1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
//! Quaternion Libraly (f32 & f64)
#![no_std]
#[cfg(feature = "std")]
extern crate std;
use num_traits::{Float, FloatConst};
mod simd;
mod euler;
pub use simd::FloatSimd;
/// `[i, j, k]`
pub type Vector3<T> = [T; 3];
/// `(1, [i, j, k])`
pub type Quaternion<T> = (T, Vector3<T>);
/// Direction Cosine Matrix
///
/// `
/// [
/// [m11, m12, m13],
/// [m21, m22, m23],
/// [m31, m32, m33]
/// ]
/// `
pub type DCM<T> = [Vector3<T>; 3];
/// Specify the rotation type of Euler angles.
///
/// Considering a fixed `Reference frame` and a rotating `Body frame`,
/// `Intrinsic rotation` and `Extrinsic rotation` represent the following rotations:
///
/// * `Intrinsic`: Rotate around the axes of the `Body-frame`
/// * `Extrinsic`: Rotate around the axes of the `Reference-frame`
#[derive(Debug, Clone, Copy)]
pub enum RotationType {
Intrinsic,
Extrinsic,
}
/// Represents 12 different rotations.
///
/// Each variant reads from left to right.
/// For example, `RotationSequence::XYZ` represents rotation around the X axis first,
/// then the Y axis, and finally the Z axis in that order (X ---> Y ---> Z).
#[derive(Debug, Clone, Copy)]
pub enum RotationSequence {
// Proper (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y)
ZXZ,
XYX,
YZY,
ZYZ,
XZX,
YXY,
// Tait–Bryan (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z)
XYZ,
YZX,
ZXY,
XZY,
ZYX,
YXZ,
}
/// Generate Versor by specifying rotation `angle`\[rad\] and `axis` vector.
///
/// The `axis` does not have to be a unit vector.
///
/// If you enter a zero vector, it returns an identity quaternion.
#[inline]
pub fn from_axis_angle<T>(axis: Vector3<T>, angle: T) -> Quaternion<T>
where T: Float + FloatConst {
let theta = angle % ( T::PI() + T::PI() ); // limit to (-2π, 2π)
let f = ( theta * cast(0.5) ).sin_cos();
let coef = f.0 / norm_vec(axis);
if coef.is_infinite() {
IDENTITY()
} else {
( f.1, scale_vec(coef, axis) )
}
}
/// Compute the rotation `axis` (unit vector) and the rotation `angle`\[rad\]
/// around the axis from the versor.
///
/// If identity quaternion is entered, `angle` returns zero and
/// the `axis` returns a zero vector.
///
/// Range of `angle`: `(-π, π]`
#[inline]
pub fn to_axis_angle<T>(q: Quaternion<T>) -> (Vector3<T>, T)
where T: Float {
let norm_q_v = norm_vec(q.1);
let coef = norm_q_v.recip();
if coef.is_infinite() {
( ZERO_VECTOR(), T::zero() )
} else {
// 少しの誤差は見逃す.
let tmp = norm_q_v.min( T::one() ).asin();
( scale_vec(coef, q.1), (tmp + tmp).copysign(q.0) ) // theta = 2*tmp
}
}
/// Convert a DCM to a Quaternion representing
/// the `q v q*` rotation (Point Rotation - Frame Fixed).
///
/// When convert to a DCM representing `q* v q` rotation
/// (Frame Rotation - Point Fixed) to a Quaternion, do the following:
///
/// ```
/// # use quaternion_core::{from_dcm, to_dcm, conj};
/// # let dcm = to_dcm((1.0, [0.0; 3]));
/// let q = conj( from_dcm(dcm) );
/// ```
///
/// # Examples
///
/// ```
/// # use quaternion_core::{
/// # from_axis_angle, dot, conj, negate, to_dcm, from_dcm,
/// # matrix_product, point_rotation, frame_rotation
/// # };
/// # let pi = std::f64::consts::PI;
/// // Make these as you like.
/// let v = [1.0, 0.5, -8.0];
/// let q = from_axis_angle([0.2, 1.0, -2.0], pi/4.0);
///
/// // --- Point rotation --- //
/// {
/// let m = to_dcm(q);
/// let q_check = from_dcm(m);
///
/// assert!( (q.0 - q_check.0).abs() < 1e-12 );
/// assert!( (q.1[0] - q_check.1[0]).abs() < 1e-12 );
/// assert!( (q.1[1] - q_check.1[1]).abs() < 1e-12 );
/// assert!( (q.1[2] - q_check.1[2]).abs() < 1e-12 );
/// }
///
/// // --- Frame rotation --- //
/// {
/// let m = to_dcm( conj(q) );
/// let q_check = conj( from_dcm(m) );
///
/// assert!( (q.0 - q_check.0).abs() < 1e-12 );
/// assert!( (q.1[0] - q_check.1[0]).abs() < 1e-12 );
/// assert!( (q.1[1] - q_check.1[1]).abs() < 1e-12 );
/// assert!( (q.1[2] - q_check.1[2]).abs() < 1e-12 );
/// }
/// ```
#[inline]
pub fn from_dcm<T>(m: DCM<T>) -> Quaternion<T>
where T: Float {
// ゼロ除算を避けるために,4通りの式で求めたうちの最大値を係数として使う.
