quantrs2_tytan/
topological_optimization.rs

1//! Topological optimization for quantum computing.
2//!
3//! This module provides topological approaches to optimization including
4//! topological quantum computing concepts, anyonic computation, and
5//! topological data analysis for optimization.
6
7#![allow(dead_code)]
8
9use scirs2_core::ndarray::{Array2, Array3};
10use scirs2_core::random::prelude::*;
11use scirs2_core::random::prelude::*;
12use scirs2_core::Complex64;
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16/// Topological Quantum Optimizer using anyonic braiding
17pub struct TopologicalOptimizer {
18    /// Number of anyons
19    n_anyons: usize,
20    /// Anyon type
21    anyon_type: AnyonType,
22    /// Braiding sequence depth
23    braid_depth: usize,
24    /// Temperature for thermal anyons
25    temperature: f64,
26    /// Use error correction
27    use_error_correction: bool,
28    /// Fusion rules
29    fusion_rules: FusionRules,
30}
31
32#[derive(Debug, Clone)]
33pub enum AnyonType {
34    /// Abelian anyons (simple phase)
35    Abelian { phase: f64 },
36    /// Fibonacci anyons (universal for quantum computation)
37    Fibonacci,
38    /// Ising anyons (Majorana zero modes)
39    Ising,
40    /// SU(2)_k anyons
41    SU2 { level: usize },
42    /// Custom non-abelian anyons
43    Custom { name: String, dimension: usize },
44}
45
46#[derive(Debug, Clone)]
47pub struct FusionRules {
48    /// Fusion tensor F^k_{ij}
49    fusion_tensor: Array3<f64>,
50    /// R-matrix for braiding
51    r_matrix: Array2<Complex64>,
52    /// Quantum dimensions
53    quantum_dimensions: Vec<f64>,
54}
55
56impl TopologicalOptimizer {
57    /// Create new topological optimizer
58    pub fn new(n_anyons: usize, anyon_type: AnyonType) -> Self {
59        let fusion_rules = match &anyon_type {
60            AnyonType::Fibonacci => FusionRules::fibonacci_rules(),
61            AnyonType::Ising => FusionRules::ising_rules(),
62            _ => FusionRules::default_rules(),
63        };
64
65        Self {
66            n_anyons,
67            anyon_type,
68            braid_depth: 10,
69            temperature: 0.1,
70            use_error_correction: true,
71            fusion_rules,
72        }
73    }
74
75    /// Set braiding depth
76    pub const fn with_braid_depth(mut self, depth: usize) -> Self {
77        self.braid_depth = depth;
78        self
79    }
80
81    /// Set temperature
82    pub const fn with_temperature(mut self, temp: f64) -> Self {
83        self.temperature = temp;
84        self
85    }
86
87    /// Optimize using topological braiding
88    pub fn optimize(
89        &self,
90        cost_function: &dyn Fn(&[bool]) -> f64,
91    ) -> Result<TopologicalResult, String> {
92        let mut best_state = vec![false; self.n_anyons];
93        let mut best_cost = f64::INFINITY;
94        let mut braid_history = Vec::new();
95
96        // Initialize anyonic state
97        let mut anyon_state = self.initialize_anyons()?;
98
99        // Perform braiding optimization
100        for iteration in 0..self.braid_depth {
101            // Generate braiding sequence
102            let braid_sequence = self.generate_braid_sequence(iteration);
103
104            // Apply braiding
105            anyon_state = self.apply_braiding(&anyon_state, &braid_sequence)?;
106
107            // Measure and evaluate
108            let measured_state = self.measure_anyons(&anyon_state)?;
109            let cost = cost_function(&measured_state);
110
111            if cost < best_cost {
112                best_cost = cost;
113                best_state = measured_state.clone();
114            }
115
116            braid_history.push(BraidStep {
117                sequence: braid_sequence,
118                cost,
119                state: measured_state,
120            });
121
122            // Apply error correction if enabled
123            if self.use_error_correction {
