1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
//! Quaternion library written in Rust.
//! 
//! This provides Quaternion operations and interconversion with several attitude 
//! representations as generic functions (supports `f32` & `f64`).
//! 
//! ## Generics
//! 
//! Functions implementing the `QuaternionOps` trait can take both `Quaternion<T>` 
//! and `Vector3<T>` as arguments. In this case, `Vector3<T>` is treated as a Pure Quaternion.
//! 
//! For example:
//! ```
//! use quaternion_core::{Vector3, Quaternion, add};
//! 
//! // --- Vector3 --- //
//! let v1: Vector3<f32> = [1.0, 2.0, 3.0];
//! let v2: Vector3<f32> = [0.1, 0.2, 0.3];
//! println!("{:?}", add(v1, v2));  // <--- It's [1.1, 2.2, 3.3]
//! 
//! // --- Quaternion --- //
//! let q1: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
//! let q2: Quaternion<f64> = (0.1, [0.2, 0.3, 0.4]);
//! println!("{:?}", add(q1, q2));  // <--- It's (1.1, [2.2, 3.3, 4.4])
//! ```
//! 
//! ## Versor
//! 
//! Versor refers to a Quaternion representing a rotation, the norm of which is 1.
//! 
//! The documentation for this crate basically writes Versor instead of Unit Quaternion, 
//! but the difference in usage is not clear.
//! Please think Versor = Unit Quaternion.

#![no_std]
#[cfg(feature = "std")]
extern crate std;

#[cfg(any(feature = "std", feature = "libm"))]
use num_traits::float::{Float, FloatConst};

mod euler;
mod generics;
mod private_functions;
pub use generics::QuaternionOps;
use private_functions::{
    IDENTITY, ZERO_VECTOR, cast, mul_add, acos_safe, 
    sinc, max4, orthogonal_vector, pythag
};

/// Three dimensional vector (Pure Quaternion)
/// 
/// The type `[q1, q2, q3]` is equivalent to the expression `q1i + q2j + q3k`,
/// where `i`, `j`, `k` are basis of quaternions and satisfy the following equality:
/// 
/// `i^2 = j^2 = k^2 = ijk = -1`
pub type Vector3<T> = [T; 3];

/// Quaternion
/// 
/// The type `(q0, [q1, q2, q3])` is equivalent to the expression `q0 + q1i + q2j + q3k`, 
/// where `1`, `i`, `j`, `k` are basis of quaternions and satisfy the following equality:
/// 
/// `i^2 = j^2 = k^2 = ijk = -1`
pub type Quaternion<T> = (T, Vector3<T>);

/// Direction Cosine Matrix
/// 
/// `mij`: row `i`, column `j`
/// 
/// `
/// [
///     [m11, m12, m13],
///     [m21, m22, m23],
///     [m31, m32, m33]
/// ]
/// `
pub type DCM<T> = [Vector3<T>; 3];

/// Specifies the rotation type of Euler angles.
/// 
/// Considering a fixed `Reference frame` and a rotating `Body frame`, 
/// `Intrinsic rotation` and `Extrinsic rotation` represent the following rotations:
/// 
/// * `Intrinsic`: Rotate around the axes of the `Body frame`
/// * `Extrinsic`: Rotate around the axes of the `Reference frame`
#[derive(Debug, Clone, Copy)]
pub enum RotationType {
    Intrinsic,
    Extrinsic,
}

/// Specifies the rotation sequence of Euler angles.
/// 
/// Each variant reads from left to right.
/// For example, `RotationSequence::XYZ` represents first a rotation 
/// around the X axis, then around the Y axis, and finally around 
/// the Z axis (X ---> Y ---> Z).
#[derive(Debug, Clone, Copy)]
pub enum RotationSequence {
    // Proper (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y)
    ZXZ,
    XYX,
    YZY,
    ZYZ,
    XZX,
    YXY,
    // Tait–Bryan (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z)
    XYZ,
    YZX,
    ZXY,
    XZY,
    ZYX,
    YXZ,
}

/// Generate Versor by specifying rotation `angle`\[rad\] and `axis` vector.
/// 
/// The `axis` vector does not have to be a unit vector.
/// 
/// If you enter a zero vector, it returns an identity quaternion.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{from_axis_angle, point_rotation};
/// # let PI = std::f64::consts::PI;
/// // Generates a quaternion representing the
/// // rotation of π/2[rad] around the y-axis.
/// let q = from_axis_angle([0.0, 1.0, 0.0], PI/2.0);
/// 
/// // Rotate the point.
/// let r = point_rotation(q, [2.0, 2.0, 0.0]);
/// 
/// assert!( (r[0] - 0.0).abs() < 1e-12 );
/// assert!( (r[1] - 2.0).abs() < 1e-12 );
/// assert!( (r[2] + 2.0).abs() < 1e-12 );
/// ```
#[inline]
pub fn from_axis_angle<T>(axis: Vector3<T>, angle: T) -> Quaternion<T>
where T: Float + FloatConst {
    let theta = angle % ( T::PI() + T::PI() );  // limit to (-2π, 2π)
    let (sin, cos) = ( theta * cast(0.5) ).sin_cos();
    let coef = sin / norm(axis);
    if coef.is_infinite() {
        IDENTITY()
    } else {
        ( cos, scale(coef, axis) )
    }
}

/// Calculate the rotation `axis` (unit vector) and the rotation `angle`\[rad\] 
/// around the `axis` from the Versor.
/// 
/// If identity quaternion is entered, `angle` returns zero and 
/// the `axis` returns a zero vector.
/// 
/// Range of `angle`: `(-π, π]`
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{from_axis_angle, to_axis_angle};
/// # let PI = std::f64::consts::PI;
/// let axis_ori = [0.0, 1.0, 2.0];
/// let angle_ori = PI / 2.0;
/// let q = from_axis_angle(axis_ori, angle_ori);
/// 
/// let (axis, angle) = to_axis_angle(q);
/// 
/// assert!( (axis_ori[0] - axis[0]).abs() < 1e-12 );
/// assert!( (axis_ori[0] - axis[0]).abs() < 1e-12 );
/// assert!( (axis_ori[0] - axis[0]).abs() < 1e-12 );
/// assert!( (angle_ori - angle).abs() < 1e-12 );
/// ```
#[inline]
pub fn to_axis_angle<T>(q: Quaternion<T>) -> (Vector3<T>, T)
where T: Float {
    let norm_v = norm(q.1);
    let norm_inv = norm_v.recip();
    if norm_inv.is_infinite() {
        ( ZERO_VECTOR(), T::zero() )
    } else {
        let mut angle = cast::<T>(2.0) * norm_v.min( T::one() ).asin();
        if q.0 < T::zero() {
            angle = -angle;
        }
        ( scale(norm_inv, q.1), angle )
    }
}

