # <any-tag attribute='...'>\
1147//! # <one>...</one>\
1148//! # text \
1149//! # <![CDATA[cdata]]>\
1150//! # <two>...</two>\
1151//! # <one>...</one>\
1152//! # </any-tag>"
1153//! # ).unwrap(),
1154//! # );
1155//! ```
1156//! ```
1157//! # use pretty_assertions::assert_eq;
1158//! # use serde::Deserialize;
1159//! # type One = ();
1160//! # type Two = ();
1161//! # /*
1162//! type One = ...;
1163//! type Two = ...;
1164//! # */
1165//!
1166//! # #[derive(Debug, PartialEq)]
1167//! #[derive(Deserialize)]
1168//! struct NamedTuple(One, String, Two, One);
1169//!
1170//! # #[derive(Debug, PartialEq)]
1171//! #[derive(Deserialize)]
1172//! struct AnyName {
1173//! #[serde(rename = "@attribute")]
1174//! # attribute: (),
1175//! # /*
1176//! attribute: ...,
1177//! # */
1178//! // Does not (yet?) supported by the serde
1179//! // https://github.com/serde-rs/serde/issues/1905
1180//! // #[serde(flatten)]
1181//! #[serde(rename = "$value")]
1182//! any_name: NamedTuple,
1183//! }
1184//! # assert_eq!(
1185//! # AnyName { attribute: (), any_name: NamedTuple((), "text cdata".into(), (), ()) },
1186//! # quick_xml::de::from_str("\
1187//! # <any-tag attribute='...'>\
1188//! # <one>...</one>\
1189//! # text \
1190//! # <![CDATA[cdata]]>\
1191//! # <two>...</two>\
1192//! # <one>...</one>\
1193//! # </any-tag>"
1194//! # ).unwrap(),
1195//! # );
1196//! ```
1197//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1198//!
1199//! NOTE: consequent text and CDATA nodes are merged into the one text node,
1200//! so you cannot have two adjacent string types in your sequence.
1201//! </div>
1202//! </td>
1203//! </tr>
1204//! <!-- 17 ==================================================================================== -->
1205//! <tr>
1206//! <td>
1207//! A sequence with a non-strict order, probably with a mixed content
1208//! (text / CDATA and tags) inside of the other element:
1209//!
1210//! ```xml
1211//! <any-tag>
1212//! <one>...</one>
1213//! text
1214//! <![CDATA[cdata]]>
1215//! <two>...</two>
1216//! <one>...</one>
1217//! </any-tag>
1218//! ```
1219//! </td>
1220//! <td>
1221//!
1222//! A structure where all child elements mapped to the one field which have
1223//! a homogeneous sequential type: array-like container. A container type `T`
1224//! should be able to be deserialized from the nested element content (`...`),
1225//! except if it is an enum type which would be deserialized from the full
1226//! element (`<one>...</one>`).
1227//!
1228//! You MUST specify `#[serde(rename = "$value")]` on that field:
1229//!
1230//! ```
1231//! # use pretty_assertions::assert_eq;
1232//! # use serde::Deserialize;
1233//! # #[derive(Debug, PartialEq)]
1234//! #[derive(Deserialize)]
1235//! #[serde(rename_all = "snake_case")]
1236//! enum Choice {
1237//! One,
1238//! Two,
1239//! #[serde(rename = "$text")]
1240//! Other(String),
1241//! }
1242//! # #[derive(Debug, PartialEq)]
1243//! #[derive(Deserialize)]
1244//! struct AnyName {
1245//! #[serde(rename = "@attribute")]
1246//! # attribute: (),
1247//! # /*
1248//! attribute: ...,
1249//! # */
1250//! // Does not (yet?) supported by the serde
1251//! // https://github.com/serde-rs/serde/issues/1905
1252//! // #[serde(flatten)]
1253//! #[serde(rename = "$value")]
1254//! any_name: [Choice; 4],
1255//! }
1256//! # assert_eq!(
1257//! # AnyName { attribute: (), any_name: [
1258//! # Choice::One,
1259//! # Choice::Other("text cdata".into()),
1260//! # Choice::Two,
1261//! # Choice::One,
1262//! # ] },
1263//! # quick_xml::de::from_str("\
1264//! # <any-tag attribute='...'>\
1265//! # <one>...</one>\
1266//! # text \
1267//! # <![CDATA[cdata]]>\
1268//! # <two>...</two>\
1269//! # <one>...</one>\
1270//! # </any-tag>"
1271//! # ).unwrap(),
1272//! # );
1273//! ```
1274//! ```
1275//! # use pretty_assertions::assert_eq;
1276//! # use serde::Deserialize;
1277//! # #[derive(Debug, PartialEq)]
1278//! #[derive(Deserialize)]
1279//! #[serde(rename_all = "snake_case")]
1280//! enum Choice {
1281//! One,
1282//! Two,
1283//! #[serde(rename = "$text")]
1284//! Other(String),
1285//! }
1286//! # #[derive(Debug, PartialEq)]
1287//! #[derive(Deserialize)]
1288//! struct AnyName {
1289//! #[serde(rename = "@attribute")]
1290//! # attribute: (),
1291//! # /*
1292//! attribute: ...,
1293//! # */
1294//! // Does not (yet?) supported by the serde
1295//! // https://github.com/serde-rs/serde/issues/1905
1296//! // #[serde(flatten)]
1297//! #[serde(rename = "$value")]
1298//! any_name: Vec<Choice>,
1299//! }
1300//! # assert_eq!(
1301//! # AnyName { attribute: (), any_name: vec![
1302//! # Choice::One,
1303//! # Choice::Other("text cdata".into()),
1304//! # Choice::Two,
1305//! # Choice::One,
1306//! # ] },
1307//! # quick_xml::de::from_str("\
1308//! # <any-tag attribute='...'>\
1309//! # <one>...</one>\
1310//! # text \
1311//! # <![CDATA[cdata]]>\
1312//! # <two>...</two>\
1313//! # <one>...</one>\
1314//! # </any-tag>"
1315//! # ).unwrap(),
1316//! # );
1317//! ```
1318//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1319//!
1320//! NOTE: consequent text and CDATA nodes are merged into the one text node,
1321//! so you cannot have two adjacent string types in your sequence.
1322//! </div>
1323//! </td>
1324//! </tr>
1325//! </tbody>
1326//! </table>
1327//!
1328//!
1329//! Mapping of `xsi:nil`
1330//! ====================
1331//!
1332//! quick-xml supports handling of [`xsi:nil`] special attribute. When field of optional
1333//! type is mapped to the XML element which have `xsi:nil="true"` set, or if that attribute
1334//! is placed on parent XML element, the deserializer will call [`Visitor::visit_none`]
1335//! and skip XML element corresponding to a field.
1336//!
1337//! Examples:
1338//!
1339//! ```
1340//! # use pretty_assertions::assert_eq;
1341//! # use serde::Deserialize;
1342//! #[derive(Deserialize, Debug, PartialEq)]
1343//! struct TypeWithOptionalField {
1344//! element: Option<String>,
1345//! }
1346//!
1347//! assert_eq!(
1348//! TypeWithOptionalField {
1349//! element: None,
1350//! },
1351//! quick_xml::de::from_str("
1352//! <any-tag xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
1353//! <element xsi:nil='true'>Content is skiped because of xsi:nil='true'</element>
1354//! </any-tag>
1355//! ").unwrap(),
1356//! );
1357//! ```
1358//!
1359//! You can capture attributes from the optional type, because ` xsi:nil="true"` elements can have
1360//! attributes:
1361//! ```
1362//! # use pretty_assertions::assert_eq;
1363//! # use serde::Deserialize;
1364//! #[derive(Deserialize, Debug, PartialEq)]
1365//! struct TypeWithOptionalField {
1366//! #[serde(rename = "@attribute")]
1367//! attribute: usize,
1368//!
1369//! element: Option<String>,
1370//! non_optional: String,
1371//! }
1372//!
1373//! assert_eq!(
1374//! TypeWithOptionalField {
1375//! attribute: 42,
1376//! element: None,
1377//! non_optional: "Note, that non-optional fields will be deserialized as usual".to_string(),
1378//! },
1379//! quick_xml::de::from_str("
1380//! <any-tag attribute='42' xsi:nil='true' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
1381//! <element>Content is skiped because of xsi:nil='true'</element>
1382//! <non_optional>Note, that non-optional fields will be deserialized as usual</non_optional>
1383//! </any-tag>
1384//! ").unwrap(),
1385//! );
1386//! ```
1387//!
1388//! Generate Rust types from XML
1389//! ============================
1390//!
1391//! To speed up the creation of Rust types that represent a given XML file you can
1392//! use the [xml_schema_generator](https://github.com/Thomblin/xml_schema_generator).
1393//! It provides a standalone binary and a Rust library that parses one or more XML files
1394//! and generates a collection of structs that are compatible with quick_xml::de.
1395//!
1396//!
1397//!
1398//! Composition Rules
1399//! =================
1400//!
1401//! The XML format is very different from other formats supported by `serde`.
1402//! One such difference it is how data in the serialized form is related to
1403//! the Rust type. Usually each byte in the data can be associated only with
1404//! one field in the data structure. However, XML is an exception.
1405//!
1406//! For example, took this XML:
1407//!
1408//! ```xml
1409//! <any>
1410//! <key attr="value"/>
1411//! </any>
1412//! ```
1413//!
1414//! and try to deserialize it to the struct `AnyName`:
1415//!
1416//! ```no_run
1417//! # use serde::Deserialize;
1418//! #[derive(Deserialize)]
1419//! struct AnyName { // AnyName calls `deserialize_struct` on `<any><key attr="value"/></any>`
1420//! // Used data: ^^^^^^^^^^^^^^^^^^^
1421//! key: Inner, // Inner calls `deserialize_struct` on `<key attr="value"/>`
1422//! // Used data: ^^^^^^^^^^^^
1423//! }
1424//! #[derive(Deserialize)]
1425//! struct Inner {
1426//! #[serde(rename = "@attr")]
1427//! attr: String, // String calls `deserialize_string` on `value`
1428//! // Used data: ^^^^^
1429//! }
1430//! ```
1431//!
1432//! Comments shows what methods of a [`Deserializer`] called by each struct
1433//! `deserialize` method and which input their seen. **Used data** shows, what
1434//! content is actually used for deserializing. As you see, name of the inner
1435//! `<key>` tag used both as a map key / outer struct field name and as part
1436//! of the inner struct (although _value_ of the tag, i.e. `key` is not used
1437//! by it).
1438//!
1439//!
1440//!
1441//! Enum Representations
1442//! ====================
1443//!
1444//! `quick-xml` represents enums differently in normal fields, `$text` fields and
1445//! `$value` fields. A normal representation is compatible with serde's adjacent
1446//! and internal tags feature -- tag for adjacently and internally tagged enums
1447//! are serialized using [`Serializer::serialize_unit_variant`] and deserialized
1448//! using [`Deserializer::deserialize_enum`].
1449//!
1450//! Use those simple rules to remember, how enum would be represented in XML:
1451//! - In `$value` field the representation is always the same as top-level representation;
1452//! - In `$text` field the representation is always the same as in normal field,
1453//! but surrounding tags with field name are removed;
1454//! - In normal field the representation is always contains a tag with a field name.
1455//!
1456//! Normal enum variant
1457//! -------------------
1458//!
1459//! To model an `xs:choice` XML construct use `$value` field.
1460//! To model a top-level `xs:choice` just use the enum type.
1461//!
1462//! |Kind |Top-level and in `$value` field |In normal field |In `$text` field |
1463//! |-------|-----------------------------------------|---------------------|---------------------|
1464//! |Unit |`<Unit/>` |`<field>Unit</field>`|`Unit` |
1465//! |Newtype|`<Newtype>42</Newtype>` |Err(Custom) [^0] |Err(Custom) [^0] |
1466//! |Tuple |`<Tuple>42</Tuple><Tuple>answer</Tuple>` |Err(Custom) [^0] |Err(Custom) [^0] |
1467//! |Struct |`<Struct><q>42</q><a>answer</a></Struct>`|Err(Custom) [^0] |Err(Custom) [^0] |
1468//!
1469//! `$text` enum variant
1470//! --------------------
1471//!
1472//! |Kind |Top-level and in `$value` field |In normal field |In `$text` field |
1473//! |-------|-----------------------------------------|---------------------|---------------------|
1474//! |Unit |_(empty)_ |`<field/>` |_(empty)_ |
1475//! |Newtype|`42` |Err(Custom) [^0] [^1]|Err(Custom) [^0] [^2]|
1476//! |Tuple |`42 answer` |Err(Custom) [^0] [^3]|Err(Custom) [^0] [^4]|
1477//! |Struct |Err(Custom) [^0] |Err(Custom) [^0] |Err(Custom) [^0] |
1478//!
1479//! [^0]: Error is returned by the deserialized type. In case of derived implementation a `Custom`
1480//! error will be returned, but custom deserialize implementation can successfully deserialize
1481//! value from a string which will be passed to it.
1482//!
1483//! [^1]: If this serialize as `<field>42</field>` then it will be ambiguity during deserialization,
1484//! because it clash with `Unit` representation in normal field.
1485//!
1486//! [^2]: If this serialize as `42` then it will be ambiguity during deserialization,
1487//! because it clash with `Unit` representation in `$text` field.
1488//!
1489//! [^3]: If this serialize as `<field>42 answer</field>` then it will be ambiguity during deserialization,
1490//! because it clash with `Unit` representation in normal field.
1491//!
1492//! [^4]: If this serialize as `42 answer` then it will be ambiguity during deserialization,
1493//! because it clash with `Unit` representation in `$text` field.
1494//!
1495//!
1496//!
1497//! `$text` and `$value` special names
1498//! ==================================
1499//!
1500//! quick-xml supports two special names for fields -- `$text` and `$value`.
1501//! Although they may seem the same, there is a distinction. Two different
1502//! names is required mostly for serialization, because quick-xml should know
1503//! how you want to serialize certain constructs, which could be represented
1504//! through XML in multiple different ways.
1505//!
1506//! The only difference is in how complex types and sequences are serialized.
1507//! If you doubt which one you should select, begin with [`$value`](#value).
1508//!
1509//! If you have both `$text` and `$value` in you struct, then text events will be
1510//! mapped to the `$text` field:
1511//!
1512//! ```
1513//! # use serde::Deserialize;
1514//! # use quick_xml::de::from_str;
1515//! #[derive(Deserialize, PartialEq, Debug)]
1516//! struct TextAndValue {
1517//! #[serde(rename = "$text")]
1518//! text: Option<String>,
1519//!
1520//! #[serde(rename = "$value")]
1521//! value: Option<String>,
1522//! }
1523//!
1524//! let object: TextAndValue = from_str("<AnyName>text <![CDATA[and CDATA]]></AnyName>").unwrap();
1525//! assert_eq!(object, TextAndValue {
1526//! text: Some("text and CDATA".to_string()),
1527//! value: None,
1528//! });
1529//! ```
1530//!
1531//! ## `$text`
1532//! `$text` is used when you want to write your XML as a text or a CDATA content.
1533//! More formally, field with that name represents simple type definition with
1534//! `{variety} = atomic` or `{variety} = union` whose basic members are all atomic,
1535//! as described in the [specification].
1536//!
1537//! As a result, not all types of such fields can be serialized. Only serialization
1538//! of following types are supported:
1539//! - all primitive types (strings, numbers, booleans)
1540//! - unit variants of enumerations (serializes to a name of a variant)
1541//! - newtypes (delegates serialization to inner type)
1542//! - [`Option`] of above (`None` serializes to nothing)
1543//! - sequences (including tuples and tuple variants of enumerations) of above,
1544//! excluding `None` and empty string elements (because it will not be possible
1545//! to deserialize them back). The elements are separated by space(s)
1546//! - unit type `()` and unit structs (serializes to nothing)
1547//!
1548//! Complex types, such as structs and maps, are not supported in this field.
1549//! If you want them, you should use `$value`.
1550//!
1551//! Sequences serialized to a space-delimited string, that is why only certain
1552//! types are allowed in this mode:
1553//!
1554//! ```
1555//! # use serde::{Deserialize, Serialize};
1556//! # use quick_xml::de::from_str;
1557//! # use quick_xml::se::to_string;
1558//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1559//! struct AnyName {
1560//! #[serde(rename = "$text")]
1561//! field: Vec<usize>,
1562//! }
1563//!
1564//! let obj = AnyName { field: vec![1, 2, 3] };
1565//! let xml = to_string(&obj).unwrap();
1566//! assert_eq!(xml, "<AnyName>1 2 3</AnyName>");
1567//!
1568//! let object: AnyName = from_str(&xml).unwrap();
1569//! assert_eq!(object, obj);
1570//! ```
1571//!
1572//! ## `$value`
1573//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1574//!
1575//! NOTE: a name `#content` would better explain the purpose of that field,
1576//! but `$value` is used for compatibility with other XML serde crates, which
1577//! uses that name. This will allow you to switch XML crates more smoothly if required.
1578//! </div>
1579//!
1580//! The representation of primitive types in `$value` does not differ from their
1581//! representation in `$text` fields. The difference is how sequences are serialized
1582//! and deserialized. `$value` serializes each sequence item as a separate XML element.
1583//! How the name of the XML element is chosen depends on the field's type. For
1584//! `enum`s, the variant name is used. For `struct`s, the name of the `struct`
1585//! is used.
1586//!