let (index, max_num) = max4([
m[0][0] + m[1][1] + m[2][2],
m[0][0] - m[1][1] - m[2][2],
-m[0][0] + m[1][1] - m[2][2],
-m[0][0] - m[1][1] + m[2][2],
]);
let half: T = cast(0.5);
let tmp = ( max_num + T::one() ).sqrt();
let coef = half / tmp;
let (q0, [q1, q2, q3]): Quaternion<T>;
match index {
0 => {
q0 = half * tmp;
q1 = (m[2][1] - m[1][2]) * coef;
q2 = (m[0][2] - m[2][0]) * coef;
q3 = (m[1][0] - m[0][1]) * coef;
},
1 => {
q0 = (m[2][1] - m[1][2]) * coef;
q1 = half * tmp;
q2 = (m[0][1] + m[1][0]) * coef;
q3 = (m[0][2] + m[2][0]) * coef;
},
2 => {
q0 = (m[0][2] - m[2][0]) * coef;
q1 = (m[0][1] + m[1][0]) * coef;
q2 = half * tmp;
q3 = (m[1][2] + m[2][1]) * coef;
},
3 => {
q0 = (m[1][0] - m[0][1]) * coef;
q1 = (m[0][2] + m[2][0]) * coef;
q2 = (m[1][2] + m[2][1]) * coef;
q3 = half * tmp;
},
_ => unreachable!(),
};
(q0, [q1, q2, q3])
}
/// Convert a Quaternion to a DCM representing
/// the `q v q*` rotation (Point Rotation - Frame Fixed).
///
/// When convert to a DCM representing the
/// `q* v q` rotation (Frame Rotation - Point Fixed), do the following:
///
/// ```
/// # use quaternion_core::{to_dcm, conj};
/// # let q = (1.0, [0.0; 3]);
/// let dcm = to_dcm( conj(q) );
/// ```
///
/// # Examples
/// ```
/// # use quaternion_core::{
/// # from_axis_angle, to_dcm, conj,
/// # matrix_product, point_rotation, frame_rotation
/// # };
/// # let pi = std::f64::consts::PI;
/// // Make these as you like.
/// let v = [1.0, 0.5, -8.0];
/// let q = from_axis_angle([0.2, 1.0, -2.0], pi/4.0);
///
/// // --- Point rotation --- //
/// {
/// let m = to_dcm(q);
///
/// let rm = matrix_product(m, v);
/// let rq = point_rotation(q, v);
/// assert!( (rm[0] - rq[0]).abs() < 1e-12 );
/// assert!( (rm[1] - rq[1]).abs() < 1e-12 );
/// assert!( (rm[2] - rq[2]).abs() < 1e-12 );
/// }
///
/// // --- Frame rotation --- //
/// {
/// let m = to_dcm( conj(q) );
///
/// let rm = matrix_product(m, v);
/// let rq = frame_rotation(q, v);
/// assert!( (rm[0] - rq[0]).abs() < 1e-12 );
/// assert!( (rm[1] - rq[1]).abs() < 1e-12 );
/// assert!( (rm[2] - rq[2]).abs() < 1e-12 );
/// }
/// ```
#[inline]
pub fn to_dcm<T>(q: Quaternion<T>) -> DCM<T>
where T: Float + FloatSimd<T> {
let neg_one = -T::one();
let two = cast(2.0);
// Compute these value only once.
let (q0_q0, [q0_q1, q0_q2, q0_q3]) = scale(q.0, q);
let q1_q2 = q.1[0] * q.1[1];
let q1_q3 = q.1[0] * q.1[2];
let q2_q3 = q.1[1] * q.1[2];
let m11 = mul_add(mul_add(q.1[0], q.1[0], q0_q0), two, neg_one);
let m12 = (q1_q2 - q0_q3) * two;
let m13 = (q1_q3 + q0_q2) * two;
let m21 = (q1_q2 + q0_q3) * two;
let m22 = mul_add(mul_add(q.1[1], q.1[1], q0_q0), two, neg_one);
let m23 = (q2_q3 - q0_q1) * two;
let m31 = (q1_q3 - q0_q2) * two;
let m32 = (q2_q3 + q0_q1) * two;
let m33 = mul_add(mul_add(q.1[2], q.1[2], q0_q0), two, neg_one);
[
[m11, m12, m13],
[m21, m22, m23],
[m31, m32, m33],
]
}
/// Convert Euler angles to Quaternion.