/// Convert a DCM to a Versor representing 
/// the `q v q*` rotation (Point Rotation - Frame Fixed).
/// 
/// When convert to a DCM representing `q* v q` rotation
/// (Frame Rotation - Point Fixed) to a Versor, do the following:
/// 
/// ```
/// # use quaternion_core::{from_dcm, to_dcm, conj};
/// # let dcm = to_dcm((1.0, [0.0; 3]));
/// let q = conj( from_dcm(dcm) );
/// ```
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{
/// #     from_axis_angle, dot, conj, negate, to_dcm, from_dcm,
/// #     matrix_product, point_rotation, frame_rotation
/// # };
/// # let PI = std::f64::consts::PI;
/// // Make these as you like.
/// let v = [1.0, 0.5, -8.0];
/// let q = from_axis_angle([0.2, 1.0, -2.0], PI/4.0);
/// 
/// // --- Point rotation --- //
/// {
///     let m = to_dcm(q);
///     let q_check = from_dcm(m);
///     
///     assert!( (q.0    - q_check.0).abs() < 1e-12 );
///     assert!( (q.1[0] - q_check.1[0]).abs() < 1e-12 );
///     assert!( (q.1[1] - q_check.1[1]).abs() < 1e-12 );
///     assert!( (q.1[2] - q_check.1[2]).abs() < 1e-12 );
/// }
/// 
/// // --- Frame rotation --- //
/// {
///     let m = to_dcm( conj(q) );
///     let q_check = conj( from_dcm(m) );
///     
///     assert!( (q.0    - q_check.0).abs() < 1e-12 );
///     assert!( (q.1[0] - q_check.1[0]).abs() < 1e-12 );
///     assert!( (q.1[1] - q_check.1[1]).abs() < 1e-12 );
///     assert!( (q.1[2] - q_check.1[2]).abs() < 1e-12 );
/// }
/// ```
#[inline]
pub fn from_dcm<T>(m: DCM<T>) -> Quaternion<T>
where T: Float {
    // ゼロ除算を避けるために,4通りの式で求めたうちの最大値を係数として使う.
    let m22_p_m33 = m[1][1] + m[2][2];
    let m22_m_m33 = m[1][1] - m[2][2];
    let (index, max_num) = max4([
        m[0][0] + m22_p_m33,
        m[0][0] - m22_p_m33,
       -m[0][0] + m22_m_m33,
       -m[0][0] - m22_m_m33,
    ]);

    let half: T = cast(0.5);
    let tmp = ( max_num + T::one() ).sqrt();
    let coef = half / tmp;

    let (q0, [q1, q2, q3]): Quaternion<T>;
    match index {
        0 => {
            q0 = half * tmp;
            q1 = (m[2][1] - m[1][2]) * coef;
            q2 = (m[0][2] - m[2][0]) * coef;
            q3 = (m[1][0] - m[0][1]) * coef;
        },
        1 => {
            q0 = (m[2][1] - m[1][2]) * coef;
            q1 = half * tmp;
            q2 = (m[0][1] + m[1][0]) * coef;
            q3 = (m[0][2] + m[2][0]) * coef;
        },
        2 => {
            q0 = (m[0][2] - m[2][0]) * coef;
            q1 = (m[0][1] + m[1][0]) * coef;
            q2 = half * tmp;
            q3 = (m[1][2] + m[2][1]) * coef;
        },
        3 => {
            q0 = (m[1][0] - m[0][1]) * coef;
            q1 = (m[0][2] + m[2][0]) * coef;
            q2 = (m[1][2] + m[2][1]) * coef;
            q3 = half * tmp;
        },
        _ => unreachable!(),
    };

    (q0, [q1, q2, q3])
}

/// Convert a Versor to a DCM representing 
/// the `q v q*` rotation (Point Rotation - Frame Fixed).
/// 
/// When convert to a DCM representing the 
/// `q* v q` rotation (Frame Rotation - Point Fixed), do the following:
/// 
/// ```
/// # use quaternion_core::{to_dcm, conj};
/// # let q = (1.0, [0.0; 3]);
/// let dcm = to_dcm( conj(q) );
/// ```
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{
/// #     from_axis_angle, to_dcm, conj, 
/// #     matrix_product, point_rotation, frame_rotation
/// # };
/// # let PI = std::f64::consts::PI;
/// // Make these as you like.
/// let v = [1.0, 0.5, -8.0];
/// let q = from_axis_angle([0.2, 1.0, -2.0], PI/4.0);
/// 
/// // --- Point rotation --- //
/// {
///     let m = to_dcm(q);
/// 
///     let rm = matrix_product(m, v);
///     let rq = point_rotation(q, v);
///     assert!( (rm[0] - rq[0]).abs() < 1e-12 );
///     assert!( (rm[1] - rq[1]).abs() < 1e-12 );
///     assert!( (rm[2] - rq[2]).abs() < 1e-12 );
/// }
/// 
/// // --- Frame rotation --- //
/// {
///     let m = to_dcm( conj(q) );
/// 
///     let rm = matrix_product(m, v);
///     let rq = frame_rotation(q, v);
///     assert!( (rm[0] - rq[0]).abs() < 1e-12 );
///     assert!( (rm[1] - rq[1]).abs() < 1e-12 );
///     assert!( (rm[2] - rq[2]).abs() < 1e-12 );
/// }
/// ```
#[inline]
pub fn to_dcm<T>(q: Quaternion<T>) -> DCM<T>
where T: Float {
    let neg_one = -T::one();
    let two = cast(2.0);

    // Compute these value only once.
    let (q0_q0, [q0_q1, q0_q2, q0_q3]) = scale(q.0, q);
    let q1_q2 = q.1[0] * q.1[1];
    let q1_q3 = q.1[0] * q.1[2];
    let q2_q3 = q.1[1] * q.1[2];

    let m11 = mul_add(mul_add(q.1[0], q.1[0], q0_q0), two, neg_one);
    let m12 = (q1_q2 - q0_q3) * two;
    let m13 = (q1_q3 + q0_q2) * two;
    let m21 = (q1_q2 + q0_q3) * two;
    let m22 = mul_add(mul_add(q.1[1], q.1[1], q0_q0), two, neg_one);
    let m23 = (q2_q3 - q0_q1) * two;
    let m31 = (q1_q3 - q0_q2) * two;
    let m32 = (q2_q3 + q0_q1) * two;
    let m33 = mul_add(mul_add(q.1[2], q.1[2], q0_q0), two, neg_one);

    [
        [m11, m12, m13],
        [m21, m22, m23],
        [m31, m32, m33],
    ]
}