1587//! During deserialization, if the `$value` field is an enum, then the variant's
1588//! name is matched against. That's **not** the case with structs, however, since
1589//! `serde` does not expose type names of nested fields. This does mean that **any**
1590//! type could be deserialized into a `$value` struct-type field, so long as the
1591//! struct's fields have compatible types (or are captured as text by `String`
1592//! or similar-behaving types). This can be handy when using generic types in fields
1593//! where one knows in advance what to expect. If you do not know what to expect,
1594//! however, prefer an enum with all possible variants.
1595//!
1596//! Unit structs and unit type `()` serialize to nothing and can be deserialized
1597//! from any content.
1598//!
1599//! Serialization and deserialization of `$value` field performed as usual, except
1600//! that name for an XML element will be given by the serialized type, instead of
1601//! field. The latter allow to serialize enumerated types, where variant is encoded
1602//! as a tag name, and, so, represent an XSD `xs:choice` schema by the Rust `enum`.
1603//!
1604//! In the example below, field will be serialized as `<field/>`, because elements
1605//! get their names from the field name. It cannot be deserialized, because `Enum`
1606//! expects elements `<A/>`, `<B/>` or `<C/>`, but `AnyName` looked only for `<field/>`:
1607//!
1608//! ```
1609//! # use serde::{Deserialize, Serialize};
1610//! # use pretty_assertions::assert_eq;
1611//! # #[derive(PartialEq, Debug)]
1612//! #[derive(Deserialize, Serialize)]
1613//! enum Enum { A, B, C }
1614//!
1615//! # #[derive(PartialEq, Debug)]
1616//! #[derive(Deserialize, Serialize)]
1617//! struct AnyName {
1618//! // <field>A</field>, <field>B</field>, or <field>C</field>
1619//! field: Enum,
1620//! }
1621//! # assert_eq!(
1622//! # quick_xml::se::to_string(&AnyName { field: Enum::A }).unwrap(),
1623//! # "<AnyName><field>A</field></AnyName>",
1624//! # );
1625//! # assert_eq!(
1626//! # AnyName { field: Enum::B },
1627//! # quick_xml::de::from_str("<root><field>B</field></root>").unwrap(),
1628//! # );
1629//! ```
1630//!
1631//! If you rename field to `$value`, then `field` would be serialized as `<A/>`,
1632//! `<B/>` or `<C/>`, depending on the its content. It is also possible to
1633//! deserialize it from the same elements:
1634//!
1635//! ```
1636//! # use serde::{Deserialize, Serialize};
1637//! # use pretty_assertions::assert_eq;
1638//! # #[derive(Deserialize, Serialize, PartialEq, Debug)]
1639//! # enum Enum { A, B, C }
1640//! #
1641//! # #[derive(PartialEq, Debug)]
1642//! #[derive(Deserialize, Serialize)]
1643//! struct AnyName {
1644//! // <A/>, <B/> or <C/>
1645//! #[serde(rename = "$value")]
1646//! field: Enum,
1647//! }
1648//! # assert_eq!(
1649//! # quick_xml::se::to_string(&AnyName { field: Enum::A }).unwrap(),
1650//! # "<AnyName><A/></AnyName>",
1651//! # );
1652//! # assert_eq!(
1653//! # AnyName { field: Enum::B },
1654//! # quick_xml::de::from_str("<root><B/></root>").unwrap(),
1655//! # );
1656//! ```
1657//!
1658//! The next example demonstrates how generic types can be used in conjunction
1659//! with `$value`-named fields to allow the reuse of wrapping structs. A common
1660//! example use case for this feature is SOAP messages, which can be commmonly
1661//! found wrapped around `<soapenv:Envelope> ... </soapenv:Envelope>`.
1662//!
1663//! ```rust
1664//! # use pretty_assertions::assert_eq;
1665//! # use quick_xml::de::from_str;
1666//! # use quick_xml::se::to_string;
1667//! # use serde::{Deserialize, Serialize};
1668//! #
1669//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1670//! struct Envelope<T> {
1671//! body: Body<T>,
1672//! }
1673//!
1674//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1675//! struct Body<T> {
1676//! #[serde(rename = "$value")]
1677//! inner: T,
1678//! }
1679//!
1680//! #[derive(Serialize, PartialEq, Debug)]
1681//! struct Example {
1682//! a: i32,
1683//! }
1684//!
1685//! assert_eq!(
1686//! to_string(&Envelope { body: Body { inner: Example { a: 42 } } }).unwrap(),
1687//! // Notice how `inner` is not present in the XML
1688//! "<Envelope><body><Example><a>42</a></Example></body></Envelope>",
1689//! );
1690//!
1691//! #[derive(Deserialize, PartialEq, Debug)]
1692//! struct AnotherExample {
1693//! a: i32,
1694//! }
1695//!
1696//! assert_eq!(
1697//! // Notice that tag the name does nothing for struct in `$value` field
1698//! Envelope { body: Body { inner: AnotherExample { a: 42 } } },
1699//! from_str("<Envelope><body><Example><a>42</a></Example></body></Envelope>").unwrap(),
1700//! );
1701//! ```
1702//!
1703//! ### Primitives and sequences of primitives
1704//!
1705//! Sequences serialized to a list of elements. Note, that types that does not
1706//! produce their own tag (i. e. primitives) will produce [`SeError::Unsupported`]
1707//! if they contains more that one element, because such sequence cannot be
1708//! deserialized to the same value:
1709//!
1710//! ```
1711//! # use serde::{Deserialize, Serialize};
1712//! # use pretty_assertions::assert_eq;
1713//! # use quick_xml::de::from_str;
1714//! # use quick_xml::se::to_string;
1715//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1716//! struct AnyName {
1717//! #[serde(rename = "$value")]
1718//! field: Vec<usize>,
1719//! }
1720//!
1721//! let obj = AnyName { field: vec![1, 2, 3] };
1722//! // If this object were serialized, it would be represented as "<AnyName>123</AnyName>"
1723//! to_string(&obj).unwrap_err();
1724//!
1725//! let object: AnyName = from_str("<AnyName>123</AnyName>").unwrap();
1726//! assert_eq!(object, AnyName { field: vec![123] });
1727//!
1728//! // `1 2 3` is mapped to a single `usize` element
1729//! // It is impossible to deserialize list of primitives to such field
1730//! from_str::<AnyName>("<AnyName>1 2 3</AnyName>").unwrap_err();
1731//! ```
1732//!
1733//! A particular case of that example is a string `$value` field, which probably
1734//! would be a most used example of that attribute:
1735//!
1736//! ```
1737//! # use serde::{Deserialize, Serialize};
1738//! # use pretty_assertions::assert_eq;
1739//! # use quick_xml::de::from_str;
1740//! # use quick_xml::se::to_string;
1741//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1742//! struct AnyName {
1743//! #[serde(rename = "$value")]
1744//! field: String,
1745//! }
1746//!
1747//! let obj = AnyName { field: "content".to_string() };
1748//! let xml = to_string(&obj).unwrap();
1749//! assert_eq!(xml, "<AnyName>content</AnyName>");
1750//! ```
1751//!
1752//! ### Structs and sequences of structs
1753//!
1754//! Note, that structures do not have a serializable name as well (name of the
1755//! type is never used), so it is impossible to serialize non-unit struct or
1756//! sequence of non-unit structs in `$value` field. (sequences of) unit structs
1757//! are serialized as empty string, because units itself serializing
1758//! to nothing:
1759//!
1760//! ```
1761//! # use serde::{Deserialize, Serialize};
1762//! # use pretty_assertions::assert_eq;
1763//! # use quick_xml::de::from_str;
1764//! # use quick_xml::se::to_string;
1765//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1766//! struct Unit;
1767//!
1768//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1769//! struct AnyName {
1770//! // #[serde(default)] is required to deserialization of empty lists
1771//! // This is a general note, not related to $value
1772//! #[serde(rename = "$value", default)]
1773//! field: Vec<Unit>,
1774//! }
1775//!
1776//! let obj = AnyName { field: vec![Unit, Unit, Unit] };
1777//! let xml = to_string(&obj).unwrap();
1778//! assert_eq!(xml, "<AnyName/>");
1779//!
1780//! let object: AnyName = from_str("<AnyName/>").unwrap();
1781//! assert_eq!(object, AnyName { field: vec![] });
1782//!
1783//! let object: AnyName = from_str("<AnyName></AnyName>").unwrap();
1784//! assert_eq!(object, AnyName { field: vec![] });
1785//!
1786//! let object: AnyName = from_str("<AnyName><A/><B/><C/></AnyName>").unwrap();
1787//! assert_eq!(object, AnyName { field: vec![Unit, Unit, Unit] });
1788//! ```
1789//!
1790//! ### Enums and sequences of enums
1791//!
1792//! Enumerations uses the variant name as an element name:
1793//!
1794//! ```
1795//! # use serde::{Deserialize, Serialize};
1796//! # use pretty_assertions::assert_eq;
1797//! # use quick_xml::de::from_str;
1798//! # use quick_xml::se::to_string;
1799//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1800//! struct AnyName {
1801//! #[serde(rename = "$value")]
1802//! field: Vec<Enum>,
1803//! }
1804//!
1805//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1806//! enum Enum { A, B, C }
1807//!
1808//! let obj = AnyName { field: vec![Enum::A, Enum::B, Enum::C] };
1809//! let xml = to_string(&obj).unwrap();
1810//! assert_eq!(
1811//! xml,
1812//! "<AnyName>\
1813//! <A/>\
1814//! <B/>\
1815//! <C/>\
1816//! </AnyName>"
1817//! );
1818//!
1819//! let object: AnyName = from_str(&xml).unwrap();
1820//! assert_eq!(object, obj);
1821//! ```
1822//!
1823//!
1824//!
1825//! Frequently Used Patterns
1826//! ========================
1827//!
1828//! Some XML constructs used so frequent, that it is worth to document the recommended
1829//! way to represent them in the Rust. The sections below describes them.
1830//!
1831//! `<element>` lists
1832//! -----------------
1833//! Many XML formats wrap lists of elements in the additional container,
1834//! although this is not required by the XML rules:
1835//!
1836//! ```xml
1837//! <root>
1838//! <field1/>
1839//! <field2/>
1840//! <list><!-- Container -->
1841//! <element/>
1842//! <element/>
1843//! <element/>
1844//! </list>
1845//! <field3/>
1846//! </root>
1847//! ```
1848//! In this case, there is a great desire to describe this XML in this way:
1849//! ```
1850//! /// Represents <element/>
1851//! type Element = ();
1852//!
1853//! /// Represents <root>...</root>
1854//! struct AnyName {
1855//! // Incorrect
1856//! list: Vec<Element>,
1857//! }
1858//! ```
1859//! This will not work, because potentially `<list>` element can have attributes
1860//! and other elements inside. You should define the struct for the `<list>`
1861//! explicitly, as you do that in the XSD for that XML:
1862//! ```
1863//! /// Represents <element/>
1864//! type Element = ();
1865//!
1866//! /// Represents <root>...</root>
1867//! struct AnyName {
1868//! // Correct
1869//! list: List,
1870//! }
1871//! /// Represents <list>...</list>
1872//! struct List {
1873//! element: Vec<Element>,
1874//! }
1875//! ```
1876//!
1877//! If you want to simplify your API, you could write a simple function for unwrapping
1878//! inner list and apply it via [`deserialize_with`]:
1879//!
1880//! ```
1881//! # use pretty_assertions::assert_eq;
1882//! use quick_xml::de::from_str;
1883//! use serde::{Deserialize, Deserializer};
1884//!
1885//! /// Represents <element/>
1886//! type Element = ();
1887//!
1888//! /// Represents <root>...</root>
1889//! #[derive(Deserialize, Debug, PartialEq)]
1890//! struct AnyName {
1891//! #[serde(deserialize_with = "unwrap_list")]
1892//! list: Vec<Element>,
1893//! }
1894//!
1895//! fn unwrap_list<'de, D>(deserializer: D) -> Result<Vec<Element>, D::Error>
1896//! where
1897//! D: Deserializer<'de>,
1898//! {
1899//! /// Represents <list>...</list>
1900//! #[derive(Deserialize)]
1901//! struct List {
1902//! // default allows empty list
1903//! #[serde(default)]
1904//! element: Vec<Element>,
1905//! }
1906//! Ok(List::deserialize(deserializer)?.element)
1907//! }
1908//!
1909//! assert_eq!(
1910//! AnyName { list: vec![(), (), ()] },
1911//! from_str("
1912//! <root>
1913//! <list>
1914//! <element/>
1915//! <element/>
1916//! <element/>
1917//! </list>
1918//! </root>
1919//! ").unwrap(),
1920//! );
1921//! ```
1922//!
1923//! Instead of writing such functions manually, you also could try <https://lib.rs/crates/serde-query>.
1924//!
1925//! Overlapped (Out-of-Order) Elements
1926//! ----------------------------------
1927//! In the case that the list might contain tags that are overlapped with
1928//! tags that do not correspond to the list (this is a usual case in XML
1929//! documents) like this:
1930//! ```xml
1931//! <any-name>
1932//! <item/>
1933//! <another-item/>
1934//! <item/>
1935//! <item/>
1936//! </any-name>
1937//! ```
1938//! you should enable the [`overlapped-lists`] feature to make it possible
1939//! to deserialize this to:
1940//! ```no_run
1941//! # use serde::Deserialize;
1942//! #[derive(Deserialize)]
1943//! #[serde(rename_all = "kebab-case")]
1944//! struct AnyName {
1945//! item: Vec<()>,
1946//! another_item: (),
1947//! }
1948//! ```
1949//!
1950//!
1951//! Internally Tagged Enums
1952//! -----------------------
1953//! [Tagged enums] are currently not supported because of an issue in the Serde
1954//! design (see [serde#1183] and [quick-xml#586]) and missing optimizations in
1955//! Serde which could be useful for XML parsing ([serde#1495]). This can be worked
1956//! around by manually implementing deserialize with `#[serde(deserialize_with = "func")]`
1957//! or implementing [`Deserialize`], but this can get very tedious very fast for
1958//! files with large amounts of tagged enums. To help with this issue quick-xml
1959//! provides a macro [`impl_deserialize_for_internally_tagged_enum!`]. See the
1960//! macro documentation for details.
1961//!
1962//!
1963//! [`overlapped-lists`]: ../index.html#overlapped-lists
1964//! [specification]: https://www.w3.org/TR/xmlschema11-1/#Simple_Type_Definition
1965//! [`deserialize_with`]: https://serde.rs/field-attrs.html#deserialize_with
1966//! [`xsi:nil`]: https://www.w3.org/TR/xmlschema-1/#xsi_nil
1967//! [`Serializer::serialize_unit_variant`]: serde::Serializer::serialize_unit_variant
1968//! [`Deserializer::deserialize_enum`]: serde::Deserializer::deserialize_enum
1969//! [`SeError::Unsupported`]: crate::errors::serialize::SeError::Unsupported
1970//! [Tagged enums]: https://serde.rs/enum-representations.html#internally-tagged
1971//! [serde#1183]: https://github.com/serde-rs/serde/issues/1183
1972//! [serde#1495]: https://github.com/serde-rs/serde/issues/1495
1973//! [quick-xml#586]: https://github.com/tafia/quick-xml/issues/586
1974//! [`impl_deserialize_for_internally_tagged_enum!`]: crate::impl_deserialize_for_internally_tagged_enum
1975
1976// Macros should be defined before the modules that using them
1977// Also, macros should be imported before using them
1978use serde::serde_if_integer128;
1979
1980macro_rules! deserialize_num {
1981 ($deserialize:ident => $visit:ident, $($mut:tt)?) => {
1982 fn $deserialize<V>($($mut)? self, visitor: V) -> Result<V::Value, DeError>
1983 where
1984 V: Visitor<'de>,
1985 {
1986 // No need to unescape because valid integer representations cannot be escaped
1987 let text = self.read_string()?;
1988 match text.parse() {
1989 Ok(number) => visitor.$visit(number),
1990 Err(_) => match text {
1991 Cow::Borrowed(t) => visitor.visit_str(t),
1992 Cow::Owned(t) => visitor.visit_string(t),
1993 }
1994 }
1995 }
1996 };
1997}
1998
1999/// Implement deserialization methods for scalar types, such as numbers, strings,
2000/// byte arrays, booleans and identifiers.
2001macro_rules! deserialize_primitives {
2002 ($($mut:tt)?) => {
2003 deserialize_num!(deserialize_i8 => visit_i8, $($mut)?);
2004 deserialize_num!(deserialize_i16 => visit_i16, $($mut)?);
2005 deserialize_num!(deserialize_i32 => visit_i32, $($mut)?);
2006 deserialize_num!(deserialize_i64 => visit_i64, $($mut)?);
2007
2008 deserialize_num!(deserialize_u8 => visit_u8, $($mut)?);
2009 deserialize_num!(deserialize_u16 => visit_u16, $($mut)?);
2010 deserialize_num!(deserialize_u32 => visit_u32, $($mut)?);
2011 deserialize_num!(deserialize_u64 => visit_u64, $($mut)?);
2012
2013 serde_if_integer128! {
2014 deserialize_num!(deserialize_i128 => visit_i128, $($mut)?);
2015 deserialize_num!(deserialize_u128 => visit_u128, $($mut)?);
2016 }
2017
2018 deserialize_num!(deserialize_f32 => visit_f32, $($mut)?);
2019 deserialize_num!(deserialize_f64 => visit_f64, $($mut)?);
2020
2021 fn deserialize_bool<V>($($mut)? self, visitor: V) -> Result<V::Value, DeError>
2022 where
2023 V: Visitor<'de>,
2024 {
2025 let text = match self.read_string()? {
2026 Cow::Borrowed(s) => CowRef::Input(s),
2027 Cow::Owned(s) => CowRef::Owned(s),
2028 };
2029 text.deserialize_bool(visitor)
2030 }
2031
2032 /// Character represented as [strings](#method.deserialize_str).