///
/// The type of rotation (Intrinsic or Extrinsic) is specified by `RotationType` enum,
/// and the rotation sequence (XZX, XYZ, ...) is specified by `RotationSequence` enum.
///
/// Each element of `angles` should be specified in the range `[-2π, 2π]`.
///
/// Sequences: `angles[0]` ---> `angles[1]` ---> `angles[2]`
///
/// # Example
///
/// ```
/// # use quaternion_core::{from_axis_angle, mul, from_euler_angles, point_rotation};
/// # let pi = std::f64::consts::PI;
/// use quaternion_core::{RotationType::*, RotationSequence::XYZ};
///
/// let angles = [pi/6.0, 1.6*pi, -pi/4.0];
/// let v = [1.0, 0.5, -0.4];
///
/// // Quaternions representing rotation around each axis.
/// let x = from_axis_angle([1.0, 0.0, 0.0], angles[0]);
/// let y = from_axis_angle([0.0, 1.0, 0.0], angles[1]);
/// let z = from_axis_angle([0.0, 0.0, 1.0], angles[2]);
///
/// // ---- Intrinsic (X-Y-Z) ---- //
/// // These represent the same rotation.
/// let q_in = mul( mul(x, y), z );
/// let e2q_in = from_euler_angles(Intrinsic, XYZ, angles);
/// // Confirmation
/// let a_in = point_rotation(q_in, v);
/// let b_in = point_rotation(e2q_in, v);
/// assert!( (a_in[0] - b_in[0]).abs() < 1e-12 );
/// assert!( (a_in[1] - b_in[1]).abs() < 1e-12 );
/// assert!( (a_in[2] - b_in[2]).abs() < 1e-12 );
///
/// // ---- Extrinsic (X-Y-Z) ---- //
/// // These represent the same rotation.
/// let q_ex = mul( mul(z, y), x );
/// let e2q_ex = from_euler_angles(Extrinsic, XYZ, angles);
/// // Confirmation
/// let a_ex = point_rotation(q_ex, v);
/// let b_ex = point_rotation(e2q_ex, v);
/// assert!( (a_ex[0] - b_ex[0]).abs() < 1e-12 );
/// assert!( (a_ex[1] - b_ex[1]).abs() < 1e-12 );
/// assert!( (a_ex[2] - b_ex[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn from_euler_angles<T>(rt: RotationType, rs: RotationSequence, angles: Vector3<T>) -> Quaternion<T>
where T: Float + FloatConst {
debug_assert!( angles[0].abs() <= T::PI() + T::PI(), "angles[0] is out of range!");
debug_assert!( angles[1].abs() <= T::PI() + T::PI(), "angles[1] is out of range!");
debug_assert!( angles[2].abs() <= T::PI() + T::PI(), "angles[2] is out of range!");
match rt {
RotationType::Intrinsic => euler::from_intrinsic_euler_angles(rs, angles),
RotationType::Extrinsic => euler::from_extrinsic_euler_angles(rs, angles),
}
}
/// Convert Quaternion (Unit quaternion) to Euler angles.
///
/// The type of rotation (Intrinsic or Extrinsic) is specified by `RotationType` enum,
/// and the rotation sequence (XZX, XYZ, ...) is specified by `RotationSequence` enum.
///
/// ```
/// # use quaternion_core::{RotationType::Intrinsic, RotationSequence::XYZ, to_euler_angles};
/// # let q = (1.0, [0.0; 3]);
/// let angles = to_euler_angles(Intrinsic, XYZ, q);
/// ```
///
/// Sequences: `angles[0]` ---> `angles[1]` ---> `angles[2]`
///
/// # Singularity
///
/// ## RotationType::Intrinsic
///
/// For Proper Euler angles (ZXZ, XYX, YZY, ZYZ, XZX, YXY), the singularity is reached
/// when the sine of the second rotation angle is 0 (angle = 0, ±π, ...), and for
/// Tait-Bryan angles (XYZ, YZX, ZXY, XZY, ZYX, YXZ), the singularity is reached when
/// the cosine of the second rotation angle is 0 (angle = ±π/2).
///
/// At the singularity, the third rotation angle is set to 0\[rad\].