124                anyon_state = self.error_correct_anyons(anyon_state)?;
125            }
126        }
127
128        Ok(TopologicalResult {
129            best_state,
130            best_cost,
131            braid_history,
132            topological_invariant: self.compute_topological_invariant(&anyon_state),
133        })
134    }
135
136    /// Initialize anyonic state
137    fn initialize_anyons(&self) -> Result<AnyonState, String> {
138        match &self.anyon_type {
139            AnyonType::Fibonacci => Ok(AnyonState::Fibonacci(FibonacciState::new(self.n_anyons))),
140            AnyonType::Ising => Ok(AnyonState::Ising(IsingAnyonState::new(self.n_anyons))),
141            _ => Ok(AnyonState::Generic(GenericAnyonState::new(self.n_anyons))),
142        }
143    }
144
145    /// Generate braiding sequence
146    fn generate_braid_sequence(&self, iteration: usize) -> Vec<BraidOperation> {
147        let mut rng = thread_rng();
148        let mut sequence = Vec::new();
149
150        // Deterministic part based on iteration
151        for i in 0..self.n_anyons - 1 {
152            if (iteration + i) % 3 == 0 {
153                sequence.push(BraidOperation::Exchange(i, i + 1));
154            }
155        }
156
157        // Random exploration
158        for _ in 0..3 {
159            let i = rng.gen_range(0..self.n_anyons - 1);
160            sequence.push(BraidOperation::Exchange(i, i + 1));
161        }
162
163        // Fusion operations
164        if self.n_anyons > 2 && rng.gen_bool(0.3) {
165            let i = rng.gen_range(0..self.n_anyons - 1);
166            sequence.push(BraidOperation::Fusion(i, i + 1));
167        }
168
169        sequence
170    }
171
172    /// Apply braiding operations
173    fn apply_braiding(
174        &self,
175        state: &AnyonState,
176        sequence: &[BraidOperation],
177    ) -> Result<AnyonState, String> {
178        let mut current_state = state.clone();
179
180        for operation in sequence {
181            current_state = match operation {
182                BraidOperation::Exchange(i, j) => self.apply_exchange(&current_state, *i, *j)?,
183                BraidOperation::Fusion(i, j) => self.apply_fusion(&current_state, *i, *j)?,
184                BraidOperation::Creation(i) => self.apply_creation(&current_state, *i)?,
185            };
186        }
187
188        Ok(current_state)
189    }
190
191    /// Apply exchange (braiding) operation
192    fn apply_exchange(&self, state: &AnyonState, i: usize, j: usize) -> Result<AnyonState, String> {
193        match state {
194            AnyonState::Fibonacci(fib_state) => Ok(AnyonState::Fibonacci(fib_state.braid(i, j)?)),
195            AnyonState::Ising(ising_state) => Ok(AnyonState::Ising(ising_state.braid(i, j)?)),
196            AnyonState::Generic(gen_state) => Ok(AnyonState::Generic(gen_state.braid(
197                i,
198                j,
199                &self.fusion_rules,
200            )?)),
201        }
202    }
203
204    /// Apply fusion operation
205    fn apply_fusion(&self, state: &AnyonState, _i: usize, _j: usize) -> Result<AnyonState, String> {
206        // Simplified fusion
207        Ok(state.clone())
208    }
209
210    /// Apply creation operation
211    fn apply_creation(&self, state: &AnyonState, _i: usize) -> Result<AnyonState, String> {
212        // Simplified creation
213        Ok(state.clone())
214    }
215
216    /// Measure anyonic state
217    fn measure_anyons(&self, state: &AnyonState) -> Result<Vec<bool>, String> {
218        match state {
219            AnyonState::Fibonacci(fib_state) => fib_state.measure(),
220            AnyonState::Ising(ising_state) => ising_state.measure(),
221            AnyonState::Generic(gen_state) => gen_state.measure(),
222        }
223    }
224
225    /// Error correction for anyonic states
226    fn error_correct_anyons(&self, state: AnyonState) -> Result<AnyonState, String> {