2033 #[inline]
2034 fn deserialize_char<V>(self, visitor: V) -> Result<V::Value, DeError>
2035 where
2036 V: Visitor<'de>,
2037 {
2038 self.deserialize_str(visitor)
2039 }
2040
2041 fn deserialize_str<V>($($mut)? self, visitor: V) -> Result<V::Value, DeError>
2042 where
2043 V: Visitor<'de>,
2044 {
2045 let text = self.read_string()?;
2046 match text {
2047 Cow::Borrowed(string) => visitor.visit_borrowed_str(string),
2048 Cow::Owned(string) => visitor.visit_string(string),
2049 }
2050 }
2051
2052 /// Representation of owned strings the same as [non-owned](#method.deserialize_str).
2053 #[inline]
2054 fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, DeError>
2055 where
2056 V: Visitor<'de>,
2057 {
2058 self.deserialize_str(visitor)
2059 }
2060
2061 /// Forwards deserialization to the [`deserialize_any`](#method.deserialize_any).
2062 #[inline]
2063 fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, DeError>
2064 where
2065 V: Visitor<'de>,
2066 {
2067 self.deserialize_any(visitor)
2068 }
2069
2070 /// Forwards deserialization to the [`deserialize_bytes`](#method.deserialize_bytes).
2071 #[inline]
2072 fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, DeError>
2073 where
2074 V: Visitor<'de>,
2075 {
2076 self.deserialize_bytes(visitor)
2077 }
2078
2079 /// Representation of the named units the same as [unnamed units](#method.deserialize_unit).
2080 #[inline]
2081 fn deserialize_unit_struct<V>(
2082 self,
2083 _name: &'static str,
2084 visitor: V,
2085 ) -> Result<V::Value, DeError>
2086 where
2087 V: Visitor<'de>,
2088 {
2089 self.deserialize_unit(visitor)
2090 }
2091
2092 /// Representation of tuples the same as [sequences](#method.deserialize_seq).
2093 #[inline]
2094 fn deserialize_tuple<V>(self, _len: usize, visitor: V) -> Result<V::Value, DeError>
2095 where
2096 V: Visitor<'de>,
2097 {
2098 self.deserialize_seq(visitor)
2099 }
2100
2101 /// Representation of named tuples the same as [unnamed tuples](#method.deserialize_tuple).
2102 #[inline]
2103 fn deserialize_tuple_struct<V>(
2104 self,
2105 _name: &'static str,
2106 len: usize,
2107 visitor: V,
2108 ) -> Result<V::Value, DeError>
2109 where
2110 V: Visitor<'de>,
2111 {
2112 self.deserialize_tuple(len, visitor)
2113 }
2114
2115 /// Forwards deserialization to the [`deserialize_struct`](#method.deserialize_struct)
2116 /// with empty name and fields.
2117 #[inline]
2118 fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, DeError>
2119 where
2120 V: Visitor<'de>,
2121 {
2122 self.deserialize_struct("", &[], visitor)
2123 }
2124
2125 /// Identifiers represented as [strings](#method.deserialize_str).
2126 #[inline]
2127 fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, DeError>
2128 where
2129 V: Visitor<'de>,
2130 {
2131 self.deserialize_str(visitor)
2132 }
2133
2134 /// Forwards deserialization to the [`deserialize_unit`](#method.deserialize_unit).
2135 #[inline]
2136 fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, DeError>
2137 where
2138 V: Visitor<'de>,
2139 {
2140 self.deserialize_unit(visitor)
2141 }
2142 };
2143}
2144
2145mod attributes;
2146mod key;
2147mod map;
2148mod resolver;
2149mod simple_type;
2150mod text;
2151mod var;
2152
2153pub use self::attributes::AttributesDeserializer;
2154pub use self::resolver::{EntityResolver, PredefinedEntityResolver};
2155pub use self::simple_type::SimpleTypeDeserializer;
2156pub use crate::errors::serialize::DeError;
2157
2158use crate::{
2159 de::map::ElementMapAccess,
2160 encoding::Decoder,
2161 errors::Error,
2162 escape::{parse_number, EscapeError},
2163 events::{BytesCData, BytesEnd, BytesRef, BytesStart, BytesText, Event},
2164 name::QName,
2165 reader::NsReader,
2166 utils::CowRef,
2167};
2168use serde::de::{
2169 self, Deserialize, DeserializeOwned, DeserializeSeed, IntoDeserializer, SeqAccess, Visitor,
2170};
2171use std::borrow::Cow;
2172#[cfg(feature = "overlapped-lists")]
2173use std::collections::VecDeque;
2174use std::io::BufRead;
2175use std::mem::replace;
2176#[cfg(feature = "overlapped-lists")]
2177use std::num::NonZeroUsize;
2178use std::ops::{Deref, Range};
2179
2180/// Data represented by a text node or a CDATA node. XML markup is not expected
2181pub(crate) const TEXT_KEY: &str = "$text";
2182/// Data represented by any XML markup inside
2183pub(crate) const VALUE_KEY: &str = "$value";
2184
2185/// A function to check whether the character is a whitespace (blank, new line, carriage return or tab).
2186#[inline]
2187const fn is_non_whitespace(ch: char) -> bool {
2188 !matches!(ch, ' ' | '\r' | '\n' | '\t')
2189}
2190
2191/// Decoded and concatenated content of consequent [`Text`] and [`CData`]
2192/// events. _Consequent_ means that events should follow each other or be
2193/// delimited only by (any count of) [`Comment`] or [`PI`] events.
2194///
2195/// Internally text is stored in `Cow<str>`. Cloning of text is cheap while it
2196/// is borrowed and makes copies of data when it is owned.
2197///
2198/// [`Text`]: Event::Text
2199/// [`CData`]: Event::CData
2200/// [`Comment`]: Event::Comment
2201/// [`PI`]: Event::PI
2202#[derive(Clone, Debug, PartialEq, Eq)]
2203pub struct Text<'a> {
2204 /// Untrimmed text after concatenating content of all
2205 /// [`Text`] and [`CData`] events
2206 ///
2207 /// [`Text`]: Event::Text
2208 /// [`CData`]: Event::CData
2209 text: Cow<'a, str>,
2210 /// A range into `text` which contains data after trimming
2211 content: Range<usize>,
2212}
2213
2214impl<'a> Text<'a> {
2215 fn new(text: Cow<'a, str>) -> Self {
2216 let start = text.find(is_non_whitespace).unwrap_or(0);
2217 let end = text.rfind(is_non_whitespace).map_or(0, |i| i + 1);
2218
2219 let content = if start >= end { 0..0 } else { start..end };
2220
2221 Self { text, content }
2222 }
2223
2224 /// Returns text without leading and trailing whitespaces as [defined] by XML specification.
2225 ///
2226 /// If you want to only check if text contains only whitespaces, use [`is_blank`](Self::is_blank),
2227 /// which will not allocate.
2228 ///
2229 /// # Example
2230 ///
2231 /// ```
2232 /// # use quick_xml::de::Text;
2233 /// # use pretty_assertions::assert_eq;
2234 /// #
2235 /// let text = Text::from("");
2236 /// assert_eq!(text.trimmed(), "");
2237 ///
2238 /// let text = Text::from(" \r\n\t ");
2239 /// assert_eq!(text.trimmed(), "");
2240 ///
2241 /// let text = Text::from(" some useful text ");
2242 /// assert_eq!(text.trimmed(), "some useful text");
2243 /// ```
2244 ///
2245 /// [defined]: https://www.w3.org/TR/xml11/#NT-S
2246 pub fn trimmed(&self) -> Cow<'a, str> {
2247 match self.text {
2248 Cow::Borrowed(text) => Cow::Borrowed(&text[self.content.clone()]),
2249 Cow::Owned(ref text) => Cow::Owned(text[self.content.clone()].to_string()),
2250 }
2251 }
2252
2253 /// Returns `true` if text is empty or contains only whitespaces as [defined] by XML specification.
2254 ///
2255 /// # Example
2256 ///
2257 /// ```
2258 /// # use quick_xml::de::Text;
2259 /// # use pretty_assertions::assert_eq;
2260 /// #
2261 /// let text = Text::from("");
2262 /// assert_eq!(text.is_blank(), true);
2263 ///
2264 /// let text = Text::from(" \r\n\t ");
2265 /// assert_eq!(text.is_blank(), true);
2266 ///
2267 /// let text = Text::from(" some useful text ");
2268 /// assert_eq!(text.is_blank(), false);
2269 /// ```
2270 ///
2271 /// [defined]: https://www.w3.org/TR/xml11/#NT-S
2272 pub fn is_blank(&self) -> bool {
2273 self.content.is_empty()
2274 }
2275}
2276
2277impl<'a> Deref for Text<'a> {
2278 type Target = str;
2279
2280 #[inline]
2281 fn deref(&self) -> &Self::Target {
2282 self.text.deref()
2283 }
2284}
2285
2286impl<'a> From<&'a str> for Text<'a> {
2287 #[inline]
2288 fn from(text: &'a str) -> Self {
2289 Self::new(Cow::Borrowed(text))
2290 }
2291}
2292
2293impl<'a> From<String> for Text<'a> {
2294 #[inline]
2295 fn from(text: String) -> Self {
2296 Self::new(Cow::Owned(text))
2297 }
2298}
2299
2300impl<'a> From<Cow<'a, str>> for Text<'a> {
2301 #[inline]
2302 fn from(text: Cow<'a, str>) -> Self {
2303 Self::new(text)
2304 }
2305}
2306
2307////////////////////////////////////////////////////////////////////////////////////////////////////
2308
2309/// Simplified event which contains only these variants that used by deserializer
2310#[derive(Clone, Debug, PartialEq, Eq)]
2311pub enum DeEvent<'a> {
2312 /// Start tag (with attributes) `<tag attr="value">`.
2313 Start(BytesStart<'a>),
2314 /// End tag `</tag>`.
2315 End(BytesEnd<'a>),
2316 /// Decoded and concatenated content of consequent [`Text`] and [`CData`]
2317 /// events. _Consequent_ means that events should follow each other or be
2318 /// delimited only by (any count of) [`Comment`] or [`PI`] events.
2319 ///
2320 /// [`Text`]: Event::Text
2321 /// [`CData`]: Event::CData
2322 /// [`Comment`]: Event::Comment
2323 /// [`PI`]: Event::PI
2324 Text(Text<'a>),
2325 /// End of XML document.
2326 Eof,
2327}
2328
2329////////////////////////////////////////////////////////////////////////////////////////////////////
2330
2331/// Simplified event which contains only these variants that used by deserializer,
2332/// but [`Text`] events not yet fully processed.
2333///
2334/// [`Text`] events should be trimmed if they does not surrounded by the other
2335/// [`Text`] or [`CData`] events. This event contains intermediate state of [`Text`]
2336/// event, where they are trimmed from the start, but not from the end. To trim
2337/// end spaces we should lookahead by one deserializer event (i. e. skip all
2338/// comments and processing instructions).
2339///
2340/// [`Text`]: Event::Text
2341/// [`CData`]: Event::CData
2342#[derive(Clone, Debug, PartialEq, Eq)]
2343pub enum PayloadEvent<'a> {
2344 /// Start tag (with attributes) `<tag attr="value">`.
2345 Start(BytesStart<'a>),
2346 /// End tag `</tag>`.
2347 End(BytesEnd<'a>),
2348 /// Escaped character data between tags.
2349 Text(BytesText<'a>),
2350 /// Unescaped character data stored in `<![CDATA[...]]>`.
2351 CData(BytesCData<'a>),
2352 /// Document type definition data (DTD) stored in `<!DOCTYPE ...>`.
2353 DocType(BytesText<'a>),
2354 /// Reference `&ref;` in the textual data.
2355 GeneralRef(BytesRef<'a>),
2356 /// End of XML document.
2357 Eof,
2358}
2359
2360impl<'a> PayloadEvent<'a> {
2361 /// Ensures that all data is owned to extend the object's lifetime if necessary.
2362 #[inline]
2363 fn into_owned(self) -> PayloadEvent<'static> {
2364 match self {
2365 PayloadEvent::Start(e) => PayloadEvent::Start(e.into_owned()),
2366 PayloadEvent::End(e) => PayloadEvent::End(e.into_owned()),
2367 PayloadEvent::Text(e) => PayloadEvent::Text(e.into_owned()),
2368 PayloadEvent::CData(e) => PayloadEvent::CData(e.into_owned()),
2369 PayloadEvent::DocType(e) => PayloadEvent::DocType(e.into_owned()),
2370 PayloadEvent::GeneralRef(e) => PayloadEvent::GeneralRef(e.into_owned()),
2371 PayloadEvent::Eof => PayloadEvent::Eof,
2372 }
2373 }
2374}
2375
2376/// An intermediate reader that consumes [`PayloadEvent`]s and produces final [`DeEvent`]s.
2377/// [`PayloadEvent::Text`] events, that followed by any event except
2378/// [`PayloadEvent::Text`] or [`PayloadEvent::CData`], are trimmed from the end.
2379struct XmlReader<'i, R: XmlRead<'i>, E: EntityResolver = PredefinedEntityResolver> {
2380 /// A source of low-level XML events
2381 reader: R,
2382 /// Intermediate event, that could be returned by the next call to `next()`.
2383 /// If that is the `Text` event then leading spaces already trimmed, but
2384 /// trailing spaces is not. Before the event will be returned, trimming of
2385 /// the spaces could be necessary
2386 lookahead: Result<PayloadEvent<'i>, DeError>,
2387
2388 /// Used to resolve unknown entities that would otherwise cause the parser
2389 /// to return an [`EscapeError::UnrecognizedEntity`] error.
2390 ///
2391 /// [`EscapeError::UnrecognizedEntity`]: crate::escape::EscapeError::UnrecognizedEntity
2392 entity_resolver: E,
2393}
2394
2395impl<'i, R: XmlRead<'i>, E: EntityResolver> XmlReader<'i, R, E> {
2396 fn new(mut reader: R, entity_resolver: E) -> Self {
2397 // Lookahead by one event immediately, so we do not need to check in the
2398 // loop if we need lookahead or not
2399 let lookahead = reader.next();
2400
2401 Self {
2402 reader,
2403 lookahead,
2404 entity_resolver,
2405 }
2406 }
2407
2408 /// Returns `true` if all events was consumed
2409 const fn is_empty(&self) -> bool {
2410 matches!(self.lookahead, Ok(PayloadEvent::Eof))
2411 }
2412
2413 /// Read next event and put it in lookahead, return the current lookahead
2414 #[inline(always)]
2415 fn next_impl(&mut self) -> Result<PayloadEvent<'i>, DeError> {
2416 replace(&mut self.lookahead, self.reader.next())
2417 }
2418
2419 /// Returns `true` when next event is not a text event in any form.
2420 #[inline(always)]
2421 const fn current_event_is_last_text(&self) -> bool {
2422 // If next event is a text or CDATA, we should not trim trailing spaces
2423 !matches!(
2424 self.lookahead,
2425 Ok(PayloadEvent::Text(_)) | Ok(PayloadEvent::CData(_) | PayloadEvent::GeneralRef(_))
2426 )
2427 }
2428
2429 /// Read all consequent [`Text`] and [`CData`] events until non-text event
2430 /// occurs. Content of all events would be appended to `result` and returned
2431 /// as [`DeEvent::Text`].
2432 ///
2433 /// [`Text`]: PayloadEvent::Text
2434 /// [`CData`]: PayloadEvent::CData
2435 fn drain_text(&mut self, mut result: Cow<'i, str>) -> Result<DeEvent<'i>, DeError> {
2436 loop {
2437 if self.current_event_is_last_text() {
2438 break;
2439 }
2440
2441 match self.next_impl()? {
2442 PayloadEvent::Text(e) => result.to_mut().push_str(&e.xml_content()?),
2443 PayloadEvent::CData(e) => result.to_mut().push_str(&e.xml_content()?),
2444 PayloadEvent::GeneralRef(e) => self.resolve_reference(result.to_mut(), e)?,
2445
2446 // SAFETY: current_event_is_last_text checks that event is Text, CData or GeneralRef
2447 _ => unreachable!("Only `Text`, `CData` or `GeneralRef` events can come here"),
2448 }
2449 }
2450 Ok(DeEvent::Text(Text::new(result)))
2451 }
2452
2453 /// Return an input-borrowing event.