/// Convert euler angles to versor.
/// 
/// The type of rotation (Intrinsic or Extrinsic) is specified by `RotationType` enum, 
/// and the rotation sequence (XZX, XYZ, ...) is specified by `RotationSequence` enum.
/// 
/// Each element of `angles` should be specified in the range: `[-2π, 2π]`.
/// 
/// Sequences: `angles[0]` ---> `angles[1]` ---> `angles[2]`
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{from_axis_angle, mul, from_euler_angles, point_rotation};
/// # let PI = std::f64::consts::PI;
/// use quaternion_core::{RotationType::*, RotationSequence::XYZ};
/// 
/// let angles = [PI/6.0, 1.6*PI, -PI/4.0];
/// let v = [1.0, 0.5, -0.4];
/// 
/// // Quaternions representing rotation around each axis.
/// let x = from_axis_angle([1.0, 0.0, 0.0], angles[0]);
/// let y = from_axis_angle([0.0, 1.0, 0.0], angles[1]);
/// let z = from_axis_angle([0.0, 0.0, 1.0], angles[2]);
/// 
/// // ---- Intrinsic (X-Y-Z) ---- //
/// // These represent the same rotation.
/// let q_in = mul( mul(x, y), z );
/// let e2q_in = from_euler_angles(Intrinsic, XYZ, angles);
/// // Confirmation
/// let a_in = point_rotation(q_in, v);
/// let b_in = point_rotation(e2q_in, v);
/// assert!( (a_in[0] - b_in[0]).abs() < 1e-12 );
/// assert!( (a_in[1] - b_in[1]).abs() < 1e-12 );
/// assert!( (a_in[2] - b_in[2]).abs() < 1e-12 );
/// 
/// // ---- Extrinsic (X-Y-Z) ---- //
/// // These represent the same rotation.
/// let q_ex = mul( mul(z, y), x );
/// let e2q_ex = from_euler_angles(Extrinsic, XYZ, angles);
/// // Confirmation
/// let a_ex = point_rotation(q_ex, v);
/// let b_ex = point_rotation(e2q_ex, v);
/// assert!( (a_ex[0] - b_ex[0]).abs() < 1e-12 );
/// assert!( (a_ex[1] - b_ex[1]).abs() < 1e-12 );
/// assert!( (a_ex[2] - b_ex[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn from_euler_angles<T>(rt: RotationType, rs: RotationSequence, angles: Vector3<T>) -> Quaternion<T>
where T: Float + FloatConst {
    debug_assert!( angles[0].abs() <= T::PI() + T::PI(), "angles[0] is out of range!");
    debug_assert!( angles[1].abs() <= T::PI() + T::PI(), "angles[1] is out of range!");
    debug_assert!( angles[2].abs() <= T::PI() + T::PI(), "angles[2] is out of range!");

    match rt {
        RotationType::Intrinsic => euler::from_intrinsic_euler_angles(rs, angles),
        RotationType::Extrinsic => euler::from_extrinsic_euler_angles(rs, angles),
    }
}

/// Convert versor to euler angles.
/// 
/// The type of rotation (Intrinsic or Extrinsic) is specified by `RotationType` enum, 
/// and the rotation sequence (XZX, XYZ, ...) is specified by `RotationSequence` enum.
/// 
/// ```
/// # use quaternion_core::{RotationType::Intrinsic, RotationSequence::XYZ, to_euler_angles};
/// # let q = (1.0, [0.0; 3]);
/// let angles = to_euler_angles(Intrinsic, XYZ, q);
/// ```
/// 
/// Sequences: `angles[0]` ---> `angles[1]` ---> `angles[2]`
/// 
/// # Singularity
/// 
/// ## RotationType::Intrinsic
/// 
/// For Proper Euler angles (ZXZ, XYX, YZY, ZYZ, XZX, YXY), the singularity is reached 
/// when the sine of the second rotation angle is 0 (angle = 0, ±π, ...), and for 
/// Tait-Bryan angles (XYZ, YZX, ZXY, XZY, ZYX, YXZ), the singularity is reached when 
/// the cosine of the second rotation angle is 0 (angle = ±π/2).
/// 
/// At the singularity, the third rotation angle is set to 0\[rad\].
/// 
/// ## RotationType::Extrinsic
/// 
/// As in the case of Intrinsic rotation, for Proper Euler angles, the singularity occurs 
/// when the sine of the second rotation angle is 0 (angle = 0, ±π, ...), and for 
/// Tait-Bryan angles, the singularity occurs when the cosine of the second rotation angle 
/// is 0 (angle = ±π/2).
/// 
/// At the singularity, the first rotation angle is set to 0\[rad\].
/// 
/// # Examples
/// 
/// Depending on the rotation angle of each axis, it may not be possible to recover the 
/// same rotation angle as the original. However, they represent the same rotation in 3D space.
/// 
/// ```
/// # use quaternion_core::{from_euler_angles, to_euler_angles, point_rotation};
/// # let PI = std::f64::consts::PI;
/// use quaternion_core::{RotationType::*, RotationSequence::XYZ};
/// 
/// let angles = [PI/6.0, PI/4.0, PI/3.0];
/// 
/// // ---- Intrinsic (X-Y-Z) ---- //
/// let q_in = from_euler_angles(Intrinsic, XYZ, angles);
/// let e_in = to_euler_angles(Intrinsic, XYZ, q_in);
/// assert!( (angles[0] - e_in[0]).abs() < 1e-12 );
/// assert!( (angles[1] - e_in[1]).abs() < 1e-12 );
/// assert!( (angles[2] - e_in[2]).abs() < 1e-12 );
/// 
/// // ---- Extrinsic (X-Y-Z) ---- //
/// let q_ex = from_euler_angles(Extrinsic, XYZ, angles);
/// let e_ex = to_euler_angles(Extrinsic, XYZ, q_ex);
/// assert!( (angles[0] - e_ex[0]).abs() < 1e-12 );
/// assert!( (angles[1] - e_ex[1]).abs() < 1e-12 );
/// assert!( (angles[2] - e_ex[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn to_euler_angles<T>(rt: RotationType, rs: RotationSequence, q: Quaternion<T>) -> Vector3<T>
where T: Float + FloatConst {
    match rt {
        RotationType::Intrinsic => euler::to_intrinsic_euler_angles(rs, q),
        RotationType::Extrinsic => euler::to_extrinsic_euler_angles(rs, q),
    }
}

/// Convert Rotation vector to Versor.
/// 
/// The Rotation vector itself represents the axis of rotation, 
/// and the norm represents the angle \[rad\] of rotation around the axis.
/// 
/// Maximum range of the norm of the rotation vector: `[0, 2π]`
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{from_rotation_vector, scale, point_rotation};
/// # let PI = std::f64::consts::PI;
/// let angle = PI / 2.0;
/// let axis = [1.0, 0.0, 0.0];
/// 
/// // This represents a rotation of π/2 around the x-axis.
/// let rot_vec = scale(angle, axis);  // Rotation vector
/// 
/// // Rotation vector ---> Quaternion
/// let q = from_rotation_vector(rot_vec);
/// 
/// let r = point_rotation(q, [1.0, 1.0, 0.0]);
/// 
/// assert!( (r[0] - 1.0).abs() < 1e-12 );
/// assert!( (r[1] - 0.0).abs() < 1e-12 );
/// assert!( (r[2] - 1.0).abs() < 1e-12 );
/// ```
#[inline]
pub fn from_rotation_vector<T>(r: Vector3<T>) -> Quaternion<T>
where T: Float {
    let half: T = cast(0.5);
    let half_theta = half * norm(r);
    (half_theta.cos(), scale(half * sinc(half_theta), r))
}