///
/// ## RotationType::Extrinsic
///
/// As in the case of Intrinsic rotation, for Proper Euler angles, the singularity occurs
/// when the sine of the second rotation angle is 0 (angle = 0, ±π, ...), and for
/// Tait-Bryan angles, the singularity occurs when the cosine of the second rotation angle
/// is 0 (angle = ±π/2).
///
/// At the singularity, the first rotation angle is set to 0\[rad\].
///
/// # Example
///
/// Depending on the rotation angle of each axis, it may not be possible to recover the
/// same rotation angle as the original. However, they represent the same rotation in 3D space.
///
/// ```
/// # use quaternion_core::{from_euler_angles, to_euler_angles, point_rotation};
/// # let pi = std::f64::consts::PI;
/// use quaternion_core::{RotationType::*, RotationSequence::XYZ};
///
/// let angles = [pi/6.0, pi/4.0, pi/3.0];
///
/// // ---- Intrinsic (X-Y-Z) ---- //
/// let q_in = from_euler_angles(Intrinsic, XYZ, angles);
/// let e_in = to_euler_angles(Intrinsic, XYZ, q_in);
/// assert!( (angles[0] - e_in[0]).abs() < 1e-12 );
/// assert!( (angles[1] - e_in[1]).abs() < 1e-12 );
/// assert!( (angles[2] - e_in[2]).abs() < 1e-12 );
///
/// // ---- Extrinsic (X-Y-Z) ---- //
/// let q_ex = from_euler_angles(Extrinsic, XYZ, angles);
/// let e_ex = to_euler_angles(Extrinsic, XYZ, q_ex);
/// assert!( (angles[0] - e_ex[0]).abs() < 1e-12 );
/// assert!( (angles[1] - e_ex[1]).abs() < 1e-12 );
/// assert!( (angles[2] - e_ex[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn to_euler_angles<T>(rt: RotationType, rs: RotationSequence, q: Quaternion<T>) -> Vector3<T>
where T: Float + FloatConst + FloatSimd<T> {
match rt {
RotationType::Intrinsic => euler::to_intrinsic_euler_angles(rs, q),
RotationType::Extrinsic => euler::to_extrinsic_euler_angles(rs, q),
}
}
/// Convert Rotation vector to Quaternion (Unit quaternion).
///
/// The Rotation vector itself represents the axis of rotation,
/// and the norm represents the angle of rotation around the axis.
///
/// `angle` range is: `(0, 2π)`
#[inline]
pub fn from_rotation_vector<T>(v: Vector3<T>) -> Quaternion<T>
where T: Float {
let theta = norm_vec(v);
let f = ( theta * cast(0.5) ).sin_cos();
let coef = f.0 / theta;
if coef.is_infinite() {
IDENTITY()
} else {
( f.1, scale_vec(coef, v) )
}
}
/// Convert Versor to rotation vector.
///
/// The rotation vector itself represents the axis of rotation,
/// and the norm represents the angle of rotation around the axis.
///
/// `angle` range is: `(0, 2π)`
#[inline]
pub fn to_rotation_vector<T>(q: Quaternion<T>) -> Vector3<T>
where T: Float {
let tmp = acos_safe(q.0);
let coef = (tmp + tmp) / norm_vec(q.1); // 2*tmp
if coef.is_infinite() {
ZERO_VECTOR()
} else {
scale_vec(coef, q.1)
}
}
/// Product of matrix and vector
///
/// Rotate vectors using a directional cosine matrix.
#[inline]
pub fn matrix_product<T>(m: DCM<T>, v: Vector3<T>) -> Vector3<T>
where T: Float {
[
dot_vec(m[0], v),
dot_vec(m[1], v),
dot_vec(m[2], v),
]
}
/// Calculate the sum of each element of Vector3.
#[inline]
pub fn sum_vec<T>(v: Vector3<T>) -> T
where T: Float {
v[0] + v[1] + v[2]
}
/// Calculate the sum of each element of Quaternion.
#[inline]
pub fn sum<T>(q: Quaternion<T>) -> T
where T: FloatSimd<T> {
T::sum(q)
}
/// Calculate `a + b`
#[inline]
pub fn add_vec<T>(a: Vector3<T>, b: Vector3<T>) -> Vector3<T>
where T: Float {
[ a[0]+b[0], a[1]+b[1], a[2]+b[2] ]
}
/// Calculate `a + b`
#[inline]
pub fn add<T>(a: Quaternion<T>, b: Quaternion<T>) -> Quaternion<T>
where T: FloatSimd<T> {
T::add(a, b)
}
/// Calculate `a - b`
#[inline]
pub fn sub_vec<T>(a: Vector3<T>, b: Vector3<T>) -> Vector3<T>
where T: Float {
[ a[0]-b[0], a[1]-b[1], a[2]-b[2] ]
}
/// Calculate `a - b`
#[inline]
pub fn sub<T>(a: Quaternion<T>, b: Quaternion<T>) -> Quaternion<T>
where T: FloatSimd<T> {
T::sub(a, b)
}
/// Calculate `s * v`
///
/// Multiplication of scalar and vector.