2454 fn next(&mut self) -> Result<DeEvent<'i>, DeError> {
2455 loop {
2456 return match self.next_impl()? {
2457 PayloadEvent::Start(e) => Ok(DeEvent::Start(e)),
2458 PayloadEvent::End(e) => Ok(DeEvent::End(e)),
2459 PayloadEvent::Text(e) => self.drain_text(e.xml_content()?),
2460 PayloadEvent::CData(e) => self.drain_text(e.xml_content()?),
2461 PayloadEvent::DocType(e) => {
2462 self.entity_resolver
2463 .capture(e)
2464 .map_err(|err| DeError::Custom(format!("cannot parse DTD: {}", err)))?;
2465 continue;
2466 }
2467 PayloadEvent::GeneralRef(e) => {
2468 let mut text = String::new();
2469 self.resolve_reference(&mut text, e)?;
2470 self.drain_text(text.into())
2471 }
2472 PayloadEvent::Eof => Ok(DeEvent::Eof),
2473 };
2474 }
2475 }
2476
2477 fn resolve_reference(&mut self, result: &mut String, event: BytesRef) -> Result<(), DeError> {
2478 let len = event.len();
2479 let reference = self.decoder().decode(&event)?;
2480
2481 if let Some(num) = reference.strip_prefix('#') {
2482 let codepoint = parse_number(num).map_err(EscapeError::InvalidCharRef)?;
2483 result.push_str(codepoint.encode_utf8(&mut [0u8; 4]));
2484 return Ok(());
2485 }
2486 if let Some(value) = self.entity_resolver.resolve(reference.as_ref()) {
2487 result.push_str(value);
2488 return Ok(());
2489 }
2490 Err(EscapeError::UnrecognizedEntity(0..len, reference.to_string()).into())
2491 }
2492
2493 #[inline]
2494 fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
2495 match self.lookahead {
2496 // We pre-read event with the same name that is required to be skipped.
2497 // First call of `read_to_end` will end out pre-read event, the second
2498 // will consume other events
2499 Ok(PayloadEvent::Start(ref e)) if e.name() == name => {
2500 let result1 = self.reader.read_to_end(name);
2501 let result2 = self.reader.read_to_end(name);
2502
2503 // In case of error `next_impl` returns `Eof`
2504 let _ = self.next_impl();
2505 result1?;
2506 result2?;
2507 }
2508 // We pre-read event with the same name that is required to be skipped.
2509 // Because this is end event, we already consume the whole tree, so
2510 // nothing to do, just update lookahead
2511 Ok(PayloadEvent::End(ref e)) if e.name() == name => {
2512 let _ = self.next_impl();
2513 }
2514 Ok(_) => {
2515 let result = self.reader.read_to_end(name);
2516
2517 // In case of error `next_impl` returns `Eof`
2518 let _ = self.next_impl();
2519 result?;
2520 }
2521 // Read next lookahead event, unpack error from the current lookahead
2522 Err(_) => {
2523 self.next_impl()?;
2524 }
2525 }
2526 Ok(())
2527 }
2528
2529 #[inline]
2530 fn decoder(&self) -> Decoder {
2531 self.reader.decoder()
2532 }
2533}
2534
2535////////////////////////////////////////////////////////////////////////////////////////////////////
2536
2537/// Deserialize an instance of type `T` from a string of XML text.
2538pub fn from_str<'de, T>(s: &'de str) -> Result<T, DeError>
2539where
2540 T: Deserialize<'de>,
2541{
2542 let mut de = Deserializer::from_str(s);
2543 T::deserialize(&mut de)
2544}
2545
2546/// Deserialize from a reader. This method will do internal copies of data
2547/// read from `reader`. If you want have a `&str` input and want to borrow
2548/// as much as possible, use [`from_str`].
2549pub fn from_reader<R, T>(reader: R) -> Result<T, DeError>
2550where
2551 R: BufRead,
2552 T: DeserializeOwned,
2553{
2554 let mut de = Deserializer::from_reader(reader);
2555 T::deserialize(&mut de)
2556}
2557
2558////////////////////////////////////////////////////////////////////////////////////////////////////
2559
2560/// A structure that deserializes XML into Rust values.
2561pub struct Deserializer<'de, R, E: EntityResolver = PredefinedEntityResolver>
2562where
2563 R: XmlRead<'de>,
2564{
2565 /// An XML reader that streams events into this deserializer
2566 reader: XmlReader<'de, R, E>,
2567
2568 /// When deserializing sequences sometimes we have to skip unwanted events.
2569 /// That events should be stored and then replayed. This is a replay buffer,
2570 /// that streams events while not empty. When it exhausted, events will
2571 /// requested from [`Self::reader`].
2572 #[cfg(feature = "overlapped-lists")]
2573 read: VecDeque<DeEvent<'de>>,
2574 /// When deserializing sequences sometimes we have to skip events, because XML
2575 /// is tolerant to elements order and even if in the XSD order is strictly
2576 /// specified (using `xs:sequence`) most of XML parsers allows order violations.
2577 /// That means, that elements, forming a sequence, could be overlapped with
2578 /// other elements, do not related to that sequence.
2579 ///
2580 /// In order to support this, deserializer will scan events and skip unwanted
2581 /// events, store them here. After call [`Self::start_replay()`] all events
2582 /// moved from this to [`Self::read`].
2583 #[cfg(feature = "overlapped-lists")]
2584 write: VecDeque<DeEvent<'de>>,
2585 /// Maximum number of events that can be skipped when processing sequences
2586 /// that occur out-of-order. This field is used to prevent potential
2587 /// denial-of-service (DoS) attacks which could cause infinite memory
2588 /// consumption when parsing a very large amount of XML into a sequence field.
2589 #[cfg(feature = "overlapped-lists")]
2590 limit: Option<NonZeroUsize>,
2591
2592 #[cfg(not(feature = "overlapped-lists"))]
2593 peek: Option<DeEvent<'de>>,
2594
2595 /// Buffer to store attribute name as a field name exposed to serde consumers
2596 key_buf: String,
2597}
2598
2599impl<'de, R, E> Deserializer<'de, R, E>
2600where
2601 R: XmlRead<'de>,
2602 E: EntityResolver,
2603{
2604 /// Create an XML deserializer from one of the possible quick_xml input sources.
2605 ///
2606 /// Typically it is more convenient to use one of these methods instead:
2607 ///
2608 /// - [`Deserializer::from_str`]
2609 /// - [`Deserializer::from_reader`]
2610 fn new(reader: R, entity_resolver: E) -> Self {
2611 Self {
2612 reader: XmlReader::new(reader, entity_resolver),
2613
2614 #[cfg(feature = "overlapped-lists")]
2615 read: VecDeque::new(),
2616 #[cfg(feature = "overlapped-lists")]
2617 write: VecDeque::new(),
2618 #[cfg(feature = "overlapped-lists")]
2619 limit: None,
2620
2621 #[cfg(not(feature = "overlapped-lists"))]
2622 peek: None,
2623
2624 key_buf: String::new(),
2625 }
2626 }
2627
2628 /// Returns `true` if all events was consumed.
2629 pub fn is_empty(&self) -> bool {
2630 #[cfg(feature = "overlapped-lists")]
2631 let event = self.read.front();
2632
2633 #[cfg(not(feature = "overlapped-lists"))]
2634 let event = self.peek.as_ref();
2635
2636 match event {
2637 None | Some(DeEvent::Eof) => self.reader.is_empty(),
2638 _ => false,
2639 }
2640 }
2641
2642 /// Returns the underlying XML reader.
2643 ///
2644 /// ```
2645 /// # use pretty_assertions::assert_eq;
2646 /// use serde::Deserialize;
2647 /// use quick_xml::de::Deserializer;
2648 /// use quick_xml::NsReader;
2649 ///
2650 /// #[derive(Deserialize)]
2651 /// struct SomeStruct {
2652 /// field1: String,
2653 /// field2: String,
2654 /// }
2655 ///
2656 /// // Try to deserialize from broken XML
2657 /// let mut de = Deserializer::from_str(
2658 /// "<SomeStruct><field1><field2></SomeStruct>"
2659 /// // 0 ^= 28 ^= 41
2660 /// );
2661 ///
2662 /// let err = SomeStruct::deserialize(&mut de);
2663 /// assert!(err.is_err());
2664 ///
2665 /// let reader: &NsReader<_> = de.get_ref().get_ref();
2666 ///
2667 /// assert_eq!(reader.error_position(), 28);
2668 /// assert_eq!(reader.buffer_position(), 41);
2669 /// ```
2670 pub const fn get_ref(&self) -> &R {
2671 &self.reader.reader
2672 }
2673
2674 /// Set the maximum number of events that could be skipped during deserialization
2675 /// of sequences.
2676 ///
2677 /// If `<element>` contains more than specified nested elements, `$text` or
2678 /// CDATA nodes, then [`DeError::TooManyEvents`] will be returned during
2679 /// deserialization of sequence field (any type that uses [`deserialize_seq`]
2680 /// for the deserialization, for example, `Vec<T>`).
2681 ///
2682 /// This method can be used to prevent a [DoS] attack and infinite memory
2683 /// consumption when parsing a very large XML to a sequence field.
2684 ///
2685 /// It is strongly recommended to set limit to some value when you parse data
2686 /// from untrusted sources. You should choose a value that your typical XMLs
2687 /// can have _between_ different elements that corresponds to the same sequence.
2688 ///
2689 /// # Examples
2690 ///
2691 /// Let's imagine, that we deserialize such structure:
2692 /// ```
2693 /// struct List {
2694 /// item: Vec<()>,
2695 /// }
2696 /// ```
2697 ///
2698 /// The XML that we try to parse look like this:
2699 /// ```xml
2700 /// <any-name>
2701 /// <item/>
2702 /// <!-- Bufferization starts at this point -->
2703 /// <another-item>
2704 /// <some-element>with text</some-element>
2705 /// <yet-another-element/>
2706 /// </another-item>
2707 /// <!-- Buffer will be emptied at this point; 7 events were buffered -->
2708 /// <item/>
2709 /// <!-- There is nothing to buffer, because elements follows each other -->
2710 /// <item/>
2711 /// </any-name>
2712 /// ```
2713 ///
2714 /// There, when we deserialize the `item` field, we need to buffer 7 events,
2715 /// before we can deserialize the second `<item/>`:
2716 ///
2717 /// - `<another-item>`
2718 /// - `<some-element>`
2719 /// - `$text(with text)`
2720 /// - `</some-element>`
2721 /// - `<yet-another-element/>` (virtual start event)
2722 /// - `<yet-another-element/>` (virtual end event)
2723 /// - `</another-item>`
2724 ///
2725 /// Note, that `<yet-another-element/>` internally represented as 2 events:
2726 /// one for the start tag and one for the end tag. In the future this can be
2727 /// eliminated, but for now we use [auto-expanding feature] of a reader,
2728 /// because this simplifies deserializer code.
2729 ///
2730 /// [`deserialize_seq`]: serde::Deserializer::deserialize_seq
2731 /// [DoS]: https://en.wikipedia.org/wiki/Denial-of-service_attack
2732 /// [auto-expanding feature]: crate::reader::Config::expand_empty_elements
2733 #[cfg(feature = "overlapped-lists")]
2734 pub fn event_buffer_size(&mut self, limit: Option<NonZeroUsize>) -> &mut Self {
2735 self.limit = limit;
2736 self
2737 }
2738
2739 #[cfg(feature = "overlapped-lists")]
2740 fn peek(&mut self) -> Result<&DeEvent<'de>, DeError> {
2741 if self.read.is_empty() {
2742 self.read.push_front(self.reader.next()?);
2743 }
2744 if let Some(event) = self.read.front() {
2745 return Ok(event);
2746 }
2747 // SAFETY: `self.read` was filled in the code above.
2748 // NOTE: Can be replaced with `unsafe { std::hint::unreachable_unchecked() }`
2749 // if unsafe code will be allowed
2750 unreachable!()
2751 }
2752 #[cfg(not(feature = "overlapped-lists"))]
2753 fn peek(&mut self) -> Result<&DeEvent<'de>, DeError> {
2754 match &mut self.peek {
2755 Some(event) => Ok(event),
2756 empty_peek @ None => Ok(empty_peek.insert(self.reader.next()?)),
2757 }
2758 }
2759
2760 #[inline]
2761 fn last_peeked(&self) -> &DeEvent<'de> {
2762 #[cfg(feature = "overlapped-lists")]
2763 {
2764 self.read
2765 .front()
2766 .expect("`Deserializer::peek()` should be called")
2767 }
2768 #[cfg(not(feature = "overlapped-lists"))]
2769 {
2770 self.peek
2771 .as_ref()
2772 .expect("`Deserializer::peek()` should be called")
2773 }
2774 }
2775
2776 fn next(&mut self) -> Result<DeEvent<'de>, DeError> {
2777 // Replay skipped or peeked events
2778 #[cfg(feature = "overlapped-lists")]
2779 if let Some(event) = self.read.pop_front() {
2780 return Ok(event);
2781 }
2782 #[cfg(not(feature = "overlapped-lists"))]
2783 if let Some(e) = self.peek.take() {
2784 return Ok(e);
2785 }
2786 self.reader.next()
2787 }
2788
2789 fn skip_whitespaces(&mut self) -> Result<(), DeError> {
2790 loop {
2791 match self.peek()? {
2792 DeEvent::Text(e) if e.is_blank() => {
2793 self.next()?;
2794 }
2795 _ => break,
2796 }
2797 }
2798 Ok(())
2799 }
2800
2801 /// Returns the mark after which all events, skipped by [`Self::skip()`] call,
2802 /// should be replayed after calling [`Self::start_replay()`].
2803 #[cfg(feature = "overlapped-lists")]
2804 #[inline]
2805 #[must_use = "returned checkpoint should be used in `start_replay`"]
2806 fn skip_checkpoint(&self) -> usize {
2807 self.write.len()
2808 }
2809
2810 /// Extracts XML tree of events from and stores them in the skipped events
2811 /// buffer from which they can be retrieved later. You MUST call
2812 /// [`Self::start_replay()`] after calling this to give access to the skipped
2813 /// events and release internal buffers.
2814 #[cfg(feature = "overlapped-lists")]
2815 fn skip(&mut self) -> Result<(), DeError> {
2816 let event = self.next()?;
2817 self.skip_event(event)?;
2818 match self.write.back() {
2819 // Skip all subtree, if we skip a start event
2820 Some(DeEvent::Start(e)) => {
2821 let end = e.name().as_ref().to_owned();
2822 let mut depth = 0;
2823 loop {
2824 let event = self.next()?;
2825 match event {
2826 DeEvent::Start(ref e) if e.name().as_ref() == end => {
2827 self.skip_event(event)?;
2828 depth += 1;
2829 }
2830 DeEvent::End(ref e) if e.name().as_ref() == end => {
2831 self.skip_event(event)?;
2832 if depth == 0 {
2833 break;
2834 }
2835 depth -= 1;
2836 }
2837 DeEvent::Eof => {
2838 self.skip_event(event)?;
2839 break;
2840 }
2841 _ => self.skip_event(event)?,
2842 }
2843 }
2844 }
2845 _ => (),
2846 }
2847 Ok(())
2848 }
2849
2850 #[cfg(feature = "overlapped-lists")]
2851 #[inline]
2852 fn skip_event(&mut self, event: DeEvent<'de>) -> Result<(), DeError> {
2853 if let Some(max) = self.limit {
2854 if self.write.len() >= max.get() {
2855 return Err(DeError::TooManyEvents(max));
2856 }
2857 }
2858 self.write.push_back(event);
2859 Ok(())
2860 }
2861
2862 /// Moves buffered events, skipped after given `checkpoint` from [`Self::write`]
2863 /// skip buffer to [`Self::read`] buffer.
2864 ///
2865 /// After calling this method, [`Self::peek()`] and [`Self::next()`] starts
2866 /// return events that was skipped previously by calling [`Self::skip()`],
2867 /// and only when all that events will be consumed, the deserializer starts
2868 /// to drain events from underlying reader.
2869 ///
2870 /// This method MUST be called if any number of [`Self::skip()`] was called
2871 /// after [`Self::new()`] or `start_replay()` or you'll lost events.
2872 #[cfg(feature = "overlapped-lists")]
2873 fn start_replay(&mut self, checkpoint: usize) {
2874 if checkpoint == 0 {
2875 self.write.append(&mut self.read);
2876 std::mem::swap(&mut self.read, &mut self.write);
2877 } else {
2878 let mut read = self.write.split_off(checkpoint);
2879 read.append(&mut self.read);
2880 self.read = read;
2881 }
2882 }
2883
2884 #[inline]
2885 fn read_string(&mut self) -> Result<Cow<'de, str>, DeError> {
2886 self.read_string_impl(true)
2887 }
2888
2889 /// Consumes consequent [`Text`] and [`CData`] (both a referred below as a _text_)
2890 /// events, merge them into one string. If there are no such events, returns
2891 /// an empty string.
2892 ///
2893 /// If `allow_start` is `false`, then only text events are consumed, for other
2894 /// events an error is returned (see table below).
2895 ///
2896 /// If `allow_start` is `true`, then two or three events are expected:
2897 /// - [`DeEvent::Start`];
2898 /// - _(optional)_ [`DeEvent::Text`] which content is returned;
2899 /// - [`DeEvent::End`]. If text event was missed, an empty string is returned.
2900 ///
2901 /// Corresponding events are consumed.