/// Convert Versor to Rotation vector.
/// 
/// The Rotation vector itself represents the axis of rotation, 
/// and the norm represents the angle of rotation around the axis.
/// 
/// Norm range of the calculation result: `[0, π]`
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{from_axis_angle, to_rotation_vector, scale};
/// # let PI = std::f64::consts::PI;
/// let angle = PI / 2.0;
/// let axis = [1.0, 0.0, 0.0];
/// 
/// // These represent the same rotation.
/// let rv = scale(angle, axis);  // Rotation vector
/// let q = from_axis_angle(axis, angle);  // Quaternion
/// 
/// // Quaternion ---> Rotation vector
/// let q2rv = to_rotation_vector(q);
/// 
/// assert!( (rv[0] - q2rv[0]).abs() < 1e-12 );
/// assert!( (rv[1] - q2rv[1]).abs() < 1e-12 );
/// assert!( (rv[2] - q2rv[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn to_rotation_vector<T>(q: Quaternion<T>) -> Vector3<T>
where T: Float {
    let mut half_theta = norm(q.1).min( T::one() ).asin();
    if q.0 < T::zero() {
        half_theta = -half_theta;
    }
    scale(cast::<T>(2.0) / sinc(half_theta), q.1)
}

/// Product of DCM and Vector3
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, matrix_product};
/// # let PI = std::f64::consts::PI;
/// let theta = PI / 2.0;
/// let rot_x = [
///     [1.0, 0.0, 0.0],
///     [0.0, theta.cos(), -theta.sin()],
///     [0.0, theta.sin(),  theta.cos()]
/// ];
/// let v = [0.0, 1.0, 0.0];
/// 
/// let r = matrix_product(rot_x, v);
/// assert!( (r[0] - 0.0).abs() < 1e-12 );
/// assert!( (r[1] - 0.0).abs() < 1e-12 );
/// assert!( (r[2] - 1.0).abs() < 1e-12 );
/// ```
#[inline]
pub fn matrix_product<T>(m: DCM<T>, v: Vector3<T>) -> Vector3<T>
where T: Float {
    let mut r = [T::zero(); 3];
    for i in 0..3 {
        for j in 0..3 {
            r[i] = mul_add(m[i][j], v[j], r[i]);
        }
    }
    r
}

/// Calculate the sum of each element of Quaternion or Vector3.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, sum};
/// // --- Vector3 --- //
/// let v: Vector3<f64> = [1.0, 2.0, 3.0];
/// 
/// assert!( (6.0 - sum(v)).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// 
/// assert!( (10.0 - sum(q)).abs() < 1e-12 );
/// ```
#[inline]
pub fn sum<T, U>(a: U) -> T
where T: Float, U: QuaternionOps<T> {
    a.sum()
}

/// `a + b`
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, add};
/// // --- Vector3 --- //
/// let v1: Vector3<f64> = [1.0, 2.0, 3.0];
/// let v2: Vector3<f64> = [0.1, 0.2, 0.3];
/// let v_result = add(v1, v2);
/// 
/// assert!( (1.1 - v_result[0]).abs() < 1e-12 );
/// assert!( (2.2 - v_result[1]).abs() < 1e-12 );
/// assert!( (3.3 - v_result[2]).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// let q1: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q2: Quaternion<f64> = (0.1, [0.2, 0.3, 0.4]);
/// let q_result = add(q1, q2);
/// 
/// assert!( (1.1 - q_result.0).abs() < 1e-12 );
/// assert!( (2.2 - q_result.1[0]).abs() < 1e-12 );
/// assert!( (3.3 - q_result.1[1]).abs() < 1e-12 );
/// assert!( (4.4 - q_result.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn add<T, U>(a: U, b: U) -> U
where T: Float, U: QuaternionOps<T> {
    a.add(b)
}

/// `a - b`
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, sub};
/// // --- Vector3 --- //
/// let v1: Vector3<f64> = [1.0, 2.0, 3.0];
/// let v2: Vector3<f64> = [0.1, 0.2, 0.3];
/// let v_result = sub(v1, v2);
/// 
/// assert!( (0.9 - v_result[0]).abs() < 1e-12 );
/// assert!( (1.8 - v_result[1]).abs() < 1e-12 );
/// assert!( (2.7 - v_result[2]).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// let q1: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q2: Quaternion<f64> = (0.1, [0.2, 0.3, 0.4]);
/// let q_result = sub(q1, q2);
/// 
/// assert!( (0.9 - q_result.0).abs() < 1e-12 );
/// assert!( (1.8 - q_result.1[0]).abs() < 1e-12 );
/// assert!( (2.7 - q_result.1[1]).abs() < 1e-12 );
/// assert!( (3.6 - q_result.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn sub<T, U>(a: U, b: U) -> U
where T: Float, U: QuaternionOps<T> {
    a.sub(b)
}

/// `s * a`
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, scale};
/// // --- Vector3 --- //
/// let v: Vector3<f64> = [1.0, 2.0, 3.0];
/// let v_result = scale(2.0, v);
/// 
/// assert!( (2.0 - v_result[0]).abs() < 1e-12 );
/// assert!( (4.0 - v_result[1]).abs() < 1e-12 );
/// assert!( (6.0 - v_result[2]).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q_result = scale(2.0, q);
/// 
/// assert!( (2.0 - q_result.0).abs() < 1e-12 );
/// assert!( (4.0 - q_result.1[0]).abs() < 1e-12 );
/// assert!( (6.0 - q_result.1[1]).abs() < 1e-12 );
/// assert!( (8.0 - q_result.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn scale<T, U>(s: T, a: U) -> U
where T: Float, U: QuaternionOps<T> {
    a.scale(s)
}

/// `s * a + b`
/// 
/// If the `fma` feature is enabled, the FMA calculation is performed using 
/// the `mul_add` method (`s.mul_add(a, b)`). 
/// If not enabled, it's computed by unfused multiply-add (`s * a + b`).
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, scale_add};
/// // --- Vector3 --- //
/// let v1: Vector3<f64> = [1.0, 2.0, 3.0];
/// let v2: Vector3<f64> = [0.1, 0.2, 0.3];
/// let v_result = scale_add(2.0, v1, v2);
/// 
/// assert!( (2.1 - v_result[0]).abs() < 1e-12 );
/// assert!( (4.2 - v_result[1]).abs() < 1e-12 );
/// assert!( (6.3 - v_result[2]).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// let q1: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q2: Quaternion<f64> = (0.1, [0.2, 0.3, 0.4]);
/// let q_result = scale_add(2.0, q1, q2);
/// 
/// assert!( (2.1 - q_result.0).abs() < 1e-12 );
/// assert!( (4.2 - q_result.1[0]).abs() < 1e-12 );
/// assert!( (6.3 - q_result.1[1]).abs() < 1e-12 );
/// assert!( (8.4 - q_result.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn scale_add<T, U>(s: T, a: U, b: U) -> U
where T: Float, U: QuaternionOps<T> {
    a.scale_add(s, b)
}

