1#![allow(dead_code)]
8
9use ::scirs2_core::ndarray::{Array2, ArrayD};
10use ::scirs2_core::random::prelude::*;
11
12pub fn enhance_qubo_matrix(matrix: &Array2<f64>) -> Array2<f64> {
14 matrix.clone()
19}
20
21pub fn optimize_hobo_tensor(tensor: &ArrayD<f64>) -> ArrayD<f64> {
23 tensor.clone()
28}
29
30pub fn parallel_sample_qubo(matrix: &Array2<f64>, num_samples: usize) -> Vec<(Vec<bool>, f64)> {
32 let n = matrix.shape()[0];
34 let mut results = Vec::with_capacity(num_samples);
35
36 let mut rng = thread_rng();
38
39 for _ in 0..num_samples {
40 let solution: Vec<bool> = (0..n).map(|_| rng.gen()).collect();
41 let energy = evaluate_qubo(&solution, matrix);
42 results.push((solution, energy));
43 }
44
45 results
46}
47
48fn evaluate_qubo(solution: &[bool], matrix: &Array2<f64>) -> f64 {
49 let mut energy = 0.0;
50 let n = solution.len();
51
52 for i in 0..n {
53 if solution[i] {
54 energy += matrix[[i, i]];
55 for j in (i + 1)..n {
56 if solution[j] {
57 energy += matrix[[i, j]];
58 }
59 }
60 }
61 }
62
63 energy
64}
65
66pub const SCIRS2_AVAILABLE: bool = cfg!(feature = "scirs");
68
69pub mod scirs2_core {
72 pub use super::scirs2_core_stub::*;
73}
74
75pub mod scirs2_linalg {
76 pub use super::scirs2_linalg_stub::*;
77}
78
79pub mod scirs2_plot {
80 pub use super::scirs2_plot_stub::*;
81}
82
83pub mod scirs2_statistics {
84 pub use super::scirs2_statistics_stub::*;
85}
86
87pub mod scirs2_optimization {
88 pub use super::scirs2_optimization_stub::*;
89}
90
91pub mod scirs2_graphs {
92 pub use super::scirs2_graphs_stub::*;
93}
94
95pub mod scirs2_ml {
96 pub use super::scirs2_ml_stub::*;
97}
98
99mod scirs2_core_stub {
101 use std::error::Error;
102
103 pub fn init_simd() -> Result<(), Box<dyn Error>> {
104 Ok(())
105 }
106
107 pub mod simd {
108 pub trait SimdOps {}
109 }
110
111 pub mod memory {
112 pub fn get_current_usage() -> Result<usize, std::io::Error> {
113 Err(std::io::Error::new(
114 std::io::ErrorKind::NotFound,
115 "Not implemented",
116 ))
117 }
118 }
119
120 pub mod statistics {
121 pub struct OnlineStats {
122 count: usize,
123 mean: f64,
124 m2: f64,
125 }
126
127 impl Default for OnlineStats {
128 fn default() -> Self {
129 Self::new()
130 }
131 }
132
133 impl OnlineStats {
134 pub const fn new() -> Self {
135 Self {
136 count: 0,
137 mean: 0.0,
138 m2: 0.0,
139 }
140 }
141
142 pub fn update(&mut self, value: f64) {
143 self.count += 1;
144 let delta = value - self.mean;
145 self.mean += delta / self.count as f64;
146 let delta2 = value - self.mean;
147 self.m2 += delta * delta2;
148 }
149
150 pub const fn mean(&self) -> f64 {
151 self.mean
152 }
153
154 pub fn variance(&self) -> f64 {
155 if self.count < 2 {
156 0.0
157 } else {
158 self.m2 / (self.count - 1) as f64
159 }
160 }
161 }
162
163 pub struct MovingAverage {
164 window_size: usize,
165 values: Vec<f64>,
166 }
167
168 impl MovingAverage {
169 pub const fn new(window_size: usize) -> Self {
170 Self {
171 window_size,