2902 ///
2903 /// # Handling events
2904 ///
2905 /// The table below shows how events is handled by this method:
2906 ///
2907 /// |Event |XML |Handling
2908 /// |------------------|---------------------------|----------------------------------------
2909 /// |[`DeEvent::Start`]|`<tag>...</tag>` |if `allow_start == true`, result determined by the second table, otherwise emits [`UnexpectedStart("tag")`](DeError::UnexpectedStart)
2910 /// |[`DeEvent::End`] |`</any-tag>` |This is impossible situation, the method will panic if it happens
2911 /// |[`DeEvent::Text`] |`text content` or `<![CDATA[cdata content]]>` (probably mixed)|Returns event content unchanged
2912 /// |[`DeEvent::Eof`] | |Emits [`UnexpectedEof`](DeError::UnexpectedEof)
2913 ///
2914 /// Second event, consumed if [`DeEvent::Start`] was received and `allow_start == true`:
2915 ///
2916 /// |Event |XML |Handling
2917 /// |------------------|---------------------------|----------------------------------------------------------------------------------
2918 /// |[`DeEvent::Start`]|`<any-tag>...</any-tag>` |Emits [`UnexpectedStart("any-tag")`](DeError::UnexpectedStart)
2919 /// |[`DeEvent::End`] |`</tag>` |Returns an empty slice. The reader guarantee that tag will match the open one
2920 /// |[`DeEvent::Text`] |`text content` or `<![CDATA[cdata content]]>` (probably mixed)|Returns event content unchanged, expects the `</tag>` after that
2921 /// |[`DeEvent::Eof`] | |Emits [`InvalidXml(IllFormed(MissingEndTag))`](DeError::InvalidXml)
2922 ///
2923 /// [`Text`]: Event::Text
2924 /// [`CData`]: Event::CData
2925 fn read_string_impl(&mut self, allow_start: bool) -> Result<Cow<'de, str>, DeError> {
2926 match self.next()? {
2927 DeEvent::Text(e) => Ok(e.text),
2928 // allow one nested level
2929 DeEvent::Start(e) if allow_start => self.read_text(e.name()),
2930 DeEvent::Start(e) => Err(DeError::UnexpectedStart(e.name().as_ref().to_owned())),
2931 // SAFETY: The reader is guaranteed that we don't have unmatched tags
2932 // If we here, then our deserializer has a bug
2933 DeEvent::End(e) => unreachable!("{:?}", e),
2934 DeEvent::Eof => Err(DeError::UnexpectedEof),
2935 }
2936 }
2937 /// Consumes one [`DeEvent::Text`] event and ensures that it is followed by the
2938 /// [`DeEvent::End`] event.
2939 ///
2940 /// # Parameters
2941 /// - `name`: name of a tag opened before reading text. The corresponding end tag
2942 /// should present in input just after the text
2943 fn read_text(&mut self, name: QName) -> Result<Cow<'de, str>, DeError> {
2944 match self.next()? {
2945 DeEvent::Text(e) => match self.next()? {
2946 // The matching tag name is guaranteed by the reader
2947 DeEvent::End(_) => Ok(e.text),
2948 // SAFETY: Cannot be two consequent Text events, they would be merged into one
2949 DeEvent::Text(_) => unreachable!(),
2950 DeEvent::Start(e) => Err(DeError::UnexpectedStart(e.name().as_ref().to_owned())),
2951 DeEvent::Eof => Err(Error::missed_end(name, self.reader.decoder()).into()),
2952 },
2953 // We can get End event in case of `<tag></tag>` or `<tag/>` input
2954 // Return empty text in that case
2955 // The matching tag name is guaranteed by the reader
2956 DeEvent::End(_) => Ok("".into()),
2957 DeEvent::Start(s) => Err(DeError::UnexpectedStart(s.name().as_ref().to_owned())),
2958 DeEvent::Eof => Err(Error::missed_end(name, self.reader.decoder()).into()),
2959 }
2960 }
2961
2962 /// Drops all events until event with [name](BytesEnd::name()) `name` won't be
2963 /// dropped. This method should be called after [`Self::next()`]
2964 #[cfg(feature = "overlapped-lists")]
2965 fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
2966 let mut depth = 0;
2967 loop {
2968 match self.read.pop_front() {
2969 Some(DeEvent::Start(e)) if e.name() == name => {
2970 depth += 1;
2971 }
2972 Some(DeEvent::End(e)) if e.name() == name => {
2973 if depth == 0 {
2974 break;
2975 }
2976 depth -= 1;
2977 }
2978
2979 // Drop all other skipped events
2980 Some(_) => continue,
2981
2982 // If we do not have skipped events, use effective reading that will
2983 // not allocate memory for events
2984 None => {
2985 // We should close all opened tags, because we could buffer
2986 // Start events, but not the corresponding End events. So we
2987 // keep reading events until we exit all nested tags.
2988 // `read_to_end()` will return an error if an Eof was encountered
2989 // preliminary (in case of malformed XML).
2990 //
2991 // <tag><tag></tag></tag>
2992 // ^^^^^^^^^^ - buffered in `self.read`, when `self.read_to_end()` is called, depth = 2
2993 // ^^^^^^ - read by the first call of `self.reader.read_to_end()`
2994 // ^^^^^^ - read by the second call of `self.reader.read_to_end()`
2995 loop {
2996 self.reader.read_to_end(name)?;
2997 if depth == 0 {
2998 break;
2999 }
3000 depth -= 1;
3001 }
3002 break;
3003 }
3004 }
3005 }
3006 Ok(())
3007 }
3008 #[cfg(not(feature = "overlapped-lists"))]
3009 fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
3010 // First one might be in self.peek
3011 match self.next()? {
3012 DeEvent::Start(e) => self.reader.read_to_end(e.name())?,
3013 DeEvent::End(e) if e.name() == name => return Ok(()),
3014 _ => (),
3015 }
3016 self.reader.read_to_end(name)
3017 }
3018
3019 fn skip_next_tree(&mut self) -> Result<(), DeError> {
3020 let DeEvent::Start(start) = self.next()? else {
3021 unreachable!("Only call this if the next event is a start event")
3022 };
3023 let name = start.name();
3024 self.read_to_end(name)
3025 }
3026
3027 /// Method for testing Deserializer implementation. Checks that all events was consumed during
3028 /// deserialization. Panics if the next event will not be [`DeEvent::Eof`].
3029 #[doc(hidden)]
3030 #[track_caller]
3031 pub fn check_eof_reached(&mut self) {
3032 // Deserializer may not consume trailing spaces, that is normal
3033 self.skip_whitespaces().expect("cannot skip whitespaces");
3034 let event = self.peek().expect("cannot peek event");
3035 assert_eq!(
3036 *event,
3037 DeEvent::Eof,
3038 "the whole XML document should be consumed, expected `Eof`",
3039 );
3040 }
3041}
3042
3043impl<'de> Deserializer<'de, SliceReader<'de>> {
3044 /// Create a new deserializer that will borrow data from the specified string.
3045 ///
3046 /// Deserializer created with this method will not resolve custom entities.
3047 #[allow(clippy::should_implement_trait)]
3048 pub fn from_str(source: &'de str) -> Self {
3049 Self::from_str_with_resolver(source, PredefinedEntityResolver)
3050 }
3051
3052 /// Create a new deserializer that will borrow data from the specified preconfigured
3053 /// reader.
3054 ///
3055 /// Deserializer created with this method will not resolve custom entities.
3056 ///
3057 /// Note, that config option [`Config::expand_empty_elements`] will be set to `true`.
3058 ///
3059 /// # Example
3060 ///
3061 /// ```
3062 /// # use pretty_assertions::assert_eq;
3063 /// # use quick_xml::de::Deserializer;
3064 /// # use quick_xml::NsReader;
3065 /// # use serde::Deserialize;
3066 /// #
3067 /// #[derive(Deserialize, PartialEq, Debug)]
3068 /// struct Object<'a> {
3069 /// tag: &'a str,
3070 /// }
3071 ///
3072 /// let mut reader = NsReader::from_str("<xml><tag> test </tag></xml>");
3073 ///
3074 /// let mut de = Deserializer::borrowing(reader.clone());
3075 /// let obj = Object::deserialize(&mut de).unwrap();
3076 /// assert_eq!(obj, Object { tag: " test " });
3077 ///
3078 /// reader.config_mut().trim_text(true);
3079 ///
3080 /// let mut de = Deserializer::borrowing(reader);
3081 /// let obj = Object::deserialize(&mut de).unwrap();
3082 /// assert_eq!(obj, Object { tag: "test" });
3083 /// ```
3084 ///
3085 /// [`Config::expand_empty_elements`]: crate::reader::Config::expand_empty_elements
3086 #[inline]
3087 pub fn borrowing(reader: NsReader<&'de [u8]>) -> Self {
3088 Self::borrowing_with_resolver(reader, PredefinedEntityResolver)
3089 }
3090}
3091
3092impl<'de, E> Deserializer<'de, SliceReader<'de>, E>
3093where
3094 E: EntityResolver,
3095{
3096 /// Create a new deserializer that will borrow data from the specified string
3097 /// and use the specified entity resolver.
3098 pub fn from_str_with_resolver(source: &'de str, entity_resolver: E) -> Self {
3099 Self::borrowing_with_resolver(NsReader::from_str(source), entity_resolver)
3100 }
3101
3102 /// Create a new deserializer that will borrow data from the specified preconfigured
3103 /// reader and use the specified entity resolver.
3104 ///
3105 /// Note, that config option [`Config::expand_empty_elements`] will be set to `true`.
3106 ///
3107 /// [`Config::expand_empty_elements`]: crate::reader::Config::expand_empty_elements
3108 pub fn borrowing_with_resolver(mut reader: NsReader<&'de [u8]>, entity_resolver: E) -> Self {
3109 let config = reader.config_mut();
3110 config.expand_empty_elements = true;
3111
3112 Self::new(SliceReader { reader }, entity_resolver)
3113 }
3114}
3115
3116impl<'de, R> Deserializer<'de, IoReader<R>>
3117where
3118 R: BufRead,
3119{
3120 /// Create a new deserializer that will copy data from the specified reader
3121 /// into internal buffer.
3122 ///
3123 /// If you already have a string use [`Self::from_str`] instead, because it
3124 /// will borrow instead of copy. If you have `&[u8]` which is known to represent
3125 /// UTF-8, you can decode it first before using [`from_str`].
3126 ///
3127 /// Deserializer created with this method will not resolve custom entities.
3128 pub fn from_reader(reader: R) -> Self {
3129 Self::with_resolver(reader, PredefinedEntityResolver)
3130 }
3131
3132 /// Create a new deserializer that will copy data from the specified preconfigured
3133 /// reader into internal buffer.
3134 ///
3135 /// Deserializer created with this method will not resolve custom entities.
3136 ///
3137 /// Note, that config option [`Config::expand_empty_elements`] will be set to `true`.
3138 ///
3139 /// # Example
3140 ///
3141 /// ```
3142 /// # use pretty_assertions::assert_eq;
3143 /// # use quick_xml::de::Deserializer;
3144 /// # use quick_xml::NsReader;
3145 /// # use serde::Deserialize;
3146 /// #
3147 /// #[derive(Deserialize, PartialEq, Debug)]
3148 /// struct Object {
3149 /// tag: String,
3150 /// }
3151 ///
3152 /// let mut reader = NsReader::from_str("<xml><tag> test </tag></xml>");
3153 ///
3154 /// let mut de = Deserializer::buffering(reader.clone());
3155 /// let obj = Object::deserialize(&mut de).unwrap();
3156 /// assert_eq!(obj, Object { tag: " test ".to_string() });
3157 ///
3158 /// reader.config_mut().trim_text(true);
3159 ///
3160 /// let mut de = Deserializer::buffering(reader);
3161 /// let obj = Object::deserialize(&mut de).unwrap();
3162 /// assert_eq!(obj, Object { tag: "test".to_string() });
3163 /// ```
3164 ///
3165 /// [`Config::expand_empty_elements`]: crate::reader::Config::expand_empty_elements
3166 #[inline]
3167 pub fn buffering(reader: NsReader<R>) -> Self {
3168 Self::buffering_with_resolver(reader, PredefinedEntityResolver)
3169 }
3170}
3171
3172impl<'de, R, E> Deserializer<'de, IoReader<R>, E>
3173where
3174 R: BufRead,
3175 E: EntityResolver,
3176{
3177 /// Create a new deserializer that will copy data from the specified reader
3178 /// into internal buffer and use the specified entity resolver.
3179 ///
3180 /// If you already have a string use [`Self::from_str`] instead, because it
3181 /// will borrow instead of copy. If you have `&[u8]` which is known to represent
3182 /// UTF-8, you can decode it first before using [`from_str`].
3183 pub fn with_resolver(reader: R, entity_resolver: E) -> Self {
3184 let mut reader = NsReader::from_reader(reader);
3185 let config = reader.config_mut();
3186 config.expand_empty_elements = true;
3187
3188 Self::new(
3189 IoReader {
3190 reader,
3191 buf: Vec::new(),
3192 },
3193 entity_resolver,
3194 )
3195 }
3196
3197 /// Create new deserializer that will copy data from the specified preconfigured reader
3198 /// into internal buffer and use the specified entity resolver.
3199 ///
3200 /// Note, that config option [`Config::expand_empty_elements`] will be set to `true`.
3201 ///
3202 /// [`Config::expand_empty_elements`]: crate::reader::Config::expand_empty_elements
3203 pub fn buffering_with_resolver(mut reader: NsReader<R>, entity_resolver: E) -> Self {
3204 let config = reader.config_mut();
3205 config.expand_empty_elements = true;
3206
3207 Self::new(
3208 IoReader {
3209 reader,
3210 buf: Vec::new(),
3211 },
3212 entity_resolver,
3213 )
3214 }
3215}
3216
3217impl<'de, 'a, R, E> de::Deserializer<'de> for &'a mut Deserializer<'de, R, E>
3218where
3219 R: XmlRead<'de>,
3220 E: EntityResolver,
3221{
3222 type Error = DeError;
3223
3224 deserialize_primitives!();
3225
3226 fn deserialize_struct<V>(
3227 self,
3228 _name: &'static str,
3229 fields: &'static [&'static str],
3230 visitor: V,
3231 ) -> Result<V::Value, DeError>
3232 where
3233 V: Visitor<'de>,
3234 {
3235 // When document is pretty-printed there could be whitespaces before the root element
3236 self.skip_whitespaces()?;
3237 match self.next()? {
3238 DeEvent::Start(e) => visitor.visit_map(ElementMapAccess::new(self, e, fields)?),
3239 // SAFETY: The reader is guaranteed that we don't have unmatched tags
3240 // If we here, then our deserializer has a bug
3241 DeEvent::End(e) => unreachable!("{:?}", e),
3242 // Deserializer methods are only hints, if deserializer could not satisfy
3243 // request, it should return the data that it has. It is responsibility
3244 // of a Visitor to return an error if it does not understand the data
3245 DeEvent::Text(e) => match e.text {
3246 Cow::Borrowed(s) => visitor.visit_borrowed_str(s),
3247 Cow::Owned(s) => visitor.visit_string(s),
3248 },
3249 DeEvent::Eof => Err(DeError::UnexpectedEof),
3250 }
3251 }
3252
3253 /// Unit represented in XML as a `xs:element` or text/CDATA content.
3254 /// Any content inside `xs:element` is ignored and skipped.
3255 ///
3256 /// Produces unit struct from any of following inputs:
3257 /// - any `<tag ...>...</tag>`
3258 /// - any `<tag .../>`
3259 /// - any consequent text / CDATA content (can consist of several parts
3260 /// delimited by comments and processing instructions)
3261 ///
3262 /// # Events handling
3263 ///
3264 /// |Event |XML |Handling
3265 /// |------------------|---------------------------|-------------------------------------------
3266 /// |[`DeEvent::Start`]|`<tag>...</tag>` |Calls `visitor.visit_unit()`, consumes all events up to and including corresponding `End` event
3267 /// |[`DeEvent::End`] |`</tag>` |This is impossible situation, the method will panic if it happens
3268 /// |[`DeEvent::Text`] |`text content` or `<![CDATA[cdata content]]>` (probably mixed)|Calls `visitor.visit_unit()`. The content is ignored
3269 /// |[`DeEvent::Eof`] | |Emits [`UnexpectedEof`](DeError::UnexpectedEof)
3270 fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, DeError>
3271 where
3272 V: Visitor<'de>,
3273 {
3274 match self.next()? {
3275 DeEvent::Start(s) => {
3276 self.read_to_end(s.name())?;
3277 visitor.visit_unit()
3278 }
3279 DeEvent::Text(_) => visitor.visit_unit(),
3280 // SAFETY: The reader is guaranteed that we don't have unmatched tags
3281 // If we here, then our deserializer has a bug
3282 DeEvent::End(e) => unreachable!("{:?}", e),
3283 DeEvent::Eof => Err(DeError::UnexpectedEof),
3284 }
3285 }
3286
3287 /// Forwards deserialization of the inner type. Always calls [`Visitor::visit_newtype_struct`]
3288 /// with the same deserializer.
3289 fn deserialize_newtype_struct<V>(
3290 self,
3291 _name: &'static str,
3292 visitor: V,
3293 ) -> Result<V::Value, DeError>
3294 where
3295 V: Visitor<'de>,
3296 {
3297 visitor.visit_newtype_struct(self)
3298 }
3299
3300 fn deserialize_enum<V>(
3301 self,
3302 _name: &'static str,
3303 _variants: &'static [&'static str],
3304 visitor: V,
3305 ) -> Result<V::Value, DeError>
3306 where
3307 V: Visitor<'de>,
3308 {
3309 // When document is pretty-printed there could be whitespaces before the root element
3310 // which represents the enum variant
3311 // Checked by `top_level::list_of_enum` test in serde-de-seq
3312 self.skip_whitespaces()?;
3313 visitor.visit_enum(var::EnumAccess::new(self))
3314 }
3315
3316 fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, DeError>
3317 where
3318 V: Visitor<'de>,
3319 {
3320 visitor.visit_seq(self)
3321 }
3322
3323 fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, DeError>
3324 where
3325 V: Visitor<'de>,
3326 {
3327 // We cannot use result of `peek()` directly because of borrow checker
3328 let _ = self.peek()?;
3329 match self.last_peeked() {
3330 DeEvent::Text(t) if t.is_empty() => visitor.visit_none(),
3331 DeEvent::Eof => visitor.visit_none(),
3332 // if the `xsi:nil` attribute is set to true we got a none value
3333 DeEvent::Start(start) if self.reader.reader.has_nil_attr(&start) => {
3334 self.skip_next_tree()?;
3335 visitor.visit_none()
3336 }
3337 _ => visitor.visit_some(self),
3338 }
3339 }
3340
3341 fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, DeError>
3342 where
3343 V: Visitor<'de>,
3344 {
3345 match self.peek()? {
3346 DeEvent::Text(_) => self.deserialize_str(visitor),
3347 _ => self.deserialize_map(visitor),
3348 }
3349 }
3350}
3351
3352/// An accessor to sequence elements forming a value for top-level sequence of XML
3353/// elements.
