1#![allow(dead_code)]
8
9use scirs2_core::ndarray::{Array2, Array3};
10use scirs2_core::random::prelude::*;
11use scirs2_core::random::prelude::*;
12use scirs2_core::Complex64;
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16pub struct TopologicalOptimizer {
18 n_anyons: usize,
20 anyon_type: AnyonType,
22 braid_depth: usize,
24 temperature: f64,
26 use_error_correction: bool,
28 fusion_rules: FusionRules,
30}
31
32#[derive(Debug, Clone)]
33pub enum AnyonType {
34 Abelian { phase: f64 },
36 Fibonacci,
38 Ising,
40 SU2 { level: usize },
42 Custom { name: String, dimension: usize },
44}
45
46#[derive(Debug, Clone)]
47pub struct FusionRules {
48 fusion_tensor: Array3<f64>,
50 r_matrix: Array2<Complex64>,
52 quantum_dimensions: Vec<f64>,
54}
55
56impl TopologicalOptimizer {
57 pub fn new(n_anyons: usize, anyon_type: AnyonType) -> Self {
59 let fusion_rules = match &anyon_type {
60 AnyonType::Fibonacci => FusionRules::fibonacci_rules(),
61 AnyonType::Ising => FusionRules::ising_rules(),
62 _ => FusionRules::default_rules(),
63 };
64
65 Self {
66 n_anyons,
67 anyon_type,
68 braid_depth: 10,
69 temperature: 0.1,
70 use_error_correction: true,
71 fusion_rules,
72 }
73 }
74
75 pub const fn with_braid_depth(mut self, depth: usize) -> Self {
77 self.braid_depth = depth;
78 self
79 }
80
81 pub const fn with_temperature(mut self, temp: f64) -> Self {
83 self.temperature = temp;
84 self
85 }
86
87 pub fn optimize(
89 &self,
90 cost_function: &dyn Fn(&[bool]) -> f64,
91 ) -> Result<TopologicalResult, String> {
92 let mut best_state = vec![false; self.n_anyons];
93 let mut best_cost = f64::INFINITY;
94 let mut braid_history = Vec::new();
95
96 let mut anyon_state = self.initialize_anyons()?;
98
99 for iteration in 0..self.braid_depth {
101 let braid_sequence = self.generate_braid_sequence(iteration);
103
104 anyon_state = self.apply_braiding(&anyon_state, &braid_sequence)?;
106
107 let measured_state = self.measure_anyons(&anyon_state)?;
109 let cost = cost_function(&measured_state);
110
111 if cost < best_cost {
112 best_cost = cost;
113 best_state = measured_state.clone();
114 }
115
116 braid_history.push(BraidStep {
117 sequence: braid_sequence,
118 cost,
119 state: measured_state,
120 });
121
122 if self.use_error_correction {
124 anyon_state = self.error_correct_anyons(anyon_state)?;
125 }
126 }
127
128 Ok(TopologicalResult {
129 best_state,
130 best_cost,
131 braid_history,
132 topological_invariant: self.compute_topological_invariant(&anyon_state),
133 })
134 }
135
136 fn initialize_anyons(&self) -> Result<AnyonState, String> {
138 match &self.anyon_type {
139 AnyonType::Fibonacci => Ok(AnyonState::Fibonacci(FibonacciState::new(self.n_anyons))),
140 AnyonType::Ising => Ok(AnyonState::Ising(IsingAnyonState::new(self.n_anyons))),
141 _ => Ok(AnyonState::Generic(GenericAnyonState::new(self.n_anyons))),
142 }
143 }
144
145 fn generate_braid_sequence(&self, iteration: usize) -> Vec<BraidOperation> {
147 let mut rng = thread_rng();
148 let mut sequence = Vec::new();
149
150 for i in 0..self.n_anyons - 1 {
152 if (iteration + i) % 3 == 0 {
153 sequence.push(BraidOperation::Exchange(i, i + 1));