/// `a ∘ b`
/// 
/// Hadamard product of Vector3 or Quaternion.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, hadamard};
/// // --- Vector3 --- //
/// let v1: Vector3<f64> = [1.0, 2.0, 3.0];
/// let v2: Vector3<f64> = [0.1, 0.2, 0.3];
/// let v_result = hadamard(v1, v2);
/// 
/// assert!( (0.1 - v_result[0]).abs() < 1e-12 );
/// assert!( (0.4 - v_result[1]).abs() < 1e-12 );
/// assert!( (0.9 - v_result[2]).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// let q1: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q2: Quaternion<f64> = (0.1, [0.2, 0.3, 0.4]);
/// let q_result = hadamard(q1, q2);
/// 
/// assert!( (0.1 - q_result.0).abs() < 1e-12 );
/// assert!( (0.4 - q_result.1[0]).abs() < 1e-12 );
/// assert!( (0.9 - q_result.1[1]).abs() < 1e-12 );
/// assert!( (1.6 - q_result.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn hadamard<T, U>(a: U, b: U) -> U
where T: Float, U: QuaternionOps<T> {
    a.hadamard(b)
}

/// `a ∘ b + c`
/// 
/// Hadamard product and addiction of Quaternion or Vector3.
/// 
/// If the `fma` feature is enabled, the FMA calculation is performed using 
/// the `mul_add` method (`s.mul_add(a, b)`). 
/// If not enabled, it's computed by unfused multiply-add (`s * a + b`).
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, hadamard_add};
/// // --- Vector3 --- //
/// let v1: Vector3<f64> = [1.0, 2.0, 3.0];
/// let v2: Vector3<f64> = [0.1, 0.2, 0.3];
/// let v3: Vector3<f64> = [0.4, 0.5, 0.6];
/// let v_result = hadamard_add(v1, v2, v3);
/// 
/// assert!( (0.5 - v_result[0]).abs() < 1e-12 );
/// assert!( (0.9 - v_result[1]).abs() < 1e-12 );
/// assert!( (1.5 - v_result[2]).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// let q1: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q2: Quaternion<f64> = (0.1, [0.2, 0.3, 0.4]);
/// let q3: Quaternion<f64> = (0.5, [0.6, 0.7, 0.8]);
/// let q_result = hadamard_add(q1, q2, q3);
/// 
/// assert!( (0.6 - q_result.0).abs() < 1e-12 );
/// assert!( (1.0 - q_result.1[0]).abs() < 1e-12 );
/// assert!( (1.6 - q_result.1[1]).abs() < 1e-12 );
/// assert!( (2.4 - q_result.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn hadamard_add<T, U>(a: U, b: U, c: U) -> U
where T: Float, U: QuaternionOps<T> {
    a.hadamard_add(b, c)
}

/// `a · b`
/// 
/// Dot product of Vector3 or Quaternion.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, dot};
/// // --- Vector3 --- //
/// let v1: Vector3<f64> = [1.0, 2.0, 3.0];
/// let v2: Vector3<f64> = [0.1, 0.2, 0.3];
/// 
/// assert!( (1.4 - dot(v1, v2)).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// let q1: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q2: Quaternion<f64> = (0.1, [0.2, 0.3, 0.4]);
/// 
/// assert!( (3.0 - dot(q1, q2)).abs() < 1e-12 );
/// ```
#[inline]
pub fn dot<T, U>(a: U, b: U) -> T 
where T: Float, U: QuaternionOps<T> {
    sum( hadamard(a, b) )
}

/// Cross product (vector product): `a × b`
/// 
/// The product order is `a × b (!= b × a)`
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, scale, cross};
/// let v1: Vector3<f64> = [0.5, -1.0, 0.8];
/// let v2: Vector3<f64> = scale(2.0, v1);
/// let v_result = cross(v1, v2);
/// 
/// // The cross product of parallel vectors is a zero vector.
/// assert!( v_result[0].abs() < 1e-12 );
/// assert!( v_result[1].abs() < 1e-12 );
/// assert!( v_result[2].abs() < 1e-12 );
/// ```
#[inline]
pub fn cross<T>(a: Vector3<T>, b: Vector3<T>) -> Vector3<T>
where T: Float {
    [
        a[1]*b[2] - a[2]*b[1],
        a[2]*b[0] - a[0]*b[2],
        a[0]*b[1] - a[1]*b[0],
    ]
}

/// Calculate L2 norm of Vector3 or Quaternion.
/// 
/// Compared to `dot(a, a).sqrt()`, this function is less likely
/// to cause overflow and underflow.
/// 
/// When the `norm-sqrt` feature is enabled, the default 
/// implementation is compiled with `dot(a, a).sqrt()` instead.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, sum, dot, norm};
/// // --- Vector3 --- //
/// let v: Vector3<f64> = [1.0, 2.0, 3.0];
/// assert!( (14.0_f64.sqrt() - norm(v)).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// assert!( (30.0_f64.sqrt() - norm(q)).abs() < 1e-12 );
/// 
/// // --- Check about overflow --- //
/// let v: Vector3<f32> = [1e15, 2e20, -3e15];
/// assert_eq!( dot(v, v).sqrt(), f32::INFINITY );  // Oh...
/// 
/// #[cfg(not(feature = "norm-sqrt"))]
/// assert_eq!( norm(v), 2e20 );  // Excellent!
/// ```
#[inline]
pub fn norm<T, U>(a: U) -> T 
where T: Float, U: QuaternionOps<T> {
    a.norm()
}

/// Normalization of Vector3 or Quaternion.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, norm, normalize};
/// // --- Vector3 --- //
/// // This norm is not 1.
/// let v: Vector3<f64> = [1.0, 2.0, 3.0];
/// assert!( (1.0 - norm(v)).abs() > 1e-12 );
/// 
/// // Now that normalized, this norm is 1!
/// let v_n = normalize(v);
/// assert!( (1.0 - norm(v_n)).abs() < 1e-12 );
/// 
/// // --- Quaternion --- //
/// // This norm is not 1.
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// assert!( (1.0 - norm(q)).abs() > 1e-12 );
/// 
/// // Now that normalized, this norm is 1!
/// let q_n = normalize(q);
/// assert!( (1.0 - norm(q_n)).abs() < 1e-12 );
/// ```
#[inline]
pub fn normalize<T, U>(a: U) -> U
where T: Float, U: QuaternionOps<T> {
    scale(norm(a).recip(), a)
}

/// Invert the sign of a Vector3 or Quaternion.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, negate};
/// // --- Vector3 --- //
/// let v: Vector3<f64> = [1.0, 2.0, 3.0];
/// let v_n = negate(v);
/// 
/// assert_eq!(-v[0], v_n[0]);
/// assert_eq!(-v[1], v_n[1]);
/// assert_eq!(-v[2], v_n[2]);
/// 
/// // --- Quaternion --- //
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q_n = negate(q);
/// 
/// assert_eq!(-q.0,    q_n.0);
/// assert_eq!(-q.1[0], q_n.1[0]);
/// assert_eq!(-q.1[1], q_n.1[1]);
/// assert_eq!(-q.1[2], q_n.1[2]);
/// ```
#[inline]
pub fn negate<T, U>(a: U) -> U
where T: Float, U: QuaternionOps<T> {
    a.negate()
}