172 values: Vec::new(),
173 }
174 }
175
176 pub fn update(&mut self, value: f64) {
177 self.values.push(value);
178 if self.values.len() > self.window_size {
179 self.values.remove(0);
180 }
181 }
182
183 pub fn mean(&self) -> f64 {
184 if self.values.is_empty() {
185 0.0
186 } else {
187 self.values.iter().sum::<f64>() / self.values.len() as f64
188 }
189 }
190 }
191 }
192
193 pub mod gpu {
194 use std::error::Error;
195 use std::time::Duration;
196
197 pub const fn get_device_count() -> usize {
198 0
199 }
200
201 pub struct GpuContext {
202 pub device_id: usize,
203 }
204
205 impl GpuContext {
206 pub fn new(_device_id: usize) -> Result<Self, Box<dyn Error>> {
207 Err("GPU not available".into())
208 }
209
210 pub fn measure_kernel_latency(&self) -> Result<Duration, Box<dyn Error>> {
211 Err("GPU not available".into())
212 }
213
214 pub const fn get_device_info(&self) -> DeviceInfo {
215 DeviceInfo {
216 memory_mb: 0,
217 compute_units: 0,
218 clock_mhz: 0,
219 }
220 }
221 }
222
223 pub struct DeviceInfo {
224 pub memory_mb: usize,
225 pub compute_units: usize,
226 pub clock_mhz: usize,
227 }
228
229 pub struct GpuDevice {
230 pub id: u32,
231 }
232
233 impl GpuDevice {
234 pub fn new(_id: u32) -> Result<Self, Box<dyn Error>> {
235 Err("GPU not available".into())
236 }
237
238 pub fn random_array<T>(
239 &self,
240 _shape: (usize, usize),
241 ) -> Result<GpuArray<T>, Box<dyn Error>> {
242 Err("GPU not available".into())
243 }
244
245 pub fn binarize<T>(
246 &self,
247 _array: &GpuArray<T>,
248 _threshold: f64,
249 ) -> Result<GpuArray<bool>, Box<dyn Error>> {
250 Err("GPU not available".into())
251 }
252
253 pub fn qubo_energy<T>(
254 &self,
255 _states: &GpuArray<bool>,
256 _matrix: &GpuArray<T>,
257 ) -> Result<GpuArray<f64>, Box<dyn Error>> {
258 Err("GPU not available".into())
259 }
260 }
261
262 impl Clone for GpuDevice {
263 fn clone(&self) -> Self {
264 Self { id: self.id }
265 }
266 }
267
268 pub struct GpuArray<T> {
269 _phantom: std::marker::PhantomData<T>,
270 }
271
272 impl<T> GpuArray<T> {
273 pub fn from_ndarray(
274 _device: GpuDevice,
275 _array: &scirs2_core::ndarray::Array2<T>,
276 ) -> Result<Self, Box<dyn Error>> {
277 Err("GPU not available".into())
278 }
279
280 pub fn to_ndarray(&self) -> Result<scirs2_core::ndarray::Array2<T>, Box<dyn Error>>
281 where
282 T: Clone + Default,
283 {
284 Err("GPU not available".into())
285 }
286 }
287 }
288}
289
290mod scirs2_linalg_stub {
291
292 pub mod sparse {
293 use scirs2_core::ndarray::Array2;
294
295 pub struct SparseMatrix;
296
297 impl SparseMatrix {
298 pub const fn from_dense(_matrix: &Array2<f64>) -> Self {
299 Self
300 }
301 }
302 }
303
304 pub mod svd {
305 pub struct SVD;
306 }
307
308 pub mod pca {
309 use scirs2_core::ndarray::Array2;
310 use std::error::Error;
311
312 pub struct PCA {
313 n_components: usize,
314 }
315
316 impl PCA {
317 pub const fn new(n_components: usize) -> Self {
318 Self { n_components }
319 }
320