154 }
155 }
156
157 for _ in 0..3 {
159 let i = rng.gen_range(0..self.n_anyons - 1);
160 sequence.push(BraidOperation::Exchange(i, i + 1));
161 }
162
163 if self.n_anyons > 2 && rng.gen_bool(0.3) {
165 let i = rng.gen_range(0..self.n_anyons - 1);
166 sequence.push(BraidOperation::Fusion(i, i + 1));
167 }
168
169 sequence
170 }
171
172 fn apply_braiding(
174 &self,
175 state: &AnyonState,
176 sequence: &[BraidOperation],
177 ) -> Result<AnyonState, String> {
178 let mut current_state = state.clone();
179
180 for operation in sequence {
181 current_state = match operation {
182 BraidOperation::Exchange(i, j) => self.apply_exchange(¤t_state, *i, *j)?,
183 BraidOperation::Fusion(i, j) => self.apply_fusion(¤t_state, *i, *j)?,
184 BraidOperation::Creation(i) => self.apply_creation(¤t_state, *i)?,
185 };
186 }
187
188 Ok(current_state)
189 }
190
191 fn apply_exchange(&self, state: &AnyonState, i: usize, j: usize) -> Result<AnyonState, String> {
193 match state {
194 AnyonState::Fibonacci(fib_state) => Ok(AnyonState::Fibonacci(fib_state.braid(i, j)?)),
195 AnyonState::Ising(ising_state) => Ok(AnyonState::Ising(ising_state.braid(i, j)?)),
196 AnyonState::Generic(gen_state) => Ok(AnyonState::Generic(gen_state.braid(
197 i,
198 j,
199 &self.fusion_rules,
200 )?)),
201 }
202 }
203
204 fn apply_fusion(&self, state: &AnyonState, _i: usize, _j: usize) -> Result<AnyonState, String> {
206 Ok(state.clone())
208 }
209
210 fn apply_creation(&self, state: &AnyonState, _i: usize) -> Result<AnyonState, String> {
212 Ok(state.clone())
214 }
215
216 fn measure_anyons(&self, state: &AnyonState) -> Result<Vec<bool>, String> {
218 match state {
219 AnyonState::Fibonacci(fib_state) => fib_state.measure(),
220 AnyonState::Ising(ising_state) => ising_state.measure(),
221 AnyonState::Generic(gen_state) => gen_state.measure(),
222 }
223 }
224
225 fn error_correct_anyons(&self, state: AnyonState) -> Result<AnyonState, String> {
227 match state {
229 AnyonState::Ising(ising_state) => {
230 Ok(AnyonState::Ising(ising_state.parity_correct()?))
232 }
233 _ => Ok(state), }
235 }
236
237 const fn compute_topological_invariant(&self, state: &AnyonState) -> f64 {
239 match state {
240 AnyonState::Fibonacci(_) => 1.618, AnyonState::Ising(_) => 1.414, AnyonState::Generic(_) => 1.0,
243 }
244 }
245}
246
247#[derive(Debug, Clone)]
249pub enum AnyonState {
250 Fibonacci(FibonacciState),
251 Ising(IsingAnyonState),
252 Generic(GenericAnyonState),
253}
254
255#[derive(Debug, Clone)]
257pub struct FibonacciState {
258 n: usize,
260 amplitudes: Vec<Complex64>,
262 basis_labels: Vec<Vec<usize>>,
264}
265
266impl FibonacciState {
267 fn new(n: usize) -> Self {
268 let num_basis_states = fibonacci(n + 1);
270 let amplitudes =
271 vec![Complex64::new(1.0 / (num_basis_states as f64).sqrt(), 0.0); num_basis_states];
272 let basis_labels = Self::generate_fusion_basis(n);
273
274 Self {
275 n,
276 amplitudes,
277 basis_labels,
278 }
279 }
280
281 fn generate_fusion_basis(n: usize) -> Vec<Vec<usize>> {
282 let mut basis = Vec::new();
284
285 for i in 0..(1 << n) {
287 let config: Vec<usize> = (0..n).map(|j| usize::from(i & (1 << j) != 0)).collect();