227        // Topological error correction using stabilizer measurements
228        match state {
229            AnyonState::Ising(ising_state) => {
230                // Majorana parity checks
231                Ok(AnyonState::Ising(ising_state.parity_correct()?))
232            }
233            _ => Ok(state), // Other anyon types don't have error correction yet
234        }
235    }
236
237    /// Compute topological invariant
238    const fn compute_topological_invariant(&self, state: &AnyonState) -> f64 {
239        match state {
240            AnyonState::Fibonacci(_) => 1.618, // Golden ratio
241            AnyonState::Ising(_) => 1.414,     // sqrt(2)
242            AnyonState::Generic(_) => 1.0,
243        }
244    }
245}
246
247/// Anyonic state representations
248#[derive(Debug, Clone)]
249pub enum AnyonState {
250    Fibonacci(FibonacciState),
251    Ising(IsingAnyonState),
252    Generic(GenericAnyonState),
253}
254
255/// Fibonacci anyon state
256#[derive(Debug, Clone)]
257pub struct FibonacciState {
258    /// Number of anyons
259    n: usize,
260    /// Fusion tree amplitudes
261    amplitudes: Vec<Complex64>,
262    /// Fusion basis labels
263    basis_labels: Vec<Vec<usize>>,
264}
265
266impl FibonacciState {
267    fn new(n: usize) -> Self {
268        // Initialize in computational basis
269        let num_basis_states = fibonacci(n + 1);
270        let amplitudes =
271            vec![Complex64::new(1.0 / (num_basis_states as f64).sqrt(), 0.0); num_basis_states];
272        let basis_labels = Self::generate_fusion_basis(n);
273
274        Self {
275            n,
276            amplitudes,
277            basis_labels,
278        }
279    }
280
281    fn generate_fusion_basis(n: usize) -> Vec<Vec<usize>> {
282        // Generate valid fusion sequences
283        let mut basis = Vec::new();
284
285        // Simplified: just enumerate some valid configurations
286        for i in 0..(1 << n) {
287            let config: Vec<usize> = (0..n).map(|j| usize::from(i & (1 << j) != 0)).collect();
288            basis.push(config);
289        }
290
291        basis
292    }
293
294    fn braid(&self, i: usize, j: usize) -> Result<Self, String> {
295        let mut new_state = self.clone();
296
297        // Apply R-matrix for Fibonacci anyons
298        let theta = 2.0 * PI / 5.0; // Pentagon equation solution
299        let r_matrix = Complex64::new(theta.cos(), theta.sin());
300
301        for (idx, amplitude) in new_state.amplitudes.iter_mut().enumerate() {
302            if self.basis_labels[idx][i] != self.basis_labels[idx][j] {
303                *amplitude *= r_matrix;
304            }
305        }
306
307        Ok(new_state)
308    }
309
310    fn measure(&self) -> Result<Vec<bool>, String> {
311        let mut rng = thread_rng();
312
313        // Sample from amplitude distribution
314        let probabilities: Vec<f64> = self.amplitudes.iter().map(|a| a.norm_sqr()).collect();
315
316        let total_prob: f64 = probabilities.iter().sum();
317        let normalized: Vec<f64> = probabilities.iter().map(|p| p / total_prob).collect();
318
319        // Sample basis state
320        let mut cumsum = 0.0;
321        let r = rng.gen::<f64>();
322
323        for (idx, &prob) in normalized.iter().enumerate() {
324            cumsum += prob;
325            if r < cumsum {
326                return Ok(self.basis_labels[idx].iter().map(|&x| x != 0).collect());
327            }
328        }
329
330        Ok(vec![false; self.n])
331    }
332}
333
334/// Ising anyon state (Majorana fermions)
335#[derive(Debug, Clone)]
336pub struct IsingAnyonState {
337    /// Number of Majorana modes
338    n: usize,
339    /// Majorana operators (antisymmetric matrix)
340    majorana_matrix: Array2<f64>,
341    /// Parity sectors
342    parity_sectors: Vec<bool>,
343}
344
345impl IsingAnyonState {
346    fn new(n: usize) -> Self {
347        let mut majorana_matrix = Array2::zeros((n, n));
348
349        // Initialize with random couplings
350        let mut rng = thread_rng();
351        for i in 0..n {
352            for j in i + 1..n {