321 pub fn fit_transform(&self, data: &Array2<f64>) -> Result<Array2<f64>, Box<dyn Error>> {
322 let n_samples = data.nrows();
324 let n_features = self.n_components.min(data.ncols());
325 let mut result = Array2::zeros((n_samples, self.n_components));
326
327 for i in 0..n_samples {
328 for j in 0..n_features {
329 result[[i, j]] = data[[i, j]];
330 }
331 }
332
333 Ok(result)
334 }
335 }
336 }
337
338 pub mod norm {
339 use scirs2_core::ndarray::Array1;
340
341 pub trait Norm {
342 fn norm(&self) -> f64;
343 }
344
345 impl Norm for Array1<f64> {
346 fn norm(&self) -> f64 {
347 self.iter().map(|x| x * x).sum::<f64>().sqrt()
348 }
349 }
350 }
351
352 pub mod gpu {
353 use super::*;
354 use scirs2_core::ndarray::Array2;
355 use std::error::Error;
356
357 pub struct GpuMatrix;
358
359 impl GpuMatrix {
360 pub fn from_host(
361 _matrix: &Array2<f64>,
362 _ctx: &crate::scirs_stub::scirs2_core::gpu::GpuContext,
363 ) -> Result<Self, Box<dyn Error>> {
364 Err("GPU not available".into())
365 }
366
367 pub fn to_host(&self) -> Result<Array2<f64>, Box<dyn Error>> {
368 Err("GPU not available".into())
369 }
370 }
371 }
372}
373
374mod scirs2_plot_stub {
375 use std::error::Error;
376
377 pub struct Figure;
378 pub struct Subplot;
379 pub struct Plot2D;
380 pub struct Plot3D;
381 pub struct Heatmap;
382 pub struct ColorMap;
383 pub struct Plot;
384 pub struct Line;
385 pub struct Scatter;
386 pub struct Bar;
387 pub struct NetworkPlot;
388 pub struct MultiPlot;
389 pub struct Annotation;
390 pub struct Violin;
391 pub struct BoxPlot;
392
393 impl Default for Plot {
394 fn default() -> Self {
395 Self::new()
396 }
397 }
398
399 impl Plot {
400 pub const fn new() -> Self {
401 Self
402 }
403 pub fn add_trace(&mut self, _trace: impl Trace) {}
404 pub const fn set_title(&mut self, _title: &str) {}
405 pub const fn set_xlabel(&mut self, _label: &str) {}
406 pub const fn set_ylabel(&mut self, _label: &str) {}
407 pub fn save(&self, _path: &str) -> Result<(), Box<dyn Error>> {
408 Err("Plotting not available".into())
409 }
410 }
411
412 impl Line {
413 pub fn new(_x: Vec<f64>, _y: Vec<f64>) -> Self {
414 Self
415 }
416 pub const fn name(self, _name: &str) -> Self {
417 self
418 }
419 }
420
421 impl Scatter {
422 pub fn new(_x: Vec<f64>, _y: Vec<f64>) -> Self {
423 Self
424 }
425 pub const fn name(self, _name: &str) -> Self {
426 self
427 }
428 pub const fn mode(self, _mode: &str) -> Self {
429 self
430 }
431 pub const fn marker_size(self, _size: u32) -> Self {
432 self
433 }
434 pub fn text(self, _text: Vec<String>) -> Self {
435 self
436 }
437 }
438
439 impl Heatmap {
440 pub fn new(_z: Vec<Vec<f64>>) -> Self {
441 Self
442 }
443 pub fn x(self, _x: Vec<f64>) -> Self {
444 self
445 }
446 pub fn y(self, _y: Vec<f64>) -> Self {
447 self
448 }
449 pub fn x_labels(self, _labels: Vec<String>) -> Self {
450 self
451 }
452 pub fn y_labels(self, _labels: Vec<String>) -> Self {
453 self
454 }
455 pub const fn colorscale(self, _scale: &str) -> Self {