#[inline]
pub fn scale_vec<T>(s: T, v: Vector3<T>) -> Vector3<T>
where T: Float {
[ s*v[0], s*v[1], s*v[2] ]
}
/// Calculate `s * q`
///
/// Multiplication of scalar and quaternion.
#[inline]
pub fn scale<T>(s: T, q: Quaternion<T>) -> Quaternion<T>
where T: FloatSimd<T> {
T::scale(s, q)
}
/// Calculate `s*a + b`
///
/// If the `fma` feature is enabled, the FMA calculation is performed using the `mul_add` method.
/// If not enabled, it's computed by unfused multiply-add (s*a + b).
#[inline]
pub fn scale_add_vec<T>(s: T, a: Vector3<T>, b: Vector3<T>) -> Vector3<T>
where T: Float {
[
mul_add(s, a[0], b[0]),
mul_add(s, a[1], b[1]),
mul_add(s, a[2], b[2]),
]
}
/// Calculate `s*a + b`
///
/// If the `fma` feature is enabled, the FMA calculation is performed using the `mul_add` method.
/// If not enabled, it's computed by unfused multiply-add (s*a + b).
#[inline]
pub fn scale_add<T>(s: T, a: Quaternion<T>, b: Quaternion<T>) -> Quaternion<T>
where T: FloatSimd<T> {
T::scale_add(s, a, b)
}
/// Hadamard product of Vector.
///
/// Calculate `a ∘ b`
#[inline]
pub fn hadamard_vec<T>(a: Vector3<T>, b: Vector3<T>) -> Vector3<T>
where T: Float {
[ a[0]*b[0], a[1]*b[1], a[2]*b[2] ]
}
/// Hadamard product of Quaternion.
///
/// Calculate `a ∘ b`
#[inline]
pub fn hadamard<T>(a: Quaternion<T>, b: Quaternion<T>) -> Quaternion<T>
where T: FloatSimd<T> {
T::hadamard(a, b)
}
/// Hadamard product and Addiction of Vector.
///
/// Calculate `a ∘ b + c`
///
/// If the `fma` feature is enabled, the FMA calculation is performed using the `mul_add` method.
/// If not enabled, it's computed by unfused multiply-add (s*a + b).
#[inline]
pub fn hadamard_add_vec<T>(a: Vector3<T>, b: Vector3<T>, c: Vector3<T>) -> Vector3<T>
where T: Float {
[
mul_add(a[0], b[0], c[0]),
mul_add(a[1], b[1], c[1]),
mul_add(a[2], b[2], c[2]),
]
}
/// Hadamard product and Addiction of Quaternion.
///
/// Calculate `a ∘ b + c`
///
/// If the `fma` feature is enabled, the FMA calculation is performed using the `mul_add` method.
/// If not enabled, it's computed by unfused multiply-add (s*a + b).
#[inline]
pub fn hadamard_add<T>(a: Quaternion<T>, b: Quaternion<T>, c: Quaternion<T>) -> Quaternion<T>
where T: FloatSimd<T> {
T::hadamard_add(a, b, c)
}
/// Dot product of vector.
#[inline]
pub fn dot_vec<T>(a: Vector3<T>, b: Vector3<T>) -> T
where T: Float {
sum_vec( hadamard_vec(a, b) )
}
/// Dot product of quaternion.
#[inline]
pub fn dot<T>(a: Quaternion<T>, b: Quaternion<T>) -> T
where T: FloatSimd<T> {
T::dot(a, b)
}
/// Cross product.
#[inline]
pub fn cross_vec<T>(a: Vector3<T>, b: Vector3<T>) -> Vector3<T>
where T: Float {
[
a[1]*b[2] - a[2]*b[1],
a[2]*b[0] - a[0]*b[2],
a[0]*b[1] - a[1]*b[0],
]
}
/// Calculate L2 norm.
#[inline]
pub fn norm_vec<T>(v: Vector3<T>) -> T
where T: Float {
dot_vec(v, v).sqrt()
}
/// Calculate L2 norm.
#[inline]
pub fn norm<T>(q: Quaternion<T>) -> T
where T: Float + FloatSimd<T> {
dot(q, q).sqrt()
}
/// Normalization of vector3.
///
/// If you enter a zero vector, it returns a zero vector.