288 basis.push(config);
289 }
290
291 basis
292 }
293
294 fn braid(&self, i: usize, j: usize) -> Result<Self, String> {
295 let mut new_state = self.clone();
296
297 let theta = 2.0 * PI / 5.0; let r_matrix = Complex64::new(theta.cos(), theta.sin());
300
301 for (idx, amplitude) in new_state.amplitudes.iter_mut().enumerate() {
302 if self.basis_labels[idx][i] != self.basis_labels[idx][j] {
303 *amplitude *= r_matrix;
304 }
305 }
306
307 Ok(new_state)
308 }
309
310 fn measure(&self) -> Result<Vec<bool>, String> {
311 let mut rng = thread_rng();
312
313 let probabilities: Vec<f64> = self.amplitudes.iter().map(|a| a.norm_sqr()).collect();
315
316 let total_prob: f64 = probabilities.iter().sum();
317 let normalized: Vec<f64> = probabilities.iter().map(|p| p / total_prob).collect();
318
319 let mut cumsum = 0.0;
321 let r = rng.gen::<f64>();
322
323 for (idx, &prob) in normalized.iter().enumerate() {
324 cumsum += prob;
325 if r < cumsum {
326 return Ok(self.basis_labels[idx].iter().map(|&x| x != 0).collect());
327 }
328 }
329
330 Ok(vec![false; self.n])
331 }
332}
333
334#[derive(Debug, Clone)]
336pub struct IsingAnyonState {
337 n: usize,
339 majorana_matrix: Array2<f64>,
341 parity_sectors: Vec<bool>,
343}
344
345impl IsingAnyonState {
346 fn new(n: usize) -> Self {
347 let mut majorana_matrix = Array2::zeros((n, n));
348
349 let mut rng = thread_rng();
351 for i in 0..n {
352 for j in i + 1..n {
353 let coupling = rng.gen_range(-1.0..1.0);
354 majorana_matrix[[i, j]] = coupling;
355 majorana_matrix[[j, i]] = -coupling;
356 }
357 }
358
359 Self {
360 n,
361 majorana_matrix,
362 parity_sectors: vec![false; n / 2],
363 }
364 }
365
366 fn braid(&self, i: usize, j: usize) -> Result<Self, String> {
367 let mut new_state = self.clone();
368
369 let _phase = Complex64::new(0.0, PI / 4.0).exp();
371
372 for k in 0..self.n {
374 if k != i && k != j {
375 let temp = new_state.majorana_matrix[[i, k]];
376 new_state.majorana_matrix[[i, k]] = new_state.majorana_matrix[[j, k]];
377 new_state.majorana_matrix[[j, k]] = -temp;
378
379 new_state.majorana_matrix[[k, i]] = -new_state.majorana_matrix[[i, k]];
380 new_state.majorana_matrix[[k, j]] = -new_state.majorana_matrix[[j, k]];
381 }
382 }
383
384 Ok(new_state)
385 }
386
387 fn measure(&self) -> Result<Vec<bool>, String> {
388 let mut result = Vec::new();
390
391 for i in 0..self.n / 2 {
392 result.push(self.parity_sectors[i]);
393 }
394
395 while result.len() < self.n {
397 result.push(false);
398 }
399
400 Ok(result)
401 }
402
403 fn parity_correct(&self) -> Result<Self, String> {
404 let mut corrected = self.clone();
405
406 let total_parity = self.parity_sectors.iter().filter(|&&p| p).count() % 2;
408
409 if total_parity != 0 {
410 let mut rng = thread_rng();
412 let idx = rng.gen_range(0..self.parity_sectors.len());
413 corrected.parity_sectors[idx] = !corrected.parity_sectors[idx];
414 }
415
416 Ok(corrected)
417 }
418}
419
420#[derive(Debug, Clone)]
422pub struct GenericAnyonState {
423 n: usize,
424 state_vector: Vec<Complex64>,
425}
426
427impl GenericAnyonState {
428 fn new(n: usize) -> Self {
429 let dim = 1 << n;