/// Hamilton product (Product of Quaternion or Pure Quaternion)
/// 
/// The product order is `ab (!= ba)`
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, inv, mul};
/// // ---- Pure Quaternion (Vector3) ---- //
/// let v: Vector3<f64> = [1.0, 2.0, 3.0];
/// 
/// // Identity quaternion
/// let id = mul( v, inv(v) );  // = mul( inv(v), v );
/// 
/// assert!( (1.0 - id.0).abs() < 1e-12 );
/// assert!( id.1[0].abs() < 1e-12 );
/// assert!( id.1[1].abs() < 1e-12 );
/// assert!( id.1[2].abs() < 1e-12 );
/// 
/// // ---- Quaternion ---- //
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// 
/// // Identity quaternion
/// let id = mul( q, inv(q) );  // = mul( inv(q), q );
/// 
/// assert!( (1.0 - id.0).abs() < 1e-12 );
/// assert!( id.1[0].abs() < 1e-12 );
/// assert!( id.1[1].abs() < 1e-12 );
/// assert!( id.1[2].abs() < 1e-12 );
/// ```
#[inline]
pub fn mul<T, U>(a: U, b: U) -> Quaternion<T>
where T: Float, U: QuaternionOps<T> {
    a.mul(b)
}

/// Calculate the conjugate of Quaternion.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Quaternion, conj};
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q_conj = conj(q);
/// 
/// assert_eq!( q.0,    q_conj.0);
/// assert_eq!(-q.1[0], q_conj.1[0]);
/// assert_eq!(-q.1[1], q_conj.1[1]);
/// assert_eq!(-q.1[2], q_conj.1[2]);
/// ```
#[inline]
pub fn conj<T>(q: Quaternion<T>) -> Quaternion<T>
where T: Float {
    ( q.0, negate(q.1) )
}

/// Calculate the inverse of Quaternion or Pure Quaternion (Vector3).
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, inv, mul};
/// // ---- Pure Quaternion (Vector3) ---- //
/// let v: Vector3<f64> = [1.0, 2.0, 3.0];
/// 
/// // Identity quaternion
/// let id = mul( v, inv(v) );  // = mul( inv(v), v );
/// 
/// assert!( (id.0 - 1.0).abs() < 1e-12 );
/// assert!( id.1[0].abs() < 1e-12 );
/// assert!( id.1[1].abs() < 1e-12 );
/// assert!( id.1[2].abs() < 1e-12 );
/// 
/// // ---- Quaternion ---- //
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// 
/// // Identity quaternion
/// let id = mul( q, inv(q) );  // = mul( inv(q), q );
/// 
/// assert!( (id.0 - 1.0).abs() < 1e-12 );
/// assert!( id.1[0].abs() < 1e-12 );
/// assert!( id.1[1].abs() < 1e-12 );
/// assert!( id.1[2].abs() < 1e-12 );
/// ```
#[inline]
pub fn inv<T, U>(a: U) -> U
where T: Float, U: QuaternionOps<T> {
    a.inv()
}

// acosは[-π/2, π/2]の範囲でしか値を返さないので、qのとり方によってはlnで完全に復元できない。
// q == ln(exp(q)) が成り立つのはcos(norm(q.1))が[-π/2, π/2]の範囲内にある場合のみ。
/// Exponential function of Quaternion or Pure Quaternion (Vector3).
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, scale, exp, ln};
/// // ---- Pure Quaternion (Vector3) ---- //
/// let v: Vector3<f64> = [0.1, 0.2, 0.3];
/// let v_r = ln( exp(v) );
/// 
/// assert!( v_r.0.abs() < 1e-12 );
/// assert!( (v[0] - v_r.1[0]).abs() < 1e-12 );
/// assert!( (v[1] - v_r.1[1]).abs() < 1e-12 );
/// assert!( (v[2] - v_r.1[2]).abs() < 1e-12 );
/// 
/// // ---- Quaternion ---- //
/// let q: Quaternion<f64> = (0.1, [0.2, 0.3, 0.4]);
/// let q_r = ln( exp(q) );
/// 
/// assert!( (q.0    - q_r.0).abs() < 1e-12 );
/// assert!( (q.1[0] - q_r.1[0]).abs() < 1e-12 );
/// assert!( (q.1[1] - q_r.1[1]).abs() < 1e-12 );
/// assert!( (q.1[2] - q_r.1[2]).abs() < 1e-12 );
/// 
/// // The relationship between exp(q) and exp(q.1)
/// let exp_q = exp(q);
/// let exp_check = scale( q.0.exp(), exp(q.1) );
/// assert!( (exp_q.0    - exp_check.0).abs() < 1e-12 );
/// assert!( (exp_q.1[0] - exp_check.1[0]).abs() < 1e-12 );
/// assert!( (exp_q.1[1] - exp_check.1[1]).abs() < 1e-12 );
/// assert!( (exp_q.1[2] - exp_check.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn exp<T, U>(a: U) -> Quaternion<T>
where T: Float, U: QuaternionOps<T> {
    a.exp()
}

// acosは[-π/2, π/2]の範囲でしか値を返さないので、qのとり方によってはlnで完全に復元できない。
// q == ln(exp(q)) が成り立つのはcos(norm(q.1))が[-π/2, π/2]の範囲内にある場合のみ。
/// Natural logarithm of Quaternion.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, Quaternion, exp, ln};
/// let q: Quaternion<f64> = (0.1, [0.2, 0.3, 0.4]);
/// let q_r = ln( exp(q) );
/// 
/// assert!( (q.0    - q_r.0).abs() < 1e-12 );
/// assert!( (q.1[0] - q_r.1[0]).abs() < 1e-12 );
/// assert!( (q.1[1] - q_r.1[1]).abs() < 1e-12 );
/// assert!( (q.1[2] - q_r.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn ln<T>(q: Quaternion<T>) -> Quaternion<T>
where T: Float {
    let norm_v = norm(q.1);
    let norm_q = pythag(q.0, norm_v);
    let coef = (q.0 / norm_q).acos() / norm_v;
    ( norm_q.ln(), scale(coef, q.1) )
}

// exp(q)の結果がVersorとなる条件は,qのスカラー部が0(つまりqが純虚四元数).
// 
/// Natural logarithm of Versor.
/// 
/// If the argument `q` is guaranteed to be a Versor,
/// it is less calculation cost than the `ln(...)` function.
/// 
/// Only the vector part is returned since the real part is always zero.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, exp, ln_versor};
/// let v: Vector3<f64> = [0.1, 0.2, 0.3];
/// let r = ln_versor( exp(v) );
/// 
/// assert!( (v[0] - r[0]).abs() < 1e-12 );
/// assert!( (v[1] - r[1]).abs() < 1e-12 );
/// assert!( (v[2] - r[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn ln_versor<T>(q: Quaternion<T>) -> Vector3<T>
where T: Float {
    scale( q.0.acos() / norm(q.1), q.1)
}