353                let coupling = rng.gen_range(-1.0..1.0);
354                majorana_matrix[[i, j]] = coupling;
355                majorana_matrix[[j, i]] = -coupling;
356            }
357        }
358
359        Self {
360            n,
361            majorana_matrix,
362            parity_sectors: vec![false; n / 2],
363        }
364    }
365
366    fn braid(&self, i: usize, j: usize) -> Result<Self, String> {
367        let mut new_state = self.clone();
368
369        // Braiding Majoranas: γ_i → γ_j, γ_j → -γ_i
370        let _phase = Complex64::new(0.0, PI / 4.0).exp();
371
372        // Update Majorana couplings
373        for k in 0..self.n {
374            if k != i && k != j {
375                let temp = new_state.majorana_matrix[[i, k]];
376                new_state.majorana_matrix[[i, k]] = new_state.majorana_matrix[[j, k]];
377                new_state.majorana_matrix[[j, k]] = -temp;
378
379                new_state.majorana_matrix[[k, i]] = -new_state.majorana_matrix[[i, k]];
380                new_state.majorana_matrix[[k, j]] = -new_state.majorana_matrix[[j, k]];
381            }
382        }
383
384        Ok(new_state)
385    }
386
387    fn measure(&self) -> Result<Vec<bool>, String> {
388        // Measure fermion parity
389        let mut result = Vec::new();
390
391        for i in 0..self.n / 2 {
392            result.push(self.parity_sectors[i]);
393        }
394
395        // Pad if necessary
396        while result.len() < self.n {
397            result.push(false);
398        }
399
400        Ok(result)
401    }
402
403    fn parity_correct(&self) -> Result<Self, String> {
404        let mut corrected = self.clone();
405
406        // Check parity conservation
407        let total_parity = self.parity_sectors.iter().filter(|&&p| p).count() % 2;
408
409        if total_parity != 0 {
410            // Flip a random parity sector to restore conservation
411            let mut rng = thread_rng();
412            let idx = rng.gen_range(0..self.parity_sectors.len());
413            corrected.parity_sectors[idx] = !corrected.parity_sectors[idx];
414        }
415
416        Ok(corrected)
417    }
418}
419
420/// Generic anyon state
421#[derive(Debug, Clone)]
422pub struct GenericAnyonState {
423    n: usize,
424    state_vector: Vec<Complex64>,
425}
426
427impl GenericAnyonState {
428    fn new(n: usize) -> Self {
429        let dim = 1 << n;
430        let state_vector = vec![Complex64::new(1.0 / (dim as f64).sqrt(), 0.0); dim];
431
432        Self { n, state_vector }
433    }
434
435    fn braid(&self, i: usize, j: usize, rules: &FusionRules) -> Result<Self, String> {
436        let mut new_state = self.clone();
437
438        // Apply R-matrix from fusion rules
439        let r_element = rules.r_matrix[[i.min(j), i.max(j)]];
440
441        for amplitude in &mut new_state.state_vector {
442            *amplitude *= r_element;
443        }
444
445        Ok(new_state)
446    }
447
448    fn measure(&self) -> Result<Vec<bool>, String> {
449        let mut rng = StdRng::seed_from_u64(42);
450        let probabilities: Vec<f64> = self.state_vector.iter().map(|a| a.norm_sqr()).collect();
451
452        let idx = weighted_sample(&probabilities, &mut rng);
453
454        Ok((0..self.n).map(|i| idx & (1 << i) != 0).collect())
455    }
456}
457
458impl FusionRules {
459    fn fibonacci_rules() -> Self {
460        // Fibonacci anyon fusion rules: 1 × 1 = 0 + 1
461        let mut fusion_tensor = Array3::zeros((2, 2, 2));
462        fusion_tensor[[0, 0, 0]] = 1.0; // 0 × 0 = 0
463        fusion_tensor[[0, 1, 1]] = 1.0; // 0 × 1 = 1
464        fusion_tensor[[1, 0, 1]] = 1.0; // 1 × 0 = 1
465        fusion_tensor[[1, 1, 0]] = 1.0; // 1 × 1 = 0
466        fusion_tensor[[1, 1, 1]] = 1.0; // 1 × 1 = 1
467
468        let phi = f64::midpoint(1.0, 5.0_f64.sqrt()); // Golden ratio
469        let r_matrix = Array2::from_shape_fn((2, 2), |(i, j)| {
470            if i == 0 && j == 0 {
471                Complex64::new(1.0, 0.0)
472            } else if i == 1 && j == 1 {
473                Complex64::new((-1.0 / phi).cos(), (-1.0 / phi).sin())