3354///
3355/// Technically, multiple top-level elements violates XML rule of only one top-level
3356/// element, but we consider this as several concatenated XML documents.
3357impl<'de, 'a, R, E> SeqAccess<'de> for &'a mut Deserializer<'de, R, E>
3358where
3359 R: XmlRead<'de>,
3360 E: EntityResolver,
3361{
3362 type Error = DeError;
3363
3364 fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
3365 where
3366 T: DeserializeSeed<'de>,
3367 {
3368 // When document is pretty-printed there could be whitespaces before, between
3369 // and after root elements. We cannot defer decision if we need to skip spaces
3370 // or not: if we have a sequence of type that does not accept blank text, it
3371 // will need to return something and it can return only error. For example,
3372 // it can be enum without `$text` variant
3373 // Checked by `top_level::list_of_enum` test in serde-de-seq
3374 self.skip_whitespaces()?;
3375 match self.peek()? {
3376 DeEvent::Eof => Ok(None),
3377
3378 // Start(tag), End(tag), Text
3379 _ => seed.deserialize(&mut **self).map(Some),
3380 }
3381 }
3382}
3383
3384impl<'de, 'a, R, E> IntoDeserializer<'de, DeError> for &'a mut Deserializer<'de, R, E>
3385where
3386 R: XmlRead<'de>,
3387 E: EntityResolver,
3388{
3389 type Deserializer = Self;
3390
3391 #[inline]
3392 fn into_deserializer(self) -> Self {
3393 self
3394 }
3395}
3396
3397////////////////////////////////////////////////////////////////////////////////////////////////////
3398
3399/// Converts raw reader's event into a payload event.
3400/// Returns `None`, if event should be skipped.
3401#[inline(always)]
3402fn skip_uninterested<'a>(event: Event<'a>) -> Option<PayloadEvent<'a>> {
3403 let event = match event {
3404 Event::DocType(e) => PayloadEvent::DocType(e),
3405 Event::Start(e) => PayloadEvent::Start(e),
3406 Event::End(e) => PayloadEvent::End(e),
3407 Event::Eof => PayloadEvent::Eof,
3408
3409 // Do not trim next text event after Text, CDATA or reference event
3410 Event::CData(e) => PayloadEvent::CData(e),
3411 Event::Text(e) => PayloadEvent::Text(e),
3412 Event::GeneralRef(e) => PayloadEvent::GeneralRef(e),
3413
3414 _ => return None,
3415 };
3416 Some(event)
3417}
3418
3419////////////////////////////////////////////////////////////////////////////////////////////////////
3420
3421/// Trait used by the deserializer for iterating over input. This is manually
3422/// "specialized" for iterating over `&[u8]`.
3423///
3424/// You do not need to implement this trait, it is needed to abstract from
3425/// [borrowing](SliceReader) and [copying](IoReader) data sources and reuse code in
3426/// deserializer
3427pub trait XmlRead<'i> {
3428 /// Return an input-borrowing event.
3429 fn next(&mut self) -> Result<PayloadEvent<'i>, DeError>;
3430
3431 /// Skips until end element is found. Unlike `next()` it will not allocate
3432 /// when it cannot satisfy the lifetime.
3433 fn read_to_end(&mut self, name: QName) -> Result<(), DeError>;
3434
3435 /// A copy of the reader's decoder used to decode strings.
3436 fn decoder(&self) -> Decoder;
3437
3438 /// Checks if the `start` tag has a [`xsi:nil`] attribute. This method ignores
3439 /// any errors in attributes.
3440 ///
3441 /// [`xsi:nil`]: https://www.w3.org/TR/xmlschema-1/#xsi_nil
3442 fn has_nil_attr(&self, start: &BytesStart) -> bool;
3443}
3444
3445/// XML input source that reads from a std::io input stream.
3446///
3447/// You cannot create it, it is created automatically when you call
3448/// [`Deserializer::from_reader`]
3449pub struct IoReader<R: BufRead> {
3450 reader: NsReader<R>,
3451 buf: Vec<u8>,
3452}
3453
3454impl<R: BufRead> IoReader<R> {
3455 /// Returns the underlying XML reader.
3456 ///
3457 /// ```
3458 /// # use pretty_assertions::assert_eq;
3459 /// use serde::Deserialize;
3460 /// use std::io::Cursor;
3461 /// use quick_xml::de::Deserializer;
3462 /// use quick_xml::NsReader;
3463 ///
3464 /// #[derive(Deserialize)]
3465 /// struct SomeStruct {
3466 /// field1: String,
3467 /// field2: String,
3468 /// }
3469 ///
3470 /// // Try to deserialize from broken XML
3471 /// let mut de = Deserializer::from_reader(Cursor::new(
3472 /// "<SomeStruct><field1><field2></SomeStruct>"
3473 /// // 0 ^= 28 ^= 41
3474 /// ));
3475 ///
3476 /// let err = SomeStruct::deserialize(&mut de);
3477 /// assert!(err.is_err());
3478 ///
3479 /// let reader: &NsReader<Cursor<&str>> = de.get_ref().get_ref();
3480 ///
3481 /// assert_eq!(reader.error_position(), 28);
3482 /// assert_eq!(reader.buffer_position(), 41);
3483 /// ```
3484 pub const fn get_ref(&self) -> &NsReader<R> {
3485 &self.reader
3486 }
3487}
3488
3489impl<'i, R: BufRead> XmlRead<'i> for IoReader<R> {
3490 fn next(&mut self) -> Result<PayloadEvent<'static>, DeError> {
3491 loop {
3492 self.buf.clear();
3493
3494 let event = self.reader.read_event_into(&mut self.buf)?;
3495 if let Some(event) = skip_uninterested(event) {
3496 return Ok(event.into_owned());
3497 }
3498 }
3499 }
3500
3501 fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
3502 match self.reader.read_to_end_into(name, &mut self.buf) {
3503 Err(e) => Err(e.into()),
3504 Ok(_) => Ok(()),
3505 }
3506 }
3507
3508 fn decoder(&self) -> Decoder {
3509 self.reader.decoder()
3510 }
3511
3512 fn has_nil_attr(&self, start: &BytesStart) -> bool {
3513 start.attributes().has_nil(&self.reader)
3514 }
3515}
3516
3517/// XML input source that reads from a slice of bytes and can borrow from it.
3518///
3519/// You cannot create it, it is created automatically when you call
3520/// [`Deserializer::from_str`].
3521pub struct SliceReader<'de> {
3522 reader: NsReader<&'de [u8]>,
3523}
3524
3525impl<'de> SliceReader<'de> {
3526 /// Returns the underlying XML reader.
3527 ///
3528 /// ```
3529 /// # use pretty_assertions::assert_eq;
3530 /// use serde::Deserialize;
3531 /// use quick_xml::de::Deserializer;
3532 /// use quick_xml::NsReader;
3533 ///
3534 /// #[derive(Deserialize)]
3535 /// struct SomeStruct {
3536 /// field1: String,
3537 /// field2: String,
3538 /// }
3539 ///
3540 /// // Try to deserialize from broken XML
3541 /// let mut de = Deserializer::from_str(
3542 /// "<SomeStruct><field1><field2></SomeStruct>"
3543 /// // 0 ^= 28 ^= 41
3544 /// );
3545 ///
3546 /// let err = SomeStruct::deserialize(&mut de);
3547 /// assert!(err.is_err());
3548 ///
3549 /// let reader: &NsReader<&[u8]> = de.get_ref().get_ref();
3550 ///
3551 /// assert_eq!(reader.error_position(), 28);
3552 /// assert_eq!(reader.buffer_position(), 41);
3553 /// ```
3554 pub const fn get_ref(&self) -> &NsReader<&'de [u8]> {
3555 &self.reader
3556 }
3557}
3558
3559impl<'de> XmlRead<'de> for SliceReader<'de> {
3560 fn next(&mut self) -> Result<PayloadEvent<'de>, DeError> {
3561 loop {
3562 let event = self.reader.read_event()?;
3563 if let Some(event) = skip_uninterested(event) {
3564 return Ok(event);
3565 }
3566 }
3567 }
3568
3569 fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
3570 match self.reader.read_to_end(name) {
3571 Err(e) => Err(e.into()),
3572 Ok(_) => Ok(()),
3573 }
3574 }
3575
3576 fn decoder(&self) -> Decoder {
3577 self.reader.decoder()
3578 }
3579
3580 fn has_nil_attr(&self, start: &BytesStart) -> bool {
3581 start.attributes().has_nil(&self.reader)
3582 }
3583}
3584
3585#[cfg(test)]
3586mod tests {
3587 use super::*;
3588 use crate::errors::IllFormedError;
3589 use pretty_assertions::assert_eq;
3590
3591 fn make_de<'de>(source: &'de str) -> Deserializer<'de, SliceReader<'de>> {
3592 dbg!(source);
3593 Deserializer::from_str(source)
3594 }
3595
3596 #[cfg(feature = "overlapped-lists")]
3597 mod skip {
3598 use super::*;
3599 use crate::de::DeEvent::*;
3600 use crate::events::BytesEnd;
3601 use pretty_assertions::assert_eq;
3602
3603 /// Checks that `peek()` and `read()` behaves correctly after `skip()`
3604 #[test]
3605 fn read_and_peek() {
3606 let mut de = make_de(
3607 "\
3608 <root>\
3609 <inner>\
3610 text\
3611 <inner/>\
3612 </inner>\
3613 <next/>\
3614 <target/>\
3615 </root>\
3616 ",
3617 );
3618
3619 // Initial conditions - both are empty
3620 assert_eq!(de.read, vec![]);
3621 assert_eq!(de.write, vec![]);
3622
3623 assert_eq!(de.next().unwrap(), Start(BytesStart::new("root")));
3624 assert_eq!(de.peek().unwrap(), &Start(BytesStart::new("inner")));
3625
3626 // Mark that start_replay() should begin replay from this point
3627 let checkpoint = de.skip_checkpoint();
3628 assert_eq!(checkpoint, 0);
3629
3630 // Should skip first <inner> tree
3631 de.skip().unwrap();
3632 assert_eq!(de.read, vec![]);
3633 assert_eq!(
3634 de.write,
3635 vec![
3636 Start(BytesStart::new("inner")),
3637 Text("text".into()),
3638 Start(BytesStart::new("inner")),
3639 End(BytesEnd::new("inner")),
3640 End(BytesEnd::new("inner")),
3641 ]
3642 );
3643
3644 // Consume <next/>. Now unconsumed XML looks like:
3645 //
3646 // <inner>
3647 // text
3648 // <inner/>
3649 // </inner>
3650 // <target/>
3651 // </root>
3652 assert_eq!(de.next().unwrap(), Start(BytesStart::new("next")));
3653 assert_eq!(de.next().unwrap(), End(BytesEnd::new("next")));
3654
3655 // We finish writing. Next call to `next()` should start replay that messages:
3656 //
3657 // <inner>
3658 // text
3659 // <inner/>
3660 // </inner>
3661 //
3662 // and after that stream that messages:
3663 //
3664 // <target/>
3665 // </root>
3666 de.start_replay(checkpoint);
3667 assert_eq!(
3668 de.read,
3669 vec![
3670 Start(BytesStart::new("inner")),
3671 Text("text".into()),
3672 Start(BytesStart::new("inner")),
3673 End(BytesEnd::new("inner")),
3674 End(BytesEnd::new("inner")),
3675 ]
3676 );
3677 assert_eq!(de.write, vec![]);
3678 assert_eq!(de.next().unwrap(), Start(BytesStart::new("inner")));
3679
3680 // Mark that start_replay() should begin replay from this point
3681 let checkpoint = de.skip_checkpoint();
3682 assert_eq!(checkpoint, 0);
3683
3684 // Skip `$text` node and consume <inner/> after it
3685 de.skip().unwrap();
3686 assert_eq!(
3687 de.read,
3688 vec![
3689 Start(BytesStart::new("inner")),
3690 End(BytesEnd::new("inner")),
3691 End(BytesEnd::new("inner")),
3692 ]
3693 );
3694 assert_eq!(
3695 de.write,
3696 vec![
3697 // This comment here to keep the same formatting of both arrays
3698 // otherwise rustfmt suggest one-line it
3699 Text("text".into()),
3700 ]
3701 );
3702
3703 assert_eq!(de.next().unwrap(), Start(BytesStart::new("inner")));
3704 assert_eq!(de.next().unwrap(), End(BytesEnd::new("inner")));
3705
3706 // We finish writing. Next call to `next()` should start replay messages:
3707 //
3708 // text
3709 // </inner>
3710 //
3711 // and after that stream that messages:
3712 //
3713 // <target/>
3714 // </root>
3715 de.start_replay(checkpoint);
3716 assert_eq!(
3717 de.read,
3718 vec![
3719 // This comment here to keep the same formatting as others
3720 // otherwise rustfmt suggest one-line it
3721 Text("text".into()),
3722 End(BytesEnd::new("inner")),
3723 ]
3724 );
3725 assert_eq!(de.write, vec![]);
3726 assert_eq!(de.next().unwrap(), Text("text".into()));
3727 assert_eq!(de.next().unwrap(), End(BytesEnd::new("inner")));
3728 assert_eq!(de.next().unwrap(), Start(BytesStart::new("target")));
3729 assert_eq!(de.next().unwrap(), End(BytesEnd::new("target")));
3730 assert_eq!(de.next().unwrap(), End(BytesEnd::new("root")));
3731 assert_eq!(de.next().unwrap(), Eof);
3732 }
3733
3734 /// Checks that `read_to_end()` behaves correctly after `skip()`
3735 #[test]
3736 fn read_to_end() {
3737 let mut de = make_de(
3738 "\
3739 <root>\
3740 <skip>\
3741 text\
3742 <skip/>\
3743 </skip>\
3744 <target>\
3745 <target/>\
3746 </target>\
3747 </root>\
3748 ",
3749 );
3750
3751 // Initial conditions - both are empty
3752 assert_eq!(de.read, vec![]);
3753 assert_eq!(de.write, vec![]);
3754
3755 assert_eq!(de.next().unwrap(), Start(BytesStart::new("root")));
3756
3757 // Mark that start_replay() should begin replay from this point
3758 let checkpoint = de.skip_checkpoint();
3759 assert_eq!(checkpoint, 0);
3760
3761 // Skip the <skip> tree
3762 de.skip().unwrap();
3763 assert_eq!(de.read, vec![]);
3764 assert_eq!(
3765 de.write,
3766 vec![
3767 Start(BytesStart::new("skip")),
3768 Text("text".into()),
3769 Start(BytesStart::new("skip")),
3770 End(BytesEnd::new("skip")),
3771 End(BytesEnd::new("skip")),
3772 ]
3773 );
3774
3775 // Drop all events that represents <target> tree. Now unconsumed XML looks like:
3776 //
3777 // <skip>
3778 // text
3779 // <skip/>
3780 // </skip>
3781 // </root>
3782 assert_eq!(de.next().unwrap(), Start(BytesStart::new("target")));
3783 de.read_to_end(QName(b"target")).unwrap();
3784 assert_eq!(de.read, vec![]);
3785 assert_eq!(
3786 de.write,
3787 vec![
3788 Start(BytesStart::new("skip")),
3789 Text("text".into()),
3790 Start(BytesStart::new("skip")),
3791 End(BytesEnd::new("skip")),
3792 End(BytesEnd::new("skip")),
3793 ]
3794 );
3795
3796 // We finish writing. Next call to `next()` should start replay that messages:
3797 //
3798 // <skip>
3799 // text
3800 // <skip/>
3801 // </skip>
3802 //
3803 // and after that stream that messages:
3804 //
3805 // </root>
3806 de.start_replay(checkpoint);
3807 assert_eq!(
3808 de.read,
3809 vec![
3810 Start(BytesStart::new("skip")),
3811 Text("text".into()),