#[inline]
pub fn normalize_vec<T>(v: Vector3<T>) -> Vector3<T>
where T: Float {
let coef = norm_vec(v).recip();
if coef.is_infinite() {
ZERO_VECTOR()
} else {
scale_vec(coef, v)
}
}
/// Normalization of quaternion.
#[inline]
pub fn normalize<T>(q: Quaternion<T>) -> Quaternion<T>
where T: Float + FloatSimd<T> {
scale( norm(q).recip(), q )
}
/// Invert the sign of a vector.
///
/// return: `-v`
#[inline]
pub fn negate_vec<T>(v: Vector3<T>) -> Vector3<T>
where T: Float {
[ -v[0], -v[1], -v[2] ]
}
/// Invert the sign of a quaternion.
///
/// return: `-q`
#[inline]
pub fn negate<T>(q: Quaternion<T>) -> Quaternion<T>
where T: FloatSimd<T> {
T::negate(q)
}
/// Product of pure quaternions.
///
/// `ab ≡ -a・b + a×b` (!= ba)
#[inline]
pub fn mul_vec<T>(a: Vector3<T>, b: Vector3<T>) -> Quaternion<T>
where T: Float {
( -dot_vec(a, b), cross_vec(a, b) )
}
/// Hamilton product.
///
/// The product order is `ab (!= ba)`
#[inline]
pub fn mul<T>(a: Quaternion<T>, b: Quaternion<T>) -> Quaternion<T>
where T: Float + FloatSimd<T> {
let a0_b = scale(a.0, b);
(
a0_b.0 - dot_vec(a.1, b.1),
add_vec( scale_add_vec(b.0, a.1, a0_b.1), cross_vec(a.1, b.1) )
)
}
/// Compute the conjugate quaternion.
#[inline]
pub fn conj<T>(q: Quaternion<T>) -> Quaternion<T>
where T: Float {
( q.0, negate_vec(q.1) )
}
/// Compute the inverse pure quaternion.
#[inline]
pub fn inv_vec<T>(v: Vector3<T>) -> Vector3<T>
where T: Float {
scale_vec( dot_vec(v, v).recip(), negate_vec(v) )
}
/// Compute the inverse quaternion.
#[inline]
pub fn inv<T>(q: Quaternion<T>) -> Quaternion<T>
where T: Float + FloatSimd<T> {
scale( dot(q, q).recip(), conj(q) )
}
/// Exponential function of vector3.
#[inline]
pub fn exp_vec<T>(v: Vector3<T>) -> Quaternion<T>
where T: Float {
let norm_v = norm_vec(v);
let (sin, cos) = norm_v.sin_cos();
( cos, scale_vec(sin / norm_v, v) )
}
/// Exponential function of quaternion.
#[inline]
pub fn exp<T>(q: Quaternion<T>) -> Quaternion<T>
where T: Float {
let norm_q_v = norm_vec(q.1);
let (sin, cos) = norm_q_v.sin_cos();
let coef = q.0.exp();
( coef * cos, scale_vec((coef * sin) / norm_q_v, q.1) )
}
/// Natural logarithm of quaternion.
#[inline]
pub fn ln<T>(q: Quaternion<T>) -> Quaternion<T>
where T: Float {
let tmp = dot_vec(q.1, q.1);
let norm_q = (q.0*q.0 + tmp).sqrt();
let coef = (q.0 / norm_q).acos() / tmp.sqrt();
( norm_q.ln(), scale_vec(coef, q.1) )
}
/// Natural logarithm of versor.
///
/// If it is guaranteed to be a versor, it is less computationally
/// expensive than the `ln` function.
///
/// Only the vector part is returned since the real part is always zero.
#[inline]
pub fn ln_versor<T>(q: Quaternion<T>) -> Vector3<T>
where T: Float {
scale_vec( acos_safe(q.0) / norm_vec(q.1), q.1)
}
/// Power function of quaternion.
#[inline]
pub fn pow<T>(q: Quaternion<T>, t: T) -> Quaternion<T>
where T: Float {
let tmp = dot_vec(q.1, q.1);
let norm_q = (q.0*q.0 + tmp).sqrt();
let omega = (q.0 / norm_q).acos();
let (sin, cos) = (t * omega).sin_cos();
let coef = norm_q.powf(t);
( coef * cos, scale_vec((coef * sin) / tmp.sqrt(), q.1) )
}
/// Power function of versor.
///
/// If it is guaranteed to be a versor, it is less computationally
/// expensive than the `pow` function.