430 let state_vector = vec![Complex64::new(1.0 / (dim as f64).sqrt(), 0.0); dim];
431
432 Self { n, state_vector }
433 }
434
435 fn braid(&self, i: usize, j: usize, rules: &FusionRules) -> Result<Self, String> {
436 let mut new_state = self.clone();
437
438 let r_element = rules.r_matrix[[i.min(j), i.max(j)]];
440
441 for amplitude in &mut new_state.state_vector {
442 *amplitude *= r_element;
443 }
444
445 Ok(new_state)
446 }
447
448 fn measure(&self) -> Result<Vec<bool>, String> {
449 let mut rng = StdRng::seed_from_u64(42);
450 let probabilities: Vec<f64> = self.state_vector.iter().map(|a| a.norm_sqr()).collect();
451
452 let idx = weighted_sample(&probabilities, &mut rng);
453
454 Ok((0..self.n).map(|i| idx & (1 << i) != 0).collect())
455 }
456}
457
458impl FusionRules {
459 fn fibonacci_rules() -> Self {
460 let mut fusion_tensor = Array3::zeros((2, 2, 2));
462 fusion_tensor[[0, 0, 0]] = 1.0; fusion_tensor[[0, 1, 1]] = 1.0; fusion_tensor[[1, 0, 1]] = 1.0; fusion_tensor[[1, 1, 0]] = 1.0; fusion_tensor[[1, 1, 1]] = 1.0; let phi = f64::midpoint(1.0, 5.0_f64.sqrt()); let r_matrix = Array2::from_shape_fn((2, 2), |(i, j)| {
470 if i == 0 && j == 0 {
471 Complex64::new(1.0, 0.0)
472 } else if i == 1 && j == 1 {
473 Complex64::new((-1.0 / phi).cos(), (-1.0 / phi).sin())
474 } else {
475 Complex64::new(0.0, 0.0)
476 }
477 });
478
479 Self {
480 fusion_tensor,
481 r_matrix,
482 quantum_dimensions: vec![1.0, phi],
483 }
484 }
485
486 fn ising_rules() -> Self {
487 let mut fusion_tensor = Array3::zeros((3, 3, 3));
489 fusion_tensor[[0, 0, 0]] = 1.0; fusion_tensor[[0, 1, 1]] = 1.0; fusion_tensor[[0, 2, 2]] = 1.0; fusion_tensor[[1, 0, 1]] = 1.0; fusion_tensor[[1, 1, 0]] = 1.0; fusion_tensor[[1, 1, 2]] = 1.0; fusion_tensor[[2, 0, 2]] = 1.0; fusion_tensor[[2, 1, 1]] = 1.0; fusion_tensor[[2, 2, 0]] = 1.0; let sqrt2 = 2.0_f64.sqrt();
500 let r_matrix = Array2::from_shape_fn((3, 3), |(i, j)| match (i, j) {
501 (0, 0) => Complex64::new(1.0, 0.0),
502 (1, 1) => Complex64::new(0.0, 1.0) / sqrt2,
503 (2, 2) => Complex64::new(-1.0, 0.0),
504 _ => Complex64::new(0.0, 0.0),
505 });
506
507 Self {
508 fusion_tensor,
509 r_matrix,
510 quantum_dimensions: vec![1.0, sqrt2, 1.0],
511 }
512 }
513
514 fn default_rules() -> Self {
515 let mut fusion_tensor = Array3::zeros((2, 2, 2));
517 fusion_tensor[[0, 0, 0]] = 1.0; fusion_tensor[[1, 1, 0]] = 1.0; let r_matrix = Array2::<f64>::eye(2).mapv(Complex64::from);
521
522 Self {
523 fusion_tensor,
524 r_matrix,
525 quantum_dimensions: vec![1.0; 2],
526 }
527 }
528}
529
530#[derive(Debug, Clone)]
531pub enum BraidOperation {
532 Exchange(usize, usize),
533 Fusion(usize, usize),
534 Creation(usize),
535}
536
537#[derive(Debug, Clone)]
538pub struct BraidStep {
539 sequence: Vec<BraidOperation>,
540 cost: f64,
541 state: Vec<bool>,
542}
543
544#[derive(Debug, Clone)]
545pub struct TopologicalResult {
546 pub best_state: Vec<bool>,
547 pub best_cost: f64,
548 pub braid_history: Vec<BraidStep>,
549 pub topological_invariant: f64,
550}
551
552pub struct PersistentHomology {
554 max_dimension: usize,
556 filtration: FiltrationType,
558 resolution: f64,
560}
561
562#[derive(Debug, Clone)]
563pub enum FiltrationType {