3812 Start(BytesStart::new("skip")),
3813 End(BytesEnd::new("skip")),
3814 End(BytesEnd::new("skip")),
3815 ]
3816 );
3817 assert_eq!(de.write, vec![]);
3818
3819 assert_eq!(de.next().unwrap(), Start(BytesStart::new("skip")));
3820 de.read_to_end(QName(b"skip")).unwrap();
3821
3822 assert_eq!(de.next().unwrap(), End(BytesEnd::new("root")));
3823 assert_eq!(de.next().unwrap(), Eof);
3824 }
3825
3826 /// Checks that replay replayes only part of events
3827 /// Test for https://github.com/tafia/quick-xml/issues/435
3828 #[test]
3829 fn partial_replay() {
3830 let mut de = make_de(
3831 "\
3832 <root>\
3833 <skipped-1/>\
3834 <skipped-2/>\
3835 <inner>\
3836 <skipped-3/>\
3837 <skipped-4/>\
3838 <target-2/>\
3839 </inner>\
3840 <target-1/>\
3841 </root>\
3842 ",
3843 );
3844
3845 // Initial conditions - both are empty
3846 assert_eq!(de.read, vec![]);
3847 assert_eq!(de.write, vec![]);
3848
3849 assert_eq!(de.next().unwrap(), Start(BytesStart::new("root")));
3850
3851 // start_replay() should start replay from this point
3852 let checkpoint1 = de.skip_checkpoint();
3853 assert_eq!(checkpoint1, 0);
3854
3855 // Should skip first and second <skipped-N/> elements
3856 de.skip().unwrap(); // skipped-1
3857 de.skip().unwrap(); // skipped-2
3858 assert_eq!(de.read, vec![]);
3859 assert_eq!(
3860 de.write,
3861 vec![
3862 Start(BytesStart::new("skipped-1")),
3863 End(BytesEnd::new("skipped-1")),
3864 Start(BytesStart::new("skipped-2")),
3865 End(BytesEnd::new("skipped-2")),
3866 ]
3867 );
3868
3869 ////////////////////////////////////////////////////////////////////////////////////////
3870
3871 assert_eq!(de.next().unwrap(), Start(BytesStart::new("inner")));
3872 assert_eq!(de.peek().unwrap(), &Start(BytesStart::new("skipped-3")));
3873 assert_eq!(
3874 de.read,
3875 vec![
3876 // This comment here to keep the same formatting of both arrays
3877 // otherwise rustfmt suggest one-line it
3878 Start(BytesStart::new("skipped-3")),
3879 ]
3880 );
3881 assert_eq!(
3882 de.write,
3883 vec![
3884 Start(BytesStart::new("skipped-1")),
3885 End(BytesEnd::new("skipped-1")),
3886 Start(BytesStart::new("skipped-2")),
3887 End(BytesEnd::new("skipped-2")),
3888 ]
3889 );
3890
3891 // start_replay() should start replay from this point
3892 let checkpoint2 = de.skip_checkpoint();
3893 assert_eq!(checkpoint2, 4);
3894
3895 // Should skip third and forth <skipped-N/> elements
3896 de.skip().unwrap(); // skipped-3
3897 de.skip().unwrap(); // skipped-4
3898 assert_eq!(de.read, vec![]);
3899 assert_eq!(
3900 de.write,
3901 vec![
3902 // checkpoint 1
3903 Start(BytesStart::new("skipped-1")),
3904 End(BytesEnd::new("skipped-1")),
3905 Start(BytesStart::new("skipped-2")),
3906 End(BytesEnd::new("skipped-2")),
3907 // checkpoint 2
3908 Start(BytesStart::new("skipped-3")),
3909 End(BytesEnd::new("skipped-3")),
3910 Start(BytesStart::new("skipped-4")),
3911 End(BytesEnd::new("skipped-4")),
3912 ]
3913 );
3914 assert_eq!(de.next().unwrap(), Start(BytesStart::new("target-2")));
3915 assert_eq!(de.next().unwrap(), End(BytesEnd::new("target-2")));
3916 assert_eq!(de.peek().unwrap(), &End(BytesEnd::new("inner")));
3917 assert_eq!(
3918 de.read,
3919 vec![
3920 // This comment here to keep the same formatting of both arrays
3921 // otherwise rustfmt suggest one-line it
3922 End(BytesEnd::new("inner")),
3923 ]
3924 );
3925 assert_eq!(
3926 de.write,
3927 vec![
3928 // checkpoint 1
3929 Start(BytesStart::new("skipped-1")),
3930 End(BytesEnd::new("skipped-1")),
3931 Start(BytesStart::new("skipped-2")),
3932 End(BytesEnd::new("skipped-2")),
3933 // checkpoint 2
3934 Start(BytesStart::new("skipped-3")),
3935 End(BytesEnd::new("skipped-3")),
3936 Start(BytesStart::new("skipped-4")),
3937 End(BytesEnd::new("skipped-4")),
3938 ]
3939 );
3940
3941 // Start replay events from checkpoint 2
3942 de.start_replay(checkpoint2);
3943 assert_eq!(
3944 de.read,
3945 vec![
3946 Start(BytesStart::new("skipped-3")),
3947 End(BytesEnd::new("skipped-3")),
3948 Start(BytesStart::new("skipped-4")),
3949 End(BytesEnd::new("skipped-4")),
3950 End(BytesEnd::new("inner")),
3951 ]
3952 );
3953 assert_eq!(
3954 de.write,
3955 vec![
3956 Start(BytesStart::new("skipped-1")),
3957 End(BytesEnd::new("skipped-1")),
3958 Start(BytesStart::new("skipped-2")),
3959 End(BytesEnd::new("skipped-2")),
3960 ]
3961 );
3962
3963 // Replayed events
3964 assert_eq!(de.next().unwrap(), Start(BytesStart::new("skipped-3")));
3965 assert_eq!(de.next().unwrap(), End(BytesEnd::new("skipped-3")));
3966 assert_eq!(de.next().unwrap(), Start(BytesStart::new("skipped-4")));
3967 assert_eq!(de.next().unwrap(), End(BytesEnd::new("skipped-4")));
3968
3969 assert_eq!(de.next().unwrap(), End(BytesEnd::new("inner")));
3970 assert_eq!(de.read, vec![]);
3971 assert_eq!(
3972 de.write,
3973 vec![
3974 Start(BytesStart::new("skipped-1")),
3975 End(BytesEnd::new("skipped-1")),
3976 Start(BytesStart::new("skipped-2")),
3977 End(BytesEnd::new("skipped-2")),
3978 ]
3979 );
3980
3981 ////////////////////////////////////////////////////////////////////////////////////////
3982
3983 // New events
3984 assert_eq!(de.next().unwrap(), Start(BytesStart::new("target-1")));
3985 assert_eq!(de.next().unwrap(), End(BytesEnd::new("target-1")));
3986
3987 assert_eq!(de.read, vec![]);
3988 assert_eq!(
3989 de.write,
3990 vec![
3991 Start(BytesStart::new("skipped-1")),
3992 End(BytesEnd::new("skipped-1")),
3993 Start(BytesStart::new("skipped-2")),
3994 End(BytesEnd::new("skipped-2")),
3995 ]
3996 );
3997
3998 // Start replay events from checkpoint 1
3999 de.start_replay(checkpoint1);
4000 assert_eq!(
4001 de.read,
4002 vec![
4003 Start(BytesStart::new("skipped-1")),
4004 End(BytesEnd::new("skipped-1")),
4005 Start(BytesStart::new("skipped-2")),
4006 End(BytesEnd::new("skipped-2")),
4007 ]
4008 );
4009 assert_eq!(de.write, vec![]);
4010
4011 // Replayed events
4012 assert_eq!(de.next().unwrap(), Start(BytesStart::new("skipped-1")));
4013 assert_eq!(de.next().unwrap(), End(BytesEnd::new("skipped-1")));
4014 assert_eq!(de.next().unwrap(), Start(BytesStart::new("skipped-2")));
4015 assert_eq!(de.next().unwrap(), End(BytesEnd::new("skipped-2")));
4016
4017 assert_eq!(de.read, vec![]);
4018 assert_eq!(de.write, vec![]);
4019
4020 // New events
4021 assert_eq!(de.next().unwrap(), End(BytesEnd::new("root")));
4022 assert_eq!(de.next().unwrap(), Eof);
4023 }
4024
4025 /// Checks that limiting buffer size works correctly
4026 #[test]
4027 fn limit() {
4028 use serde::Deserialize;
4029
4030 #[derive(Debug, Deserialize)]
4031 #[allow(unused)]
4032 struct List {
4033 item: Vec<()>,
4034 }
4035
4036 let mut de = make_de(
4037 "\
4038 <any-name>\
4039 <item/>\
4040 <another-item>\
4041 <some-element>with text</some-element>\
4042 <yet-another-element/>\
4043 </another-item>\
4044 <item/>\
4045 <item/>\
4046 </any-name>\
4047 ",
4048 );
4049 de.event_buffer_size(NonZeroUsize::new(3));
4050
4051 match List::deserialize(&mut de) {
4052 Err(DeError::TooManyEvents(count)) => assert_eq!(count.get(), 3),
4053 e => panic!("Expected `Err(TooManyEvents(3))`, but got `{:?}`", e),
4054 }
4055 }
4056
4057 /// Without handling Eof in `skip` this test failed with memory allocation
4058 #[test]
4059 fn invalid_xml() {
4060 use crate::de::DeEvent::*;
4061
4062 let mut de = make_de("<root>");
4063
4064 // Cache all events
4065 let checkpoint = de.skip_checkpoint();
4066 de.skip().unwrap();
4067 de.start_replay(checkpoint);
4068 assert_eq!(de.read, vec![Start(BytesStart::new("root")), Eof]);
4069 }
4070 }
4071
4072 mod read_to_end {
4073 use super::*;
4074 use crate::de::DeEvent::*;
4075 use pretty_assertions::assert_eq;
4076
4077 #[test]
4078 fn complex() {
4079 let mut de = make_de(
4080 r#"
4081 <root>
4082 <tag a="1"><tag>text</tag>content</tag>
4083 <tag a="2"><![CDATA[cdata content]]></tag>
4084 <self-closed/>
4085 </root>
4086 "#,
4087 );
4088
4089 assert_eq!(de.next().unwrap(), Text("\n ".into()));
4090 assert_eq!(de.next().unwrap(), Start(BytesStart::new("root")));
4091
4092 assert_eq!(de.next().unwrap(), Text("\n ".into()));
4093 assert_eq!(
4094 de.next().unwrap(),
4095 Start(BytesStart::from_content(r#"tag a="1""#, 3))
4096 );
4097 assert_eq!(de.read_to_end(QName(b"tag")).unwrap(), ());
4098
4099 assert_eq!(de.next().unwrap(), Text("\n ".into()));
4100 assert_eq!(
4101 de.next().unwrap(),
4102 Start(BytesStart::from_content(r#"tag a="2""#, 3))
4103 );
4104 assert_eq!(de.next().unwrap(), Text("cdata content".into()));
4105 assert_eq!(de.next().unwrap(), End(BytesEnd::new("tag")));
4106
4107 assert_eq!(de.next().unwrap(), Text("\n ".into()));
4108 assert_eq!(de.next().unwrap(), Start(BytesStart::new("self-closed")));
4109 assert_eq!(de.read_to_end(QName(b"self-closed")).unwrap(), ());
4110
4111 assert_eq!(de.next().unwrap(), Text("\n ".into()));
4112 assert_eq!(de.next().unwrap(), End(BytesEnd::new("root")));
4113 assert_eq!(de.next().unwrap(), Text("\n ".into()));
4114 assert_eq!(de.next().unwrap(), Eof);
4115 }
4116
4117 #[test]
4118 fn invalid_xml1() {
4119 let mut de = make_de("<tag><tag></tag>");
4120
4121 assert_eq!(de.next().unwrap(), Start(BytesStart::new("tag")));
4122 assert_eq!(de.peek().unwrap(), &Start(BytesStart::new("tag")));
4123
4124 match de.read_to_end(QName(b"tag")) {
4125 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4126 assert_eq!(cause, IllFormedError::MissingEndTag("tag".into()))
4127 }
4128 x => panic!(
4129 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4130 x
4131 ),
4132 }
4133 assert_eq!(de.next().unwrap(), Eof);
4134 }
4135
4136 #[test]
4137 fn invalid_xml2() {
4138 let mut de = make_de("<tag><![CDATA[]]><tag></tag>");
4139
4140 assert_eq!(de.next().unwrap(), Start(BytesStart::new("tag")));
4141 assert_eq!(de.peek().unwrap(), &Text("".into()));
4142
4143 match de.read_to_end(QName(b"tag")) {
4144 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4145 assert_eq!(cause, IllFormedError::MissingEndTag("tag".into()))
4146 }
4147 x => panic!(
4148 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4149 x
4150 ),
4151 }
4152 assert_eq!(de.next().unwrap(), Eof);
4153 }
4154 }
4155
4156 #[test]
4157 fn borrowing_reader_parity() {
4158 let s = r#"
4159 <item name="hello" source="world.rs">Some text</item>
4160 <item2/>
4161 <item3 value="world" />
4162 "#;
4163
4164 let mut reader1 = IoReader {
4165 reader: NsReader::from_reader(s.as_bytes()),
4166 buf: Vec::new(),
4167 };
4168 let mut reader2 = SliceReader {
4169 reader: NsReader::from_str(s),
4170 };
4171
4172 loop {
4173 let event1 = reader1.next().unwrap();
4174 let event2 = reader2.next().unwrap();
4175
4176 if let (PayloadEvent::Eof, PayloadEvent::Eof) = (&event1, &event2) {
4177 break;
4178 }
4179
4180 assert_eq!(event1, event2);
4181 }
4182 }
4183
4184 #[test]
4185 fn borrowing_reader_events() {
4186 let s = r#"
4187 <item name="hello" source="world.rs">Some text</item>
4188 <item2></item2>
4189 <item3/>
4190 <item4 value="world" />
4191 "#;
4192
4193 let mut reader = SliceReader {
4194 reader: NsReader::from_str(s),
4195 };
4196
4197 let config = reader.reader.config_mut();
4198 config.expand_empty_elements = true;
4199
4200 let mut events = Vec::new();
4201
4202 loop {
4203 let event = reader.next().unwrap();
4204 if let PayloadEvent::Eof = event {
4205 break;
4206 }
4207 events.push(event);
4208 }
4209
4210 use crate::de::PayloadEvent::*;
4211
4212 assert_eq!(
4213 events,
4214 vec![
4215 Text(BytesText::from_escaped("\n ")),
4216 Start(BytesStart::from_content(
4217 r#"item name="hello" source="world.rs""#,
4218 4
4219 )),
4220 Text(BytesText::from_escaped("Some text")),
4221 End(BytesEnd::new("item")),
4222 Text(BytesText::from_escaped("\n ")),
4223 Start(BytesStart::from_content("item2", 5)),
4224 End(BytesEnd::new("item2")),
4225 Text(BytesText::from_escaped("\n ")),
4226 Start(BytesStart::from_content("item3", 5)),
4227 End(BytesEnd::new("item3")),
4228 Text(BytesText::from_escaped("\n ")),
4229 Start(BytesStart::from_content(r#"item4 value="world" "#, 5)),
4230 End(BytesEnd::new("item4")),
4231 Text(BytesText::from_escaped("\n ")),
4232 ]
4233 )
4234 }
4235
4236 /// Ensures, that [`Deserializer::read_string()`] never can get an `End` event,
4237 /// because parser reports error early
4238 #[test]
4239 fn read_string() {
4240 match from_str::<String>(r#"</root>"#) {
4241 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4242 assert_eq!(cause, IllFormedError::UnmatchedEndTag("root".into()));
4243 }
4244 x => panic!(
4245 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4246 x
4247 ),
4248 }
4249
4250 let s: String = from_str(r#"<root></root>"#).unwrap();
4251 assert_eq!(s, "");
4252
4253 match from_str::<String>(r#"<root></other>"#) {
4254 Err(DeError::InvalidXml(Error::IllFormed(cause))) => assert_eq!(
4255 cause,
4256 IllFormedError::MismatchedEndTag {
4257 expected: "root".into(),
4258 found: "other".into(),
4259 }
4260 ),
4261 x => panic!("Expected `Err(InvalidXml(IllFormed(_))`, but got `{:?}`", x),
4262 }
4263 }
4264
4265 /// Tests for https://github.com/tafia/quick-xml/issues/474.
4266 ///
4267 /// That tests ensures that comments and processed instructions is ignored
4268 /// and can split one logical string in pieces.