474            } else {
475                Complex64::new(0.0, 0.0)
476            }
477        });
478
479        Self {
480            fusion_tensor,
481            r_matrix,
482            quantum_dimensions: vec![1.0, phi],
483        }
484    }
485
486    fn ising_rules() -> Self {
487        // Ising anyon fusion rules
488        let mut fusion_tensor = Array3::zeros((3, 3, 3));
489        fusion_tensor[[0, 0, 0]] = 1.0; // 1 × 1 = 1
490        fusion_tensor[[0, 1, 1]] = 1.0; // 1 × σ = σ
491        fusion_tensor[[0, 2, 2]] = 1.0; // 1 × ψ = ψ
492        fusion_tensor[[1, 0, 1]] = 1.0; // σ × 1 = σ
493        fusion_tensor[[1, 1, 0]] = 1.0; // σ × σ = 1
494        fusion_tensor[[1, 1, 2]] = 1.0; // σ × σ = ψ
495        fusion_tensor[[2, 0, 2]] = 1.0; // ψ × 1 = ψ
496        fusion_tensor[[2, 1, 1]] = 1.0; // ψ × σ = σ
497        fusion_tensor[[2, 2, 0]] = 1.0; // ψ × ψ = 1
498
499        let sqrt2 = 2.0_f64.sqrt();
500        let r_matrix = Array2::from_shape_fn((3, 3), |(i, j)| match (i, j) {
501            (0, 0) => Complex64::new(1.0, 0.0),
502            (1, 1) => Complex64::new(0.0, 1.0) / sqrt2,
503            (2, 2) => Complex64::new(-1.0, 0.0),
504            _ => Complex64::new(0.0, 0.0),
505        });
506
507        Self {
508            fusion_tensor,
509            r_matrix,
510            quantum_dimensions: vec![1.0, sqrt2, 1.0],
511        }
512    }
513
514    fn default_rules() -> Self {
515        // Create a 2x2x2 identity-like fusion tensor
516        let mut fusion_tensor = Array3::zeros((2, 2, 2));
517        fusion_tensor[[0, 0, 0]] = 1.0; // 1 × 1 = 1
518        fusion_tensor[[1, 1, 0]] = 1.0; // σ × σ = 1
519
520        let r_matrix = Array2::<f64>::eye(2).mapv(Complex64::from);
521
522        Self {
523            fusion_tensor,
524            r_matrix,
525            quantum_dimensions: vec![1.0; 2],
526        }
527    }
528}
529
530#[derive(Debug, Clone)]
531pub enum BraidOperation {
532    Exchange(usize, usize),
533    Fusion(usize, usize),
534    Creation(usize),
535}
536
537#[derive(Debug, Clone)]
538pub struct BraidStep {
539    sequence: Vec<BraidOperation>,
540    cost: f64,
541    state: Vec<bool>,
542}
543
544#[derive(Debug, Clone)]
545pub struct TopologicalResult {
546    pub best_state: Vec<bool>,
547    pub best_cost: f64,
548    pub braid_history: Vec<BraidStep>,
549    pub topological_invariant: f64,
550}
551
552/// Persistent homology for optimization landscape analysis
553pub struct PersistentHomology {
554    /// Maximum dimension to compute
555    max_dimension: usize,
556    /// Filtration type
557    filtration: FiltrationType,
558    /// Resolution for discretization
559    resolution: f64,
560}
561
562#[derive(Debug, Clone)]
563pub enum FiltrationType {
564    /// Sublevel set filtration
565    Sublevel,
566    /// Vietoris-Rips filtration
567    VietorisRips,
568    /// Alpha complex
569    AlphaComplex,
570    /// Cubical complex
571    Cubical,
572}
573
574impl PersistentHomology {
575    /// Create new persistent homology analyzer
576    pub const fn new(max_dimension: usize) -> Self {
577        Self {
578            max_dimension,
579            filtration: FiltrationType::Sublevel,
580            resolution: 0.01,
581        }
582    }
583
584    /// Set filtration type
585    pub const fn with_filtration(mut self, filtration: FiltrationType) -> Self {
586        self.filtration = filtration;
587        self
588    }
589
590    /// Analyze optimization landscape
591    pub fn analyze_landscape(
592        &self,
593        samples: &[(Vec<bool>, f64)],
594    ) -> Result<HomologyResult, String> {
595        // Build filtration
596        let filtration = self.build_filtration(samples)?;
597
598        // Compute persistent homology
599        let persistence_pairs = self.compute_persistence(&filtration)?;
600
601        // Extract features
602        let features = self.extract_topological_features(&persistence_pairs);
603
604        let betti_numbers = self.compute_betti_numbers(&persistence_pairs);
605        let optimal_regions = self.identify_optimal_regions(&persistence_pairs, samples);