564 Sublevel,
566 VietorisRips,
568 AlphaComplex,
570 Cubical,
572}
573
574impl PersistentHomology {
575 pub const fn new(max_dimension: usize) -> Self {
577 Self {
578 max_dimension,
579 filtration: FiltrationType::Sublevel,
580 resolution: 0.01,
581 }
582 }
583
584 pub const fn with_filtration(mut self, filtration: FiltrationType) -> Self {
586 self.filtration = filtration;
587 self
588 }
589
590 pub fn analyze_landscape(
592 &self,
593 samples: &[(Vec<bool>, f64)],
594 ) -> Result<HomologyResult, String> {
595 let filtration = self.build_filtration(samples)?;
597
598 let persistence_pairs = self.compute_persistence(&filtration)?;
600
601 let features = self.extract_topological_features(&persistence_pairs);
603
604 let betti_numbers = self.compute_betti_numbers(&persistence_pairs);
605 let optimal_regions = self.identify_optimal_regions(&persistence_pairs, samples);
606
607 Ok(HomologyResult {
608 persistence_pairs,
609 betti_numbers,
610 features,
611 optimal_regions,
612 })
613 }
614
615 fn build_filtration(&self, samples: &[(Vec<bool>, f64)]) -> Result<Filtration, String> {
617 match self.filtration {
618 FiltrationType::Sublevel => self.build_sublevel_filtration(samples),
619 FiltrationType::VietorisRips => self.build_vietoris_rips(samples),
620 _ => Err("Filtration type not implemented".to_string()),
621 }
622 }
623
624 fn build_sublevel_filtration(
626 &self,
627 samples: &[(Vec<bool>, f64)],
628 ) -> Result<Filtration, String> {
629 let mut simplices = Vec::new();
630
631 let mut sorted_samples = samples.to_vec();
633 sorted_samples.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
634
635 for (idx, (_, cost)) in sorted_samples.iter().enumerate() {
637 simplices.push(Simplex {
638 vertices: vec![idx],
639 filtration_value: *cost,
640 dimension: 0,
641 });
642 }
643
644 for i in 0..sorted_samples.len() {
646 for j in i + 1..sorted_samples.len() {
647 let dist = hamming_distance(&sorted_samples[i].0, &sorted_samples[j].0);
648 if dist == 1 {
649 simplices.push(Simplex {
650 vertices: vec![i, j],
651 filtration_value: sorted_samples[j].1.max(sorted_samples[i].1),
652 dimension: 1,
653 });
654 }
655 }
656 }
657
658 Ok(Filtration { simplices })
659 }
660
661 fn build_vietoris_rips(&self, samples: &[(Vec<bool>, f64)]) -> Result<Filtration, String> {
663 let mut simplices = Vec::new();
664 let n = samples.len();
665
666 let mut distances = Array2::zeros((n, n));
668 for i in 0..n {
669 for j in i + 1..n {
670 let dist = hamming_distance(&samples[i].0, &samples[j].0) as f64;
671 distances[[i, j]] = dist;
672 distances[[j, i]] = dist;
673 }
674 }
675
676 for i in 0..n {
678 simplices.push(Simplex {
679 vertices: vec![i],
680 filtration_value: 0.0,
681 dimension: 0,
682 });
683 }
684
685 for dim in 1..=self.max_dimension {
687 self.add_simplices_of_dimension(&mut simplices, &distances, dim);
688 }
689
690 Ok(Filtration { simplices })
691 }
692
693 fn add_simplices_of_dimension(
695 &self,
696 simplices: &mut Vec<Simplex>,
697 distances: &Array2<f64>,
698 dim: usize,
699 ) {
700 let n = distances.shape()[0];
703
704 if dim == 1 {
705 for i in 0..n {
707 for j in i + 1..n {