4269 mod merge_text {
4270 use super::*;
4271 use pretty_assertions::assert_eq;
4272
4273 #[test]
4274 fn text() {
4275 let mut de = make_de("text");
4276 assert_eq!(de.next().unwrap(), DeEvent::Text("text".into()));
4277 }
4278
4279 #[test]
4280 fn cdata() {
4281 let mut de = make_de("<![CDATA[cdata]]>");
4282 assert_eq!(de.next().unwrap(), DeEvent::Text("cdata".into()));
4283 }
4284
4285 #[test]
4286 fn text_and_cdata() {
4287 let mut de = make_de("text and <![CDATA[cdata]]>");
4288 assert_eq!(de.next().unwrap(), DeEvent::Text("text and cdata".into()));
4289 }
4290
4291 #[test]
4292 fn text_and_empty_cdata() {
4293 let mut de = make_de("text and <![CDATA[]]>");
4294 assert_eq!(de.next().unwrap(), DeEvent::Text("text and ".into()));
4295 }
4296
4297 #[test]
4298 fn cdata_and_text() {
4299 let mut de = make_de("<![CDATA[cdata]]> and text");
4300 assert_eq!(de.next().unwrap(), DeEvent::Text("cdata and text".into()));
4301 }
4302
4303 #[test]
4304 fn empty_cdata_and_text() {
4305 let mut de = make_de("<![CDATA[]]> and text");
4306 assert_eq!(de.next().unwrap(), DeEvent::Text(" and text".into()));
4307 }
4308
4309 #[test]
4310 fn cdata_and_cdata() {
4311 let mut de = make_de(
4312 "\
4313 <![CDATA[cdata]]]]>\
4314 <![CDATA[>cdata]]>\
4315 ",
4316 );
4317 assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4318 }
4319
4320 mod comment_between {
4321 use super::*;
4322 use pretty_assertions::assert_eq;
4323
4324 #[test]
4325 fn text() {
4326 let mut de = make_de(
4327 "\
4328 text \
4329 <!--comment 1--><!--comment 2--> \
4330 text\
4331 ",
4332 );
4333 assert_eq!(de.next().unwrap(), DeEvent::Text("text text".into()));
4334 }
4335
4336 #[test]
4337 fn cdata() {
4338 let mut de = make_de(
4339 "\
4340 <![CDATA[cdata]]]]>\
4341 <!--comment 1--><!--comment 2-->\
4342 <![CDATA[>cdata]]>\
4343 ",
4344 );
4345 assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4346 }
4347
4348 #[test]
4349 fn text_and_cdata() {
4350 let mut de = make_de(
4351 "\
4352 text \
4353 <!--comment 1--><!--comment 2-->\
4354 <![CDATA[ cdata]]>\
4355 ",
4356 );
4357 assert_eq!(de.next().unwrap(), DeEvent::Text("text cdata".into()));
4358 }
4359
4360 #[test]
4361 fn text_and_empty_cdata() {
4362 let mut de = make_de(
4363 "\
4364 text \
4365 <!--comment 1--><!--comment 2-->\
4366 <![CDATA[]]>\
4367 ",
4368 );
4369 assert_eq!(de.next().unwrap(), DeEvent::Text("text ".into()));
4370 }
4371
4372 #[test]
4373 fn cdata_and_text() {
4374 let mut de = make_de(
4375 "\
4376 <![CDATA[cdata ]]>\
4377 <!--comment 1--><!--comment 2--> \
4378 text \
4379 ",
4380 );
4381 assert_eq!(de.next().unwrap(), DeEvent::Text("cdata text ".into()));
4382 }
4383
4384 #[test]
4385 fn empty_cdata_and_text() {
4386 let mut de = make_de(
4387 "\
4388 <![CDATA[]]>\
4389 <!--comment 1--><!--comment 2--> \
4390 text \
4391 ",
4392 );
4393 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4394 }
4395
4396 #[test]
4397 fn cdata_and_cdata() {
4398 let mut de = make_de(
4399 "\
4400 <![CDATA[cdata]]]>\
4401 <!--comment 1--><!--comment 2-->\
4402 <![CDATA[]>cdata]]>\
4403 ",
4404 );
4405 assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4406 }
4407 }
4408
4409 mod pi_between {
4410 use super::*;
4411 use pretty_assertions::assert_eq;
4412
4413 #[test]
4414 fn text() {
4415 let mut de = make_de(
4416 "\
4417 text \
4418 <?pi 1?><?pi 2?> \
4419 text\
4420 ",
4421 );
4422 assert_eq!(de.next().unwrap(), DeEvent::Text("text text".into()));
4423 }
4424
4425 #[test]
4426 fn cdata() {
4427 let mut de = make_de(
4428 "\
4429 <![CDATA[cdata]]]]>\
4430 <?pi 1?><?pi 2?>\
4431 <![CDATA[>cdata]]>\
4432 ",
4433 );
4434 assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4435 }
4436
4437 #[test]
4438 fn text_and_cdata() {
4439 let mut de = make_de(
4440 "\
4441 text \
4442 <?pi 1?><?pi 2?>\
4443 <![CDATA[ cdata]]>\
4444 ",
4445 );
4446 assert_eq!(de.next().unwrap(), DeEvent::Text("text cdata".into()));
4447 }
4448
4449 #[test]
4450 fn text_and_empty_cdata() {
4451 let mut de = make_de(
4452 "\
4453 text \
4454 <?pi 1?><?pi 2?>\
4455 <![CDATA[]]>\
4456 ",
4457 );
4458 assert_eq!(de.next().unwrap(), DeEvent::Text("text ".into()));
4459 }
4460
4461 #[test]
4462 fn cdata_and_text() {
4463 let mut de = make_de(
4464 "\
4465 <![CDATA[cdata ]]>\
4466 <?pi 1?><?pi 2?> \
4467 text \
4468 ",
4469 );
4470 assert_eq!(de.next().unwrap(), DeEvent::Text("cdata text ".into()));
4471 }
4472
4473 #[test]
4474 fn empty_cdata_and_text() {
4475 let mut de = make_de(
4476 "\
4477 <![CDATA[]]>\
4478 <?pi 1?><?pi 2?> \
4479 text \
4480 ",
4481 );
4482 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4483 }
4484
4485 #[test]
4486 fn cdata_and_cdata() {
4487 let mut de = make_de(
4488 "\
4489 <![CDATA[cdata]]]>\
4490 <?pi 1?><?pi 2?>\
4491 <![CDATA[]>cdata]]>\
4492 ",
4493 );
4494 assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4495 }
4496 }
4497 }
4498
4499 /// Tests for https://github.com/tafia/quick-xml/issues/474.
4500 ///
4501 /// This tests ensures that any combination of payload data is processed
4502 /// as expected.
4503 mod triples {
4504 use super::*;
4505 use pretty_assertions::assert_eq;
4506
4507 mod start {
4508 use super::*;
4509
4510 /// <tag1><tag2>...
4511 mod start {
4512 use super::*;
4513 use pretty_assertions::assert_eq;
4514
4515 #[test]
4516 fn start() {
4517 let mut de = make_de("<tag1><tag2><tag3>");
4518 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4519 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4520 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag3")));
4521 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4522 }
4523
4524 /// Not matching end tag will result to error
4525 #[test]
4526 fn end() {
4527 let mut de = make_de("<tag1><tag2></tag2>");
4528 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4529 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4530 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag2")));
4531 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4532 }
4533
4534 #[test]
4535 fn text() {
4536 let mut de = make_de("<tag1><tag2> text ");
4537 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4538 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4539 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4540 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4541 }
4542
4543 #[test]
4544 fn cdata() {
4545 let mut de = make_de("<tag1><tag2><![CDATA[ cdata ]]>");
4546 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4547 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4548 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4549 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4550 }
4551
4552 #[test]
4553 fn eof() {
4554 let mut de = make_de("<tag1><tag2>");
4555 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4556 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4557 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4558 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4559 }
4560 }
4561
4562 /// <tag></tag>...
4563 mod end {
4564 use super::*;
4565 use pretty_assertions::assert_eq;
4566
4567 #[test]
4568 fn start() {
4569 let mut de = make_de("<tag></tag><tag2>");
4570 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4571 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4572 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4573 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4574 }
4575
4576 #[test]
4577 fn end() {
4578 let mut de = make_de("<tag></tag></tag2>");
4579 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4580 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4581 match de.next() {
4582 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4583 assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag2".into()));
4584 }
4585 x => panic!(
4586 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4587 x
4588 ),
4589 }
4590 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4591 }
4592
4593 #[test]
4594 fn text() {
4595 let mut de = make_de("<tag></tag> text ");
4596 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4597 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4598 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4599 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4600 }
4601
4602 #[test]
4603 fn cdata() {
4604 let mut de = make_de("<tag></tag><![CDATA[ cdata ]]>");
4605 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4606 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4607 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4608 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4609 }
4610
4611 #[test]
4612 fn eof() {
4613 let mut de = make_de("<tag></tag>");
4614 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4615 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4616 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4617 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4618 }
4619 }
4620
4621 /// <tag> text ...
4622 mod text {
4623 use super::*;
4624 use pretty_assertions::assert_eq;
4625
4626 #[test]
4627 fn start() {
4628 let mut de = make_de("<tag> text <tag2>");
4629 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4630 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4631 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4632 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4633 }
4634
4635 #[test]
4636 fn end() {
4637 let mut de = make_de("<tag> text </tag>");
4638 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4639 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4640 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4641 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4642 }
4643
4644 // start::text::text has no difference from start::text
4645
4646 #[test]
4647 fn cdata() {
4648 let mut de = make_de("<tag> text <![CDATA[ cdata ]]>");
4649 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4650 assert_eq!(de.next().unwrap(), DeEvent::Text(" text cdata ".into()));
4651 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4652 }
4653
4654 #[test]
4655 fn eof() {
4656 let mut de = make_de("<tag> text ");
4657 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4658 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4659 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4660 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4661 }
4662 }
4663
4664 /// <tag><![CDATA[ cdata ]]>...
4665 mod cdata {
4666 use super::*;
4667 use pretty_assertions::assert_eq;
4668
4669 #[test]
4670 fn start() {
4671 let mut de = make_de("<tag><![CDATA[ cdata ]]><tag2>");
4672 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4673 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4674 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4675 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4676 }
4677
4678 #[test]
4679 fn end() {
4680 let mut de = make_de("<tag><![CDATA[ cdata ]]></tag>");
4681 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4682 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4683 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4684 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4685 }
4686
4687 #[test]
4688 fn text() {
4689 let mut de = make_de("<tag><![CDATA[ cdata ]]> text ");
4690 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4691 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata text ".into()));
4692 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4693 }
4694
4695 #[test]
4696 fn cdata() {
4697 let mut de = make_de("<tag><![CDATA[ cdata ]]><![CDATA[ cdata2 ]]>");
4698 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4699 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata cdata2 ".into()));
4700 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4701 }
4702
4703 #[test]
4704 fn eof() {
4705 let mut de = make_de("<tag><![CDATA[ cdata ]]>");
4706 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4707 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4708 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4709 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4710 }
4711 }
4712 }
4713
4714 /// Start from End event will always generate an error
4715 #[test]
4716 fn end() {
4717 let mut de = make_de("</tag>");
4718 match de.next() {
4719 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4720 assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4721 }
4722 x => panic!(
4723 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4724 x
4725 ),
4726 }
4727 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4728 }
4729
4730 mod text {
4731 use super::*;
4732 use pretty_assertions::assert_eq;
4733
4734 mod start {
4735 use super::*;
4736 use pretty_assertions::assert_eq;
4737
4738 #[test]
4739 fn start() {
4740 let mut de = make_de(" text <tag1><tag2>");
4741 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4742 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4743 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4744 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4745 }
4746
4747 /// Not matching end tag will result in error
4748 #[test]
4749 fn end() {
4750 let mut de = make_de(" text <tag></tag>");
4751 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4752 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4753 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4754 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4755 }
4756
4757 #[test]
4758 fn text() {
4759 let mut de = make_de(" text <tag> text2 ");
4760 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4761 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4762 assert_eq!(de.next().unwrap(), DeEvent::Text(" text2 ".into()));
4763 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4764 }
4765
4766 #[test]
4767 fn cdata() {
4768 let mut de = make_de(" text <tag><![CDATA[ cdata ]]>");
4769 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4770 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4771 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4772 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4773 }
4774
4775 #[test]
4776 fn eof() {
4777 let mut de = make_de(" text <tag>");
4778 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4779 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4780 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4781 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4782 }
4783 }
4784
4785 /// End event without corresponding start event will always generate an error
4786 #[test]
4787 fn end() {
4788 let mut de = make_de(" text </tag>");
4789 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4790 match de.next() {
4791 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4792 assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4793 }
4794 x => panic!(
4795 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4796 x
4797 ),
4798 }
4799 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4800 }
4801
4802 // text::text::something is equivalent to text::something
4803
4804 mod cdata {
4805 use super::*;
4806 use pretty_assertions::assert_eq;
4807
4808 #[test]
4809 fn start() {
4810 let mut de = make_de(" text <![CDATA[ cdata ]]><tag>");
4811 assert_eq!(de.next().unwrap(), DeEvent::Text(" text cdata ".into()));
4812 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4813 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4814 }
4815
4816 #[test]
4817 fn end() {
4818 let mut de = make_de(" text <![CDATA[ cdata ]]></tag>");
4819 assert_eq!(de.next().unwrap(), DeEvent::Text(" text cdata ".into()));
4820 match de.next() {
4821 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4822 assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4823 }
4824 x => panic!(
4825 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4826 x
4827 ),
4828 }
4829 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4830 }
4831
4832 #[test]
4833 fn text() {
4834 let mut de = make_de(" text <![CDATA[ cdata ]]> text2 ");
4835 assert_eq!(
4836 de.next().unwrap(),
4837 DeEvent::Text(" text cdata text2 ".into())
4838 );
4839 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4840 }
4841
4842 #[test]
4843 fn cdata() {
4844 let mut de = make_de(" text <![CDATA[ cdata ]]><![CDATA[ cdata2 ]]>");
4845 assert_eq!(
4846 de.next().unwrap(),
4847 DeEvent::Text(" text cdata cdata2 ".into())
4848 );
4849 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4850 }
4851
4852 #[test]
4853 fn eof() {
4854 let mut de = make_de(" text <![CDATA[ cdata ]]>");
4855 assert_eq!(de.next().unwrap(), DeEvent::Text(" text cdata ".into()));
4856 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4857 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4858 }
4859 }
4860 }
4861
4862 mod cdata {
4863 use super::*;
4864 use pretty_assertions::assert_eq;
4865
4866 mod start {
4867 use super::*;
4868 use pretty_assertions::assert_eq;
4869
4870 #[test]
4871 fn start() {
4872 let mut de = make_de("<![CDATA[ cdata ]]><tag1><tag2>");
4873 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4874 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4875 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4876 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4877 }
4878
4879 /// Not matching end tag will result in error
4880 #[test]
4881 fn end() {
4882 let mut de = make_de("<![CDATA[ cdata ]]><tag></tag>");
4883 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4884 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4885 assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4886 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4887 }
4888
4889 #[test]
4890 fn text() {
4891 let mut de = make_de("<![CDATA[ cdata ]]><tag> text ");
4892 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4893 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4894 assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4895 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4896 }
4897
4898 #[test]
4899 fn cdata() {
4900 let mut de = make_de("<![CDATA[ cdata ]]><tag><![CDATA[ cdata2 ]]>");
4901 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4902 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4903 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata2 ".into()));
4904 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4905 }
4906
4907 #[test]
4908 fn eof() {
4909 let mut de = make_de("<![CDATA[ cdata ]]><tag>");
4910 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4911 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4912 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4913 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4914 }
4915 }
4916
4917 /// End event without corresponding start event will always generate an error
4918 #[test]
4919 fn end() {
4920 let mut de = make_de("<![CDATA[ cdata ]]></tag>");
4921 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4922 match de.next() {
4923 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4924 assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4925 }
4926 x => panic!(
4927 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4928 x
4929 ),
4930 }
4931 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4932 }
4933
4934 mod text {
4935 use super::*;
4936 use pretty_assertions::assert_eq;
4937
4938 #[test]
4939 fn start() {
4940 let mut de = make_de("<![CDATA[ cdata ]]> text <tag>");
4941 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata text ".into()));
4942 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4943 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4944 }
4945
4946 #[test]
4947 fn end() {
4948 let mut de = make_de("<![CDATA[ cdata ]]> text </tag>");
4949 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata text ".into()));
4950 match de.next() {
4951 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4952 assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4953 }
4954 x => panic!(
4955 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4956 x
4957 ),
4958 }
4959 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4960 }
4961
4962 // cdata::text::text is equivalent to cdata::text
4963
4964 #[test]
4965 fn cdata() {
4966 let mut de = make_de("<![CDATA[ cdata ]]> text <![CDATA[ cdata2 ]]>");
4967 assert_eq!(
4968 de.next().unwrap(),
4969 DeEvent::Text(" cdata text cdata2 ".into())
4970 );
4971 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4972 }
4973
4974 #[test]
4975 fn eof() {
4976 let mut de = make_de("<![CDATA[ cdata ]]> text ");
4977 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata text ".into()));
4978 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4979 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4980 }
4981 }
4982
4983 mod cdata {
4984 use super::*;
4985 use pretty_assertions::assert_eq;
4986
4987 #[test]
4988 fn start() {
4989 let mut de = make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]><tag>");
4990 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata cdata2 ".into()));
4991 assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4992 assert_eq!(de.next().unwrap(), DeEvent::Eof);
4993 }
4994
4995 #[test]
4996 fn end() {
4997 let mut de = make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]></tag>");
4998 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata cdata2 ".into()));
4999 match de.next() {
5000 Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
5001 assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
5002 }
5003 x => panic!(
5004 "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
5005 x
5006 ),
5007 }
5008 assert_eq!(de.next().unwrap(), DeEvent::Eof);
5009 }
5010
5011 #[test]
5012 fn text() {
5013 let mut de = make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]> text ");
5014 assert_eq!(
5015 de.next().unwrap(),
5016 DeEvent::Text(" cdata cdata2 text ".into())
5017 );
5018 assert_eq!(de.next().unwrap(), DeEvent::Eof);
5019 }
5020
5021 #[test]
5022 fn cdata() {
5023 let mut de =
5024 make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]><![CDATA[ cdata3 ]]>");
5025 assert_eq!(
5026 de.next().unwrap(),
5027 DeEvent::Text(" cdata cdata2 cdata3 ".into())
5028 );
5029 assert_eq!(de.next().unwrap(), DeEvent::Eof);
5030 }
5031
5032 #[test]
5033 fn eof() {
5034 let mut de = make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]>");
5035 assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata cdata2 ".into()));
5036 assert_eq!(de.next().unwrap(), DeEvent::Eof);
5037 assert_eq!(de.next().unwrap(), DeEvent::Eof);
5038 }
5039 }
5040 }
5041 }
5042}