606
607        Ok(HomologyResult {
608            persistence_pairs,
609            betti_numbers,
610            features,
611            optimal_regions,
612        })
613    }
614
615    /// Build filtration from samples
616    fn build_filtration(&self, samples: &[(Vec<bool>, f64)]) -> Result<Filtration, String> {
617        match self.filtration {
618            FiltrationType::Sublevel => self.build_sublevel_filtration(samples),
619            FiltrationType::VietorisRips => self.build_vietoris_rips(samples),
620            _ => Err("Filtration type not implemented".to_string()),
621        }
622    }
623
624    /// Build sublevel set filtration
625    fn build_sublevel_filtration(
626        &self,
627        samples: &[(Vec<bool>, f64)],
628    ) -> Result<Filtration, String> {
629        let mut simplices = Vec::new();
630
631        // Sort samples by cost
632        let mut sorted_samples = samples.to_vec();
633        sorted_samples.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
634
635        // Add vertices
636        for (idx, (_, cost)) in sorted_samples.iter().enumerate() {
637            simplices.push(Simplex {
638                vertices: vec![idx],
639                filtration_value: *cost,
640                dimension: 0,
641            });
642        }
643
644        // Add edges between nearby points
645        for i in 0..sorted_samples.len() {
646            for j in i + 1..sorted_samples.len() {
647                let dist = hamming_distance(&sorted_samples[i].0, &sorted_samples[j].0);
648                if dist == 1 {
649                    simplices.push(Simplex {
650                        vertices: vec![i, j],
651                        filtration_value: sorted_samples[j].1.max(sorted_samples[i].1),
652                        dimension: 1,
653                    });
654                }
655            }
656        }
657
658        Ok(Filtration { simplices })
659    }
660
661    /// Build Vietoris-Rips complex
662    fn build_vietoris_rips(&self, samples: &[(Vec<bool>, f64)]) -> Result<Filtration, String> {
663        let mut simplices = Vec::new();
664        let n = samples.len();
665
666        // Compute pairwise distances
667        let mut distances = Array2::zeros((n, n));
668        for i in 0..n {
669            for j in i + 1..n {
670                let dist = hamming_distance(&samples[i].0, &samples[j].0) as f64;
671                distances[[i, j]] = dist;
672                distances[[j, i]] = dist;
673            }
674        }
675
676        // Add vertices
677        for i in 0..n {
678            simplices.push(Simplex {
679                vertices: vec![i],
680                filtration_value: 0.0,
681                dimension: 0,
682            });
683        }
684
685        // Add higher dimensional simplices
686        for dim in 1..=self.max_dimension {
687            self.add_simplices_of_dimension(&mut simplices, &distances, dim);
688        }
689
690        Ok(Filtration { simplices })
691    }
692
693    /// Add simplices of given dimension
694    fn add_simplices_of_dimension(
695        &self,
696        simplices: &mut Vec<Simplex>,
697        distances: &Array2<f64>,
698        dim: usize,
699    ) {
700        // Generate all possible simplices of dimension dim
701        // This is simplified - proper implementation would use combinatorial enumeration
702        let n = distances.shape()[0];
703
704        if dim == 1 {
705            // Add edges
706            for i in 0..n {
707                for j in i + 1..n {
708                    simplices.push(Simplex {
709                        vertices: vec![i, j],
710                        filtration_value: distances[[i, j]],
711                        dimension: 1,
712                    });
713                }
714            }
715        }
716    }
717
718    /// Compute persistent homology
719    fn compute_persistence(&self, filtration: &Filtration) -> Result<Vec<PersistencePair>, String> {
720        // Simplified persistence computation
721        let mut pairs = Vec::new();
722
723        // Group simplices by dimension