456 self
457 }
458 }
459
460 impl Bar {
461 pub fn new(_x: Vec<String>, _y: Vec<f64>) -> Self {
462 Self
463 }
464 pub const fn name(self, _name: &str) -> Self {
465 self
466 }
467 }
468
469 impl Trace for Line {}
470 impl Trace for Scatter {}
471 impl Trace for Heatmap {}
472 impl Trace for Bar {}
473
474 impl Default for Figure {
475 fn default() -> Self {
476 Self::new()
477 }
478 }
479
480 impl Figure {
481 pub const fn new() -> Self {
482 Self
483 }
484
485 pub fn add_subplot(
486 &mut self,
487 _rows: usize,
488 _cols: usize,
489 _idx: usize,
490 ) -> Result<Subplot, Box<dyn Error>> {
491 Ok(Subplot)
492 }
493
494 pub const fn suptitle(&mut self, _title: &str) {}
495 pub const fn tight_layout(&mut self) {}
496 pub fn show(&self) -> Result<(), Box<dyn Error>> {
497 Err("Plotting not available".into())
498 }
499 }
500
501 impl Subplot {
502 pub const fn bar(&self, _x: &[f64], _y: &[f64]) -> Self {
503 Self
504 }
505 pub const fn scatter(&self, _x: &[f64], _y: &[f64]) -> Self {
506 Self
507 }
508 pub const fn plot(&self, _x: &[f64], _y: &[f64]) -> Self {
509 Self
510 }
511 pub const fn contourf(&self, _x: &[f64], _y: &[f64], _z: &[f64]) -> Self {
512 Self
513 }
514 pub const fn barh(&self, _y: &[f64], _width: &[f64], _left: &[f64], _height: f64) -> Self {
515 Self
516 }
517 pub const fn pie(&self, _sizes: &[f64], _labels: &[String]) -> Self {
518 Self
519 }
520 pub const fn bar_horizontal(&self, _names: &[String], _values: &[f64]) -> Self {
521 Self
522 }
523 pub const fn text(&self, _x: f64, _y: f64, _text: &str) -> Self {
524 Self
525 }
526 pub const fn axvline(&self, _x: f64) -> Self {
527 Self
528 }
529
530 pub const fn set_xlabel(&self, _label: &str) -> &Self {
531 self
532 }
533 pub const fn set_ylabel(&self, _label: &str) -> &Self {
534 self
535 }
536 pub const fn set_title(&self, _title: &str) -> &Self {
537 self
538 }
539 pub const fn set_color(&self, _color: &str) -> &Self {
540 self
541 }
542 pub const fn set_color_data(&self, _data: &[f64]) -> &Self {
543 self
544 }
545 pub const fn set_colormap(&self, _cmap: &str) -> &Self {
546 self
547 }
548 pub const fn set_label(&self, _label: &str) -> &Self {
549 self
550 }
551 pub const fn set_linewidth(&self, _width: f64) -> &Self {
552 self
553 }
554 pub const fn set_linestyle(&self, _style: &str) -> &Self {
555 self
556 }
557 pub const fn set_alpha(&self, _alpha: f64) -> &Self {
558 self
559 }
560 pub const fn set_size(&self, _size: f64) -> &Self {
561 self
562 }
563 pub const fn set_edgecolor(&self, _color: &str) -> &Self {
564 self
565 }
566 pub const fn set_marker(&self, _marker: &str) -> &Self {
567 self
568 }
569 pub const fn set_fontsize(&self, _size: u32) -> &Self {
570 self
571 }
572 pub const fn set_ha(&self, _align: &str) -> &Self {
573 self
574 }
575 pub const fn set_va(&self, _align: &str) -> &Self {
576 self
577 }
578 pub const fn set_verticalalignment(&self, _align: &str) -> &Self {
579 self
580 }