#[inline]
pub fn pow_versor<T>(q: Quaternion<T>, t: T) -> Quaternion<T>
where T: Float {
let (sin, cos) = (t * acos_safe(q.0)).sin_cos();
( cos, scale_vec(sin / norm_vec(q.1), q.1) )
}
/// Rotation of point (Point Rotation - Frame Fixed)
///
/// `q v q* (||q|| = 1)`
///
/// Since it is implemented with an optimized formula,
/// it can be calculated with the amount of operations shown in the table below:
///
/// | Operation | Num |
/// |:------------:|:---:|
/// | Multiply | 18 |
/// | Add/Subtract | 12 |
///
/// # Examples
///
/// ```
/// # use quaternion_core::{from_axis_angle, point_rotation, mul, conj};
/// # let pi = std::f64::consts::PI;
/// // Make these as you like.
/// let v = [1.0, 0.5, -8.0];
/// let q = from_axis_angle([0.2, 1.0, -2.0], pi);
///
/// let r = point_rotation(q, v);
///
/// // This makes a lot of wasted calculations.
/// let r_check = mul( mul(q, (0.0, v)), conj(q) ).1;
///
/// assert!( (r[0] - r_check[0]).abs() < 1e-12 );
/// assert!( (r[1] - r_check[1]).abs() < 1e-12 );
/// assert!( (r[2] - r_check[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn point_rotation<T>(q: Quaternion<T>, v: Vector3<T>) -> Vector3<T>
where T: Float {
let tmp = scale_add_vec(q.0, v, cross_vec(q.1, v));
scale_add_vec(cast(2.0), cross_vec(q.1, tmp), v)
}
/// Rotation of frame (Frame Rotation - Point Fixed)
///
/// `q* v q (||q|| = 1)`
///
/// Since it is implemented with an optimized formula,
/// it can be calculated with the amount of operations shown in the table below:
///
/// | Operation | Num |
/// |:------------:|:---:|
/// | Multiply | 18 |
/// | Add/Subtract | 12 |
///
/// # Examples
///
/// ```
/// # use quaternion_core::{from_axis_angle, point_rotation, mul, conj};
/// # let pi = std::f64::consts::PI;
/// // Make these as you like.
/// let v = [1.0, 0.5, -8.0];
/// let q = from_axis_angle([0.2, 1.0, -2.0], pi);
///
/// let r = point_rotation(q, v);
///
/// // This makes a lot of wasted calculations.
/// let r_check = mul( mul(conj(q), (0.0, v)), q ).1;
///
/// assert!( (r[0] - r_check[0]).abs() < 1e-12 );
/// assert!( (r[1] - r_check[1]).abs() < 1e-12 );
/// assert!( (r[2] - r_check[2]).abs() < 1e-12 );
/// ```
#[inline]
pub fn frame_rotation<T>(q: Quaternion<T>, v: Vector3<T>) -> Vector3<T>
where T: Float {
let tmp = scale_add_vec(q.0, v, cross_vec(v, q.1));
scale_add_vec(cast(2.0), cross_vec(tmp, q.1), v)
}
/// Calculate a versor to rotate from vector `a` to `b`.
///
/// If you enter a zero vector, it returns an identity quaternion.
///
/// # Examples
///
/// ```
/// # use quaternion_core::{Vector3, cross_vec, rotate_a_to_b, point_rotation};
///
/// let a: Vector3<f64> = [1.5, -0.5, 0.2];
/// let b: Vector3<f64> = [0.1, 0.6, 1.0];
///
/// let q = rotate_a_to_b(a, b);
/// let b_check = point_rotation(q, a);
///
/// let cross = cross_vec(b, b_check);
/// assert!( cross[0].abs() < 1e-12 );
/// assert!( cross[1].abs() < 1e-12 );
/// assert!( cross[2].abs() < 1e-12 );
/// ```
#[inline]
pub fn rotate_a_to_b<T>(a: Vector3<T>, b: Vector3<T>) -> Quaternion<T>
where T: Float {
let half: T = cast(0.5);
let t = dot_vec(a, b);
let s_square = dot_vec(a, a) * dot_vec(b, b);
let e_half = half * (t / s_square.sqrt());
let v = ((half - e_half) / (s_square - t * t)).sqrt();
// vがfiniteならeもfiniteである.
if v.is_finite() {
( (half + e_half).sqrt(), scale_vec(v, cross_vec(a, b)) )
} else {
IDENTITY()
}
}
/// Calculate a versor to rotate from vector `a` to `b`.
///
/// The parameter `t` adjusts the amount of movement from `a` to `b`,
/// so that When `t=1`, it moves to position `b` completely.
///
/// If you enter a zero vector, it returns an identity quaternion.
///
/// If `t=1` at all times, it is less computationally expensive to use `rotate_a_to_b` function.
