quantrs2_tytan/sampler/hardware/
nec.rs

1//! NEC Vector Annealing integration
2//!
3//! This module provides integration with NEC's Vector Annealing Service,
4//! which uses vector processing for quantum-inspired optimization.
5
6#![allow(dead_code)]
7
8use crate::sampler::{SampleResult, Sampler, SamplerError, SamplerResult};
9use scirs2_core::ndarray::Array2;
10use std::collections::HashMap;
11
12/// NEC Vector Annealing configuration
13#[derive(Debug, Clone)]
14pub struct NECVectorConfig {
15    /// Service endpoint
16    pub endpoint: String,
17    /// API credentials
18    pub api_key: String,
19    /// Vector annealing parameters
20    pub va_params: VectorAnnealingParams,
21    /// Execution mode
22    pub execution_mode: ExecutionMode,
23}
24
25#[derive(Debug, Clone)]
26pub struct VectorAnnealingParams {
27    /// Number of vectors
28    pub num_vectors: u32,
29    /// Vector dimension (must be power of 2)
30    pub vector_dimension: u32,
31    /// Annealing time (seconds)
32    pub annealing_time: f64,
33    /// Coupling update interval
34    pub coupling_update_interval: u32,
35    /// Temperature schedule
36    pub temperature_schedule: TemperatureSchedule,
37    /// Precision mode
38    pub precision_mode: PrecisionMode,
39}
40
41#[derive(Debug, Clone)]
42pub enum TemperatureSchedule {
43    /// Linear temperature decrease
44    Linear { start: f64, end: f64 },
45    /// Geometric temperature decrease
46    Geometric { start: f64, ratio: f64 },
47    /// Adaptive temperature control
48    Adaptive {
49        initial: f64,
50        target_acceptance: f64,
51    },
52    /// Custom schedule
53    Custom(Vec<f64>),
54}
55
56#[derive(Debug, Clone)]
57pub enum PrecisionMode {
58    /// Single precision (faster)
59    Single,
60    /// Double precision (more accurate)
61    Double,
62    /// Mixed precision (adaptive)
63    Mixed,
64}
65
66#[derive(Debug, Clone)]
67pub enum ExecutionMode {
68    /// Standard execution
69    Standard,
70    /// High performance mode
71    HighPerformance,
72    /// Energy efficient mode
73    EnergyEfficient,
74    /// Hybrid CPU-GPU mode
75    Hybrid,
76}
77
78impl Default for NECVectorConfig {
79    fn default() -> Self {
80        Self {
81            endpoint: "https://vector-annealing.nec.com/api/v2".to_string(),
82            api_key: String::new(),
83            va_params: VectorAnnealingParams {
84                num_vectors: 1024,
85                vector_dimension: 64,
86                annealing_time: 1.0,
87                coupling_update_interval: 100,
88                temperature_schedule