581 pub const fn set_transform(&self, _transform: ()) -> &Self {
582 self
583 }
584 pub const fn set_autopct(&self, _fmt: &str) -> &Self {
585 self
586 }
587 pub const fn set_aspect(&self, _aspect: &str) {}
588 pub const fn set_yscale(&self, _scale: &str) {}
589 pub const fn set_xlim(&self, _min: f64, _max: f64) {}
590 pub const fn set_ylim(&self, _min: f64, _max: f64) {}
591 pub const fn set_axis_off(&self) {}
592 pub const fn set_xticks(&self, _ticks: &[f64]) {}
593 pub const fn set_yticks(&self, _ticks: &[f64]) {}
594 pub const fn set_xticklabels(&self, _labels: &[String]) {}
595 pub const fn set_yticklabels(&self, _labels: &[String]) {}
596 pub fn get_xticklabels(&self) -> Vec<TickLabel> {
597 vec![TickLabel; self.get_xticks().len()]
598 }
599 pub const fn get_xticks(&self) -> Vec<f64> {
600 vec![]
601 }
602 pub const fn axis(&self, _setting: &str) {}
603 pub const fn legend(&self) {}
604 pub const fn legend_unique(&self) {}
605 pub const fn trans_axes(&self) {}
606 }
607
608 #[derive(Clone)]
609 pub struct TickLabel;
610
611 impl TickLabel {
612 pub const fn set_rotation(&self, _angle: u32) {}
613 pub const fn set_ha(&self, _align: &str) {}
614 }
615
616 pub trait Trace {}
617}
618
619mod scirs2_statistics_stub {
620
621 pub mod descriptive {
622 pub const fn mean(_data: &[f64]) -> f64 {
623 0.0
624 }
625 pub const fn std_dev(_data: &[f64]) -> f64 {
626 0.0
627 }
628 pub const fn quantile(_data: &[f64], _q: f64) -> f64 {
629 0.0
630 }
631 }
632
633 pub mod clustering {
634 use scirs2_core::ndarray::Array2;
635 use std::error::Error;
636
637 pub struct KMeans {
638 k: usize,
639 }
640
641 impl KMeans {
642 pub const fn new(k: usize) -> Self {
643 Self { k }
644 }
645
646 pub fn fit_predict(&self, _data: &Array2<f64>) -> Result<Vec<usize>, Box<dyn Error>> {
647 Ok(vec![0; _data.nrows()])
648 }
649 }
650
651 pub struct DBSCAN {
652 eps: f64,
653 min_samples: usize,
654 }
655
656 impl DBSCAN {
657 pub const fn new(eps: f64, min_samples: usize) -> Self {
658 Self { eps, min_samples }
659 }
660
661 pub fn fit_predict(&self, _data: &Array2<f64>) -> Result<Vec<usize>, Box<dyn Error>> {
662 Ok(vec![0; _data.nrows()])
663 }
664 }
665
666 pub fn hierarchical_clustering(
667 _data: &Array2<f64>,
668 _n_clusters: usize,
669 _linkage: &str,
670 ) -> Result<Vec<usize>, Box<dyn Error>> {
671 Ok(vec![0; _data.nrows()])
672 }
673 }
674
675 pub mod kde {
676 use std::error::Error;
677
678 pub struct KernelDensityEstimator;
679
680 impl KernelDensityEstimator {
681 pub fn new(_kernel: &str) -> Result<Self, Box<dyn Error>> {
682 Ok(Self)
683 }
684
685 pub fn estimate_2d(
686 &self,
687 _x: &[f64],
688 _y: &[f64],
689 _xi: f64,
690 _yi: f64,
691 ) -> Result<f64, Box<dyn Error>> {
692 Ok(0.0)
693 }
694 }
695 }
696}
697
698mod scirs2_optimization_stub {
699 use scirs2_core::ndarray::Array1;
700 use std::error::Error;
701
702 pub trait Optimizer: Send {
703 fn minimize(
704 &mut self,
705 objective: &dyn ObjectiveFunction,
706 x0: &Array1<f64>,