724        let mut by_dimension: HashMap<usize, Vec<&Simplex>> = HashMap::new();
725        for simplex in &filtration.simplices {
726            by_dimension
727                .entry(simplex.dimension)
728                .or_default()
729                .push(simplex);
730        }
731
732        // Compute persistence for each dimension
733        for dim in 0..=self.max_dimension {
734            if let Some(simplices) = by_dimension.get(&dim) {
735                // Simplified: create persistence pairs
736                for (i, simplex) in simplices.iter().enumerate() {
737                    if i % 2 == 0 && i + 1 < simplices.len() {
738                        pairs.push(PersistencePair {
739                            dimension: dim,
740                            birth: simplex.filtration_value,
741                            death: simplices[i + 1].filtration_value,
742                        });
743                    }
744                }
745            }
746        }
747
748        Ok(pairs)
749    }
750
751    /// Extract topological features
752    fn extract_topological_features(&self, pairs: &[PersistencePair]) -> TopologicalFeatures {
753        let mut features = TopologicalFeatures {
754            total_persistence: 0.0,
755            max_persistence: vec![0.0; self.max_dimension + 1],
756            persistence_entropy: 0.0,
757            landscape: Vec::new(),
758        };
759
760        // Compute total persistence
761        for pair in pairs {
762            let persistence = pair.death - pair.birth;
763            features.total_persistence += persistence;
764            features.max_persistence[pair.dimension] =
765                features.max_persistence[pair.dimension].max(persistence);
766        }
767
768        // Compute persistence entropy
769        if !pairs.is_empty() {
770            let total = features.total_persistence;
771            features.persistence_entropy = pairs
772                .iter()
773                .map(|p| {
774                    let persistence = p.death - p.birth;
775                    let prob = persistence / total;
776                    if prob > 0.0 {
777                        -prob * prob.ln()
778                    } else {
779                        0.0
780                    }
781                })
782                .sum();
783        }
784
785        // Compute persistence landscape
786        features.landscape = self.compute_persistence_landscape(pairs);
787
788        features
789    }
790
791    /// Compute persistence landscape
792    fn compute_persistence_landscape(&self, pairs: &[PersistencePair]) -> Vec<Vec<f64>> {
793        // Simplified persistence landscape
794        let resolution = 100;
795        let mut landscape = vec![vec![0.0; resolution]; self.max_dimension + 1];
796
797        for pair in pairs {
798            let start = (pair.birth * resolution as f64) as usize;
799            let end = (pair.death * resolution as f64) as usize;
800
801            for i in start..end.min(resolution) {
802                landscape[pair.dimension][i] = f64::max(
803                    landscape[pair.dimension][i],
804                    1.0 - (i as f64 / resolution as f64 - pair.birth).abs(),
805                );
806            }
807        }
808
809        landscape
810    }
811
812    /// Compute Betti numbers
813    fn compute_betti_numbers(&self, pairs: &[PersistencePair]) -> Vec<usize> {
814        let mut betti = vec![0; self.max_dimension + 1];
815
816        for pair in pairs {
817            if pair.death - pair.birth > self.resolution {
818                betti[pair.dimension] += 1;
819            }
820        }
821
822        betti
823    }
824
825    /// Identify optimal regions
826    fn identify_optimal_regions(
827        &self,
828        pairs: &[PersistencePair],
829        samples: &[(Vec<bool>, f64)],
830    ) -> Vec<OptimalRegion> {
831        let mut regions = Vec::new();
832
833        // Find persistent 0-dimensional features (connected components)
834        let persistent_components: Vec<_> = pairs
835            .iter()