708 simplices.push(Simplex {
709 vertices: vec![i, j],
710 filtration_value: distances[[i, j]],
711 dimension: 1,
712 });
713 }
714 }
715 }
716 }
717
718 fn compute_persistence(&self, filtration: &Filtration) -> Result<Vec<PersistencePair>, String> {
720 let mut pairs = Vec::new();
722
723 let mut by_dimension: HashMap<usize, Vec<&Simplex>> = HashMap::new();
725 for simplex in &filtration.simplices {
726 by_dimension
727 .entry(simplex.dimension)
728 .or_default()
729 .push(simplex);
730 }
731
732 for dim in 0..=self.max_dimension {
734 if let Some(simplices) = by_dimension.get(&dim) {
735 for (i, simplex) in simplices.iter().enumerate() {
737 if i % 2 == 0 && i + 1 < simplices.len() {
738 pairs.push(PersistencePair {
739 dimension: dim,
740 birth: simplex.filtration_value,
741 death: simplices[i + 1].filtration_value,
742 });
743 }
744 }
745 }
746 }
747
748 Ok(pairs)
749 }
750
751 fn extract_topological_features(&self, pairs: &[PersistencePair]) -> TopologicalFeatures {
753 let mut features = TopologicalFeatures {
754 total_persistence: 0.0,
755 max_persistence: vec![0.0; self.max_dimension + 1],
756 persistence_entropy: 0.0,
757 landscape: Vec::new(),
758 };
759
760 for pair in pairs {
762 let persistence = pair.death - pair.birth;
763 features.total_persistence += persistence;
764 features.max_persistence[pair.dimension] =
765 features.max_persistence[pair.dimension].max(persistence);
766 }
767
768 if !pairs.is_empty() {
770 let total = features.total_persistence;
771 features.persistence_entropy = pairs
772 .iter()
773 .map(|p| {
774 let persistence = p.death - p.birth;
775 let prob = persistence / total;
776 if prob > 0.0 {
777 -prob * prob.ln()
778 } else {
779 0.0
780 }
781 })
782 .sum();
783 }
784
785 features.landscape = self.compute_persistence_landscape(pairs);
787
788 features
789 }
790
791 fn compute_persistence_landscape(&self, pairs: &[PersistencePair]) -> Vec<Vec<f64>> {
793 let resolution = 100;
795 let mut landscape = vec![vec![0.0; resolution]; self.max_dimension + 1];
796
797 for pair in pairs {
798 let start = (pair.birth * resolution as f64) as usize;
799 let end = (pair.death * resolution as f64) as usize;
800
801 for i in start..end.min(resolution) {
802 landscape[pair.dimension][i] = f64::max(
803 landscape[pair.dimension][i],
804 1.0 - (i as f64 / resolution as f64 - pair.birth).abs(),
805 );
806 }
807 }
808
809 landscape
810 }
811
812 fn compute_betti_numbers(&self, pairs: &[PersistencePair]) -> Vec<usize> {
814 let mut betti = vec![0; self.max_dimension + 1];
815
816 for pair in pairs {
817 if pair.death - pair.birth > self.resolution {
818 betti[pair.dimension] += 1;
819 }
820 }
821
822 betti
823 }
824
825 fn identify_optimal_regions(
827 &self,
828 pairs: &[PersistencePair],
829 samples: &[(Vec<bool>, f64)],
830 ) -> Vec<OptimalRegion> {
831 let mut regions = Vec::new();
832
833 let persistent_components: Vec<_> = pairs
835 .iter()
836 .filter(|p| p.dimension == 0 && p.death - p.birth > self.resolution)
837 .collect();
838
839 for component in persistent_components {
840 let component_samples: Vec<_> = samples
842 .iter()
843 .filter(|(_, cost)| *cost >= component.birth && *cost < component.death)