707 bounds: &Bounds,
708 max_iter: usize,
709 ) -> Result<OptimizationResult, Box<dyn Error>>;
710 }
711
712 pub trait OptimizationProblem {}
713
714 pub trait ObjectiveFunction {
715 fn evaluate(&self, x: &Array1<f64>) -> f64;
716 fn gradient(&self, x: &Array1<f64>) -> Array1<f64>;
717 }
718
719 pub struct Bounds {
720 lower: Array1<f64>,
721 upper: Array1<f64>,
722 }
723
724 impl Bounds {
725 pub const fn new(lower: Array1<f64>, upper: Array1<f64>) -> Self {
726 Self { lower, upper }
727 }
728 }
729
730 pub struct OptimizationResult {
731 pub x: Array1<f64>,
732 pub f: f64,
733 pub iterations: usize,
734 }
735
736 pub mod gradient {
737 use super::*;
738
739 pub struct LBFGS {
740 dim: usize,
741 }
742
743 impl LBFGS {
744 pub const fn new(dim: usize) -> Self {
745 Self { dim }
746 }
747 }
748
749 impl Optimizer for LBFGS {
750 fn minimize(
751 &mut self,
752 objective: &dyn ObjectiveFunction,
753 x0: &Array1<f64>,
754 _bounds: &Bounds,
755 _max_iter: usize,
756 ) -> Result<OptimizationResult, Box<dyn Error>> {
757 Ok(OptimizationResult {
758 x: x0.clone(),
759 f: objective.evaluate(x0),
760 iterations: 1,
761 })
762 }
763 }
764 }
765
766 pub mod bayesian {
767 use super::*;
768
769 #[derive(Debug, Clone, Copy)]
770 pub enum AcquisitionFunction {
771 ExpectedImprovement,
772 UCB,
773 PI,
774 Thompson,
775 }
776
777 #[derive(Debug, Clone, Copy)]
778 pub enum KernelType {
779 RBF,
780 Matern52,
781 Matern32,
782 }
783
784 pub struct BayesianOptimizer {
785 dim: usize,
786 kernel: KernelType,
787 acquisition: AcquisitionFunction,
788 exploration: f64,
789 }
790
791 impl BayesianOptimizer {
792 pub fn new(
793 dim: usize,
794 kernel: KernelType,
795 acquisition: AcquisitionFunction,
796 exploration: f64,
797 ) -> Result<Self, Box<dyn Error>> {
798 Ok(Self {
799 dim,
800 kernel,
801 acquisition,
802 exploration,
803 })
804 }
805
806 pub fn update(
807 &mut self,
808 _x_data: &[Array1<f64>],
809 _y_data: &Array1<f64>,
810 ) -> Result<(), Box<dyn Error>> {
811 Ok(())
812 }
813
814 pub fn suggest_next(&self) -> Result<Array1<f64>, Box<dyn Error>> {
815 Ok(Array1::zeros(self.dim))
816 }
817 }
818
819 pub struct GaussianProcess;
820 }
821}
822
823mod scirs2_ml_stub {
824 use scirs2_core::ndarray::Array2;
825 use std::error::Error;
826
827 pub struct RandomForest {
828 n_estimators: usize,
829 max_depth: Option<usize>,
830 min_samples_split: usize,
831 }
832
833 impl Default for RandomForest {
834 fn default() -> Self {
835 Self::new()
836 }
837 }
838
839 impl RandomForest {
840 pub const fn new() -> Self {
841 Self {
842 n_estimators: 100,
843 max_depth: None,
844 min_samples_split: 2,
845 }
846 }
847
848 pub const fn n_estimators(mut self, n: usize) -> Self {
849 self.n_estimators = n;
850 self
851 }
852
853 pub const fn max_depth(mut self, depth: Option<usize>) -> Self {
854 self.max_depth = depth;
855 self
856 }
857
858 pub const fn min_samples_split(mut self, samples: usize) -> Self {
859 self.min_samples_split = samples;