/// Power function of Quaternion.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Quaternion, mul, inv, pow, sqrt};
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// 
/// let q_q = mul(q, q);
/// let q_pow_2 = pow(q, 2.0);
/// assert!( (q_q.0    - q_pow_2.0).abs() < 1e-12 );
/// assert!( (q_q.1[0] - q_pow_2.1[0]).abs() < 1e-12 );
/// assert!( (q_q.1[1] - q_pow_2.1[1]).abs() < 1e-12 );
/// assert!( (q_q.1[2] - q_pow_2.1[2]).abs() < 1e-12 );
/// 
/// let q_sqrt = sqrt(q);
/// let q_pow_0p5 = pow(q, 0.5);
/// assert!( (q_sqrt.0    - q_pow_0p5.0).abs() < 1e-12 );
/// assert!( (q_sqrt.1[0] - q_pow_0p5.1[0]).abs() < 1e-12 );
/// assert!( (q_sqrt.1[1] - q_pow_0p5.1[1]).abs() < 1e-12 );
/// assert!( (q_sqrt.1[2] - q_pow_0p5.1[2]).abs() < 1e-12 );
/// 
/// let q_inv = inv(q);
/// let q_pow_m1 = pow(q, -1.0);
/// assert!( (q_inv.0    - q_pow_m1.0).abs() < 1e-12 );
/// assert!( (q_inv.1[0] - q_pow_m1.1[0]).abs() < 1e-12 );
/// assert!( (q_inv.1[1] - q_pow_m1.1[1]).abs() < 1e-12 );
/// assert!( (q_inv.1[2] - q_pow_m1.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn pow<T>(q: Quaternion<T>, t: T) -> Quaternion<T>
where T: Float {
    let norm_v = norm(q.1);
    let norm_q = pythag(q.0, norm_v);
    let omega = (q.0 / norm_q).acos();
    let (sin, cos) = (t * omega).sin_cos();
    let coef = norm_q.powf(t);
    ( coef * cos, scale((coef / norm_v) * sin, q.1) )
}

/// Power function of Versor.
/// 
/// If the argument `q` is guaranteed to be a Versor, 
/// it is less calculation cost than the `pow(...)` function.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Quaternion, normalize, mul, inv, pow_versor, sqrt};
/// let q: Quaternion<f64> = normalize( (1.0, [2.0, 3.0, 4.0]) );
/// 
/// let q_q = mul(q, q);
/// let q_pow_2 = pow_versor(q, 2.0);
/// assert!( (q_q.0    - q_pow_2.0).abs() < 1e-12 );
/// assert!( (q_q.1[0] - q_pow_2.1[0]).abs() < 1e-12 );
/// assert!( (q_q.1[1] - q_pow_2.1[1]).abs() < 1e-12 );
/// assert!( (q_q.1[2] - q_pow_2.1[2]).abs() < 1e-12 );
/// 
/// let q_sqrt = sqrt(q);
/// let q_pow_0p5 = pow_versor(q, 0.5);
/// assert!( (q_sqrt.0    - q_pow_0p5.0).abs() < 1e-12 );
/// assert!( (q_sqrt.1[0] - q_pow_0p5.1[0]).abs() < 1e-12 );
/// assert!( (q_sqrt.1[1] - q_pow_0p5.1[1]).abs() < 1e-12 );
/// assert!( (q_sqrt.1[2] - q_pow_0p5.1[2]).abs() < 1e-12 );
/// 
/// let q_inv = inv(q);
/// let q_pow_m1 = pow_versor(q, -1.0);
/// assert!( (q_inv.0    - q_pow_m1.0).abs() < 1e-12 );
/// assert!( (q_inv.1[0] - q_pow_m1.1[0]).abs() < 1e-12 );
/// assert!( (q_inv.1[1] - q_pow_m1.1[1]).abs() < 1e-12 );
/// assert!( (q_inv.1[2] - q_pow_m1.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn pow_versor<T>(q: Quaternion<T>, t: T) -> Quaternion<T>
where T: Float {
    let (sin, cos) = (t * q.0.acos()).sin_cos();
    ( cos, scale(sin / norm(q.1), q.1) )
}

/// Square root of Quaternion.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Quaternion, mul, sqrt};
/// let q: Quaternion<f64> = (1.0, [2.0, 3.0, 4.0]);
/// let q_sqrt = sqrt(q);
/// 
/// let result = mul(q_sqrt, q_sqrt);
/// assert!( (q.0    - result.0).abs() < 1e-12 );
/// assert!( (q.1[0] - result.1[0]).abs() < 1e-12 );
/// assert!( (q.1[1] - result.1[1]).abs() < 1e-12 );
/// assert!( (q.1[2] - result.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn sqrt<T>(q: Quaternion<T>) -> Quaternion<T>
where T: Float {
    let half = cast(0.5);
    let norm_v = norm(q.1);
    let norm_q = pythag(q.0, norm_v);
    let coef = ((norm_q - q.0) * half).sqrt() / norm_v;
    ( ((norm_q + q.0) * half).sqrt(), scale(coef, q.1) )
}

/// Square root of Versor.
/// 
/// If the argument `q` is guaranteed to be a Versor, 
/// it is less calculation cost than the `sqrt(...)` function.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Quaternion, normalize, mul, sqrt_versor};
/// let q: Quaternion<f64> = normalize( (1.0, [2.0, 3.0, 4.0]) );
/// let q_sqrt = sqrt_versor(q);
/// 
/// let result = mul(q_sqrt, q_sqrt);
/// assert!( (q.0    - result.0).abs() < 1e-12 );
/// assert!( (q.1[0] - result.1[0]).abs() < 1e-12 );
/// assert!( (q.1[1] - result.1[1]).abs() < 1e-12 );
/// assert!( (q.1[2] - result.1[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn sqrt_versor<T>(q: Quaternion<T>) -> Quaternion<T>
where T: Float {
    let half = cast(0.5);
    let coef = (half - q.0 * half).sqrt() / norm(q.1);
    ( mul_add(q.0, half, half).sqrt(), scale(coef, q.1) )
}

/// Rotation of point (Point Rotation - Frame Fixed)
/// 
/// `q v q*  (||q|| = 1)`
/// 
/// Since it is implemented with an optimized formula, 
/// it can be calculated with the amount of operations shown in the table below:
/// 
/// | Operation    | Num |
/// |:------------:|:---:|
/// | Multiply     | 18  |
/// | Add/Subtract | 12  |
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{from_axis_angle, point_rotation, mul, conj};
/// # let PI = std::f64::consts::PI;
/// // Make these as you like.
/// let v = [1.0, 0.5, -8.0];
/// let q = from_axis_angle([0.2, 1.0, -2.0], PI);
/// 
/// let r = point_rotation(q, v);
/// 
/// // This makes a lot of wasted calculations.
/// let r_check = mul( mul(q, (0.0, v)), conj(q) ).1;
/// 
/// assert!( (r[0] - r_check[0]).abs() < 1e-12 );
/// assert!( (r[1] - r_check[1]).abs() < 1e-12 );
/// assert!( (r[2] - r_check[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn point_rotation<T>(q: Quaternion<T>, v: Vector3<T>) -> Vector3<T>
where T: Float {
    let tmp = scale_add(q.0, v, cross(q.1, v));
    scale_add(cast(2.0), cross(q.1, tmp), v)
}