844 .collect();
845
846 if !component_samples.is_empty() {
847 let min_cost = component_samples
848 .iter()
849 .map(|(_, cost)| *cost)
850 .fold(f64::INFINITY, f64::min);
851
852 regions.push(OptimalRegion {
853 persistence: component.death - component.birth,
854 min_cost,
855 size: component_samples.len(),
856 representative: component_samples[0].0.clone(),
857 });
858 }
859 }
860
861 regions.sort_by(|a, b| {
862 a.min_cost
863 .partial_cmp(&b.min_cost)
864 .unwrap_or(std::cmp::Ordering::Equal)
865 });
866 regions
867 }
868}
869
870#[derive(Debug, Clone)]
871struct Filtration {
872 simplices: Vec<Simplex>,
873}
874
875#[derive(Debug, Clone)]
876struct Simplex {
877 vertices: Vec<usize>,
878 filtration_value: f64,
879 dimension: usize,
880}
881
882#[derive(Debug, Clone)]
883pub struct PersistencePair {
884 dimension: usize,
885 birth: f64,
886 death: f64,
887}
888
889#[derive(Debug, Clone)]
890pub struct TopologicalFeatures {
891 pub total_persistence: f64,
892 pub max_persistence: Vec<f64>,
893 pub persistence_entropy: f64,
894 pub landscape: Vec<Vec<f64>>,
895}
896
897#[derive(Debug, Clone)]
898pub struct OptimalRegion {
899 pub persistence: f64,
900 pub min_cost: f64,
901 pub size: usize,
902 pub representative: Vec<bool>,
903}
904
905#[derive(Debug, Clone)]
906pub struct HomologyResult {
907 pub persistence_pairs: Vec<PersistencePair>,
908 pub betti_numbers: Vec<usize>,
909 pub features: TopologicalFeatures,
910 pub optimal_regions: Vec<OptimalRegion>,
911}
912
913fn fibonacci(n: usize) -> usize {
915 if n <= 1 {
916 n
917 } else {
918 fibonacci(n - 1) + fibonacci(n - 2)
919 }
920}
921
922fn hamming_distance(a: &[bool], b: &[bool]) -> usize {
923 a.iter().zip(b.iter()).filter(|(&x, &y)| x != y).count()
924}
925
926fn weighted_sample(weights: &[f64], rng: &mut StdRng) -> usize {
927 let total: f64 = weights.iter().sum();
928 let mut cumsum = 0.0;
929 let r = rng.gen::<f64>() * total;
930
931 for (idx, &weight) in weights.iter().enumerate() {
932 cumsum += weight;
933 if r < cumsum {
934 return idx;
935 }
936 }
937
938 weights.len() - 1
939}
940
941#[cfg(test)]
942mod tests {
943 use super::*;
944
945 #[test]
946 fn test_topological_optimizer() {
947 let optimizer = TopologicalOptimizer::new(4, AnyonType::Fibonacci);
948
949 let cost_fn = |state: &[bool]| state.iter().filter(|&&x| x).count() as f64;
950
951 let mut result = optimizer.optimize(&cost_fn);
952 assert!(result.is_ok());
953 }
954
955 #[test]
956 fn test_fibonacci_state() {
957 let mut state = FibonacciState::new(3);
958 assert_eq!(state.n, 3);
959
960 let braided = state.braid(0, 1);
961 assert!(braided.is_ok());
962 }
963
964 #[test]
965 fn test_persistent_homology() {
966 let ph = PersistentHomology::new(2);
967
968 let mut samples = vec![
969 (vec![false, false], 0.0),
970 (vec![true, false], 1.0),
971 (vec![false, true], 1.0),
972 (vec![true, true], 2.0),
973 ];
974
975 let mut result = ph.analyze_landscape(&samples);
976 assert!(result.is_ok());
977
978 let homology = result.expect("Homology analysis should succeed");
979 assert!(!homology.persistence_pairs.is_empty());
980 }
981}