860 self
861 }
862
863 pub fn fit(&mut self, _x: &Vec<Vec<f64>>, _y: &Vec<f64>) -> Result<(), Box<dyn Error>> {
864 Ok(())
865 }
866
867 pub fn predict(&self, _x: &Vec<Vec<f64>>) -> Vec<f64> {
868 vec![0.0; _x.len()]
869 }
870
871 pub fn feature_importances(&self) -> Vec<f64> {
872 vec![0.5; 10] }
874 }
875
876 pub struct GradientBoosting {
877 n_estimators: usize,
878 learning_rate: f64,
879 max_depth: usize,
880 }
881
882 pub struct NeuralNetwork {
883 hidden_layers: Vec<usize>,
884 activation: String,
885 learning_rate: f64,
886 }
887
888 pub struct KMeans {
889 k: usize,
890 }
891
892 impl KMeans {
893 pub const fn new(k: usize) -> Self {
894 Self { k }
895 }
896
897 pub fn fit_predict(&self, _data: &Array2<f64>) -> Result<Vec<usize>, Box<dyn Error>> {
898 Ok(vec![0; _data.nrows()])
899 }
900 }
901
902 pub struct DBSCAN {
903 eps: f64,
904 min_samples: usize,
905 }
906
907 impl DBSCAN {
908 pub const fn new(eps: f64, min_samples: usize) -> Self {
909 Self { eps, min_samples }
910 }
911
912 pub fn fit_predict(&self, _data: &Array2<f64>) -> Result<Vec<usize>, Box<dyn Error>> {
913 Ok(vec![0; _data.nrows()])
914 }
915 }
916
917 pub struct PCA {
918 n_components: usize,
919 }
920
921 impl PCA {
922 pub const fn new(n_components: usize) -> Self {
923 Self { n_components }
924 }
925
926 pub fn fit_transform(&self, data: &Array2<f64>) -> Result<Array2<f64>, Box<dyn Error>> {
927 let n_samples = data.nrows();
929 let n_features = self.n_components.min(data.ncols());
930 let mut result = Array2::zeros((n_samples, self.n_components));
931
932 for i in 0..n_samples {
933 for j in 0..n_features {
934 result[[i, j]] = data[[i, j]];
935 }
936 }
937
938 Ok(result)
939 }
940 }
941
942 pub struct StandardScaler;
943
944 pub struct CrossValidation {
945 n_folds: usize,
946 }
947
948 impl CrossValidation {
949 pub const fn new(n_folds: usize) -> Self {
950 Self { n_folds }
951 }
952
953 pub fn cross_val_score<T>(
954 &self,
955 _model: &T,
956 _x: &Vec<Vec<f64>>,
957 _y: &Vec<f64>,
958 ) -> CVScores {
959 CVScores {
960 scores: vec![0.5; self.n_folds],
961 }
962 }
963 }
964
965 pub struct CVScores {
966 scores: Vec<f64>,
967 }
968
969 impl CVScores {
970 pub fn mean(&self) -> f64 {
971 self.scores.iter().sum::<f64>() / self.scores.len() as f64
972 }
973 }
974
975 pub const fn train_test_split<T>(
976 _x: &[T],
977 _y: &[f64],
978 _test_size: f64,
979 ) -> (Vec<T>, Vec<T>, Vec<f64>, Vec<f64>)
980 where
981 T: Clone,
982 {
983 (vec![], vec![], vec![], vec![])
984 }
985}
986
987mod scirs2_graphs_stub {
988 pub struct Graph;
989 pub struct GraphLayout;
990
991 pub fn spring_layout(
992 _edges: &[(usize, usize)],
993 n_nodes: usize,
994 ) -> Result<Vec<(f64, f64)>, Box<dyn std::error::Error>> {
995 let mut positions = Vec::new();
997 for i in 0..n_nodes {
998 let angle = 2.0 * std::f64::consts::PI * i as f64 / n_nodes as f64;
999 positions.push((angle.cos(), angle.sin()));
1000 }
1001 Ok(positions)
1002 }
1003}