/// Rotation of frame (Frame Rotation - Point Fixed)
/// 
/// `q* v q  (||q|| = 1)`
/// 
/// Since it is implemented with an optimized formula, 
/// it can be calculated with the amount of operations shown in the table below:
/// 
/// | Operation    | Num |
/// |:------------:|:---:|
/// | Multiply     | 18  |
/// | Add/Subtract | 12  |
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{from_axis_angle, point_rotation, mul, conj};
/// # let PI = std::f64::consts::PI;
/// // Make these as you like.
/// let v = [1.0, 0.5, -8.0];
/// let q = from_axis_angle([0.2, 1.0, -2.0], PI);
/// 
/// let r = point_rotation(q, v);
/// 
/// // This makes a lot of wasted calculations.
/// let r_check = mul( mul(conj(q), (0.0, v)), q ).1;
/// 
/// assert!( (r[0] - r_check[0]).abs() < 1e-12 );
/// assert!( (r[1] - r_check[1]).abs() < 1e-12 );
/// assert!( (r[2] - r_check[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn frame_rotation<T>(q: Quaternion<T>, v: Vector3<T>) -> Vector3<T>
where T: Float {
    let tmp = scale_add(q.0, v, cross(v, q.1));
    scale_add(cast(2.0), cross(tmp, q.1), v)
}

/// Calculate the versor to rotate from vector `a` to vector `b` (Without singularity!).
/// 
/// This function calculates `q` satisfying `b = point_rotation(q, a)` 
/// when `norm(a) = norm(b)`.
/// If `norm(a) > 0` and `norm(b) > 0`, then `q` can be calculated with good 
/// accuracy no matter what the positional relationship between `a` and `b` is.
/// 
/// If you enter a zero vector either `a` or `b`, it returns `None`.
/// 
/// # Examples
/// 
/// ```
/// # use quaternion_core::{Vector3, cross, rotate_a_to_b, point_rotation, normalize};
/// let a: Vector3<f64> = [1.5, -0.5, 0.2];
/// let b: Vector3<f64> = [0.1, 0.6, 1.0];
/// 
/// let q = rotate_a_to_b(a, b).unwrap();
/// let b_check = point_rotation(q, a);
/// 
/// let b_u = normalize(b);
/// let b_check_u = normalize(b_check);
/// assert!( (b_u[0] - b_check_u[0]).abs() < 1e-12 );
/// assert!( (b_u[1] - b_check_u[1]).abs() < 1e-12 );
/// assert!( (b_u[2] - b_check_u[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn rotate_a_to_b<T>(a: Vector3<T>, b: Vector3<T>) -> Option<Quaternion<T>>
where T: Float {
    let norm_inv_a = norm(a).recip();
    let norm_inv_b = norm(b).recip();
    if norm_inv_a.is_infinite() || norm_inv_b.is_infinite() {
        return None;
    }
    let a = scale(norm_inv_a, a);
    let b = scale(norm_inv_b, b);

    let a_add_b = add(a, b);
    let dot_a_add_b = dot(a_add_b, a_add_b);
    if dot_a_add_b >= T::one() {  // arccos(a・b) = 120degで切り替え
        Some( (T::zero(), scale(dot_a_add_b.sqrt().recip(), a_add_b)) )
    } else {
        let norm_a_sub_b = (cast::<T>(4.0) - dot_a_add_b).sqrt();
        let axis_a2mb = scale(norm_a_sub_b.recip(), sub(a, b));  // a ==> -b
        let axis_mb2b = orthogonal_vector(b);  // -b ==> b
        Some( mul(axis_mb2b, axis_a2mb) )
    }
}

/// Calculate the versor to rotate from vector `a` to vector `b` by the shortest path.
/// 
/// The parameter `t` adjusts the amount of movement from `a` to `b`. 
/// When `t = 1`, `a` moves completely to position `b`.
/// 
/// The algorithm used in this function is less accurate when `a` and `b` are parallel. 
/// Therefore, it is better to use the `rotate_a_to_b(a, b)` function when `t = 1` and 
/// the rotation axis is not important.
/// 
/// If you enter a zero vector either `a` or `b`, it returns `None`.
#[inline]
pub fn rotate_a_to_b_shortest<T>(a: Vector3<T>, b: Vector3<T>, t: T) -> Option<Quaternion<T>>
where T: Float {
    let norm_inv_a = norm(a).recip();
    let norm_inv_b = norm(b).recip();
    if norm_inv_a.is_infinite() || norm_inv_b.is_infinite() {
        return None;
    }
    let a = scale(norm_inv_a, a);
    let b = scale(norm_inv_b, b);

    let axis = cross(a, b);
    let norm_axis_inv = norm(axis).recip();
    if norm_axis_inv.is_finite() {
        let (sin, cos) = (t * acos_safe(dot(a, b)) * cast(0.5)).sin_cos();
        Some( (cos, scale(sin * norm_axis_inv, axis)) )
    } else {  // Singularity (a || b)
        if dot(a, b) > T::zero() {
            Some( IDENTITY() )  // a = b
        } else {
            Some( (T::zero(), orthogonal_vector(a)) )  // a = -b
        }
    }
}

/// Lerp (Linear interpolation)
/// 
/// Generate a Versor that interpolate the shortest path from `a` to `b`.
/// The argument `t (0 <= t <= 1)` is the interpolation parameter.
/// 
/// The arguments `a` and `b` must be Versor.
/// 
/// Normalization is not performed internally because 
/// it increases the computational complexity.
#[inline]
pub fn lerp<T>(a: Quaternion<T>, b: Quaternion<T>, t: T) -> Quaternion<T>
where T: Float {
    // 最短経路で補間する
    if dot(a, b).is_sign_negative() {
        // bの符号を反転
        scale_add(-t, add(a, b), a)
    } else {
        scale_add( t, sub(b, a), a)
    }
}

/// Slerp (Spherical linear interpolation)
/// 
/// Generate a Versor that interpolate the shortest path from `a` to `b`.
/// The argument `t (0 <= t <= 1)` is the interpolation parameter.
/// 
/// The arguments `a` and `b` must be Versor.
#[inline]
pub fn slerp<T>(a: Quaternion<T>, mut b: Quaternion<T>, t: T) -> Quaternion<T>
where T: Float {    
    // 最短経路で補間する
    let mut dot = dot(a, b);
    if dot.is_sign_negative() {
        b = negate(b);
        dot = -dot;
    }
    // If the distance between quaternions is close enough, use lerp.
    if dot > cast(0.9995) {  // Approximation error < 0.017%
        scale_add(t, sub(b, a), a)  // lerp
    } else {
        let omega = dot.acos();  // Angle between the two quaternions.
        let tmp = t * omega;
        let s1 = (omega - tmp).sin();
        let s2 = tmp.sin();
        let coef = (T::one() - dot*dot).sqrt().recip();
        let term1 = scale(s1 * coef, a);
        let term2 = scale(s2 * coef, b);
        add(term1, term2)
    }
}