#[inline]
pub fn rotate_a_to_b_param<T>(a: Vector3<T>, b: Vector3<T>, t: T) -> Quaternion<T>
where T: Float {
let dot_ab = dot_vec(a, b);
let norm_ab_square = dot_vec(a, a) * dot_vec(b, b);
let tmp_acos = dot_ab / norm_ab_square.sqrt();
if tmp_acos.is_infinite() {
IDENTITY()
} else {
let theta = acos_safe(tmp_acos);
let (sin, cos) = ( t * theta * cast(0.5) ).sin_cos();
let coef_v = sin / (norm_ab_square - dot_ab * dot_ab).sqrt();
if coef_v.is_finite() {
( cos, scale_vec(coef_v, cross_vec(a, b)) )
} else {
IDENTITY()
}
}
}
/// Lerp (Linear interpolation)
///
/// Generate a quaternion that interpolate the shortest path from `a` to `b`
/// (The norm of `a` and `b` must be 1).
/// The argument `t (0 <= t <= 1)` is the interpolation parameter.
///
/// Normalization is not performed internally because
/// it increases the computational complexity.
#[inline]
pub fn lerp<T>(a: Quaternion<T>, b: Quaternion<T>, t: T) -> Quaternion<T>
where T: Float + FloatSimd<T> {
debug_assert!(
t >= T::zero() && t <= T::one(),
"Parameter `t` must be in the range [0, 1]."
);
// 最短経路で補間する
if dot(a, b).is_sign_negative() {
// bの符号を反転
if cfg!(feature = "fma") {
scale_add(-t, add(a, b), a)
} else {
sub( a, scale(t, add(a, b)) )
}
} else {
scale_add( t, sub(b, a), a)
}
}
/// Slerp (Spherical linear interpolation)
///
/// Generate a quaternion that interpolate the shortest path from `a` to `b`.
/// The argument `t(0 <= t <= 1)` is the interpolation parameter.
///
/// The norm of `a` and `b` must be 1 (Versor).
#[inline]
pub fn slerp<T>(a: Quaternion<T>, mut b: Quaternion<T>, t: T) -> Quaternion<T>
where T: Float + FloatSimd<T> {
debug_assert!(
t >= T::zero() && t <= T::one(),
"Parameter `t` must be in the range [0, 1]."
);
// 最短経路で補間する
let mut dot = dot(a, b);
if dot.is_sign_negative() {
b = negate(b);
dot = -dot;
}
// If the distance between quaternions is close enough, use lerp.
if dot > cast(0.9995) { // Approximation error < 0.017%
normalize( scale_add(t, sub(b, a), a) ) // lerp
} else {
let omega = dot.acos(); // Angle between the two quaternions.
let tmp = t * omega;
let s1 = (omega - tmp).sin();
let s2 = tmp.sin();
let coef = (T::one() - dot*dot).sqrt().recip();
let term1 = scale(s1 * coef, a);
let term2 = scale(s2 * coef, b);
add(term1, term2)
}
}
// ============================================================================= //
// Private functions
// ============================================================================= //
/// Identity quaternion
#[inline(always)]
#[allow(non_snake_case)]
fn IDENTITY<T: Float>() -> Quaternion<T> {
(T::one(), [T::zero(); 3])
}
#[inline(always)]
#[allow(non_snake_case)]
fn ZERO_VECTOR<T: Float>() -> Vector3<T> {
[T::zero(); 3]
}
/// 定数呼び出し以外に使わないのでエラー処理を省略.
#[inline(always)]
fn cast<T: Float>(x: f64) -> T {
num_traits::cast::<f64, T>(x).unwrap()
}
/// `fma` featureを有効にした場合は`s.mul_add(a, b)`として展開され,
/// 有効にしなかった場合は単純な積和`s*a + b`に展開してコンパイルされる.
#[inline(always)]
fn mul_add<T: Float>(s: T, a: T, b: T) -> T {
if cfg!(feature = "fma") {
s.mul_add(a, b)
} else {
s * a + b
}
}
/// 配列内の最大値とそのインデックスを返す.
#[inline(always)]
fn max4<T: Float>(nums: [T; 4]) -> (usize, T) {
let mut index = 0;
let mut max_num = nums[0];
for (i, num) in nums.iter().enumerate().skip(1) {
if *num > max_num {
max_num = *num;
index = i;
}
}
(index, max_num)
}
/// 定義域外の値をカットして未定義動作を防ぐ.
#[inline(always)]
fn acos_safe<T: Float>(x: T) -> T {
// たまにacosが抜けると計算時間を把握しにくくなるから,この実装とする.
( x.abs().min( T::one() ) * x.signum() ).acos()
}