836            .filter(|p| p.dimension == 0 && p.death - p.birth > self.resolution)
837            .collect();
838
839        for component in persistent_components {
840            // Find samples in this component
841            let component_samples: Vec<_> = samples
842                .iter()
843                .filter(|(_, cost)| *cost >= component.birth && *cost < component.death)
844                .collect();
845
846            if !component_samples.is_empty() {
847                let min_cost = component_samples
848                    .iter()
849                    .map(|(_, cost)| *cost)
850                    .fold(f64::INFINITY, f64::min);
851
852                regions.push(OptimalRegion {
853                    persistence: component.death - component.birth,
854                    min_cost,
855                    size: component_samples.len(),
856                    representative: component_samples[0].0.clone(),
857                });
858            }
859        }
860
861        regions.sort_by(|a, b| {
862            a.min_cost
863                .partial_cmp(&b.min_cost)
864                .unwrap_or(std::cmp::Ordering::Equal)
865        });
866        regions
867    }
868}
869
870#[derive(Debug, Clone)]
871struct Filtration {
872    simplices: Vec<Simplex>,
873}
874
875#[derive(Debug, Clone)]
876struct Simplex {
877    vertices: Vec<usize>,
878    filtration_value: f64,
879    dimension: usize,
880}
881
882#[derive(Debug, Clone)]
883pub struct PersistencePair {
884    dimension: usize,
885    birth: f64,
886    death: f64,
887}
888
889#[derive(Debug, Clone)]
890pub struct TopologicalFeatures {
891    pub total_persistence: f64,
892    pub max_persistence: Vec<f64>,
893    pub persistence_entropy: f64,
894    pub landscape: Vec<Vec<f64>>,
895}
896
897#[derive(Debug, Clone)]
898pub struct OptimalRegion {
899    pub persistence: f64,
900    pub min_cost: f64,
901    pub size: usize,
902    pub representative: Vec<bool>,
903}
904
905#[derive(Debug, Clone)]
906pub struct HomologyResult {
907    pub persistence_pairs: Vec<PersistencePair>,
908    pub betti_numbers: Vec<usize>,
909    pub features: TopologicalFeatures,
910    pub optimal_regions: Vec<OptimalRegion>,
911}
912
913/// Helper functions
914fn fibonacci(n: usize) -> usize {
915    if n <= 1 {
916        n
917    } else {
918        fibonacci(n - 1) + fibonacci(n - 2)
919    }
920}
921
922fn hamming_distance(a: &[bool], b: &[bool]) -> usize {
923    a.iter().zip(b.iter()).filter(|(&x, &y)| x != y).count()
924}
925
926fn weighted_sample(weights: &[f64], rng: &mut StdRng) -> usize {
927    let total: f64 = weights.iter().sum();
928    let mut cumsum = 0.0;
929    let r = rng.gen::<f64>() * total;
930
931    for (idx, &weight) in weights.iter().enumerate() {
932        cumsum += weight;
933        if r < cumsum {
934            return idx;
935        }
936    }
937
938    weights.len() - 1
939}
940
941#[cfg(test)]
942mod tests {
943    use super::*;
944
945    #[test]
946    fn test_topological_optimizer() {
947        let optimizer = TopologicalOptimizer::new(4, AnyonType::Fibonacci);
948
949        let cost_fn = |state: &[bool]| state.iter().filter(|&&x| x).count() as f64;
950
951        let mut result = optimizer.optimize(&cost_fn);
952        assert!(result.is_ok());
953    }
954
955    #[test]
956    fn test_fibonacci_state() {
957        let mut state = FibonacciState::new(3);
958        assert_eq!(state.n, 3);
959
960        let braided = state.braid(0, 1);
961        assert!(braided.is_ok());
962    }
963
964    #[test]
965    fn test_persistent_homology() {
966        let ph = PersistentHomology::new(2);
967
968        let mut samples = vec![
969            (vec![false, false], 0.0),
970            (vec![true, false], 1.0),
971            (vec![false, true], 1.0),
972            (vec![true, true], 2.0),
973        ];
974
975        let mut result = ph.analyze_landscape(&samples);
976        assert!(result.is_ok());
977
978        let homology = result.expect("Homology analysis should succeed");
979        assert!(!homology.persistence_pairs.is_empty());
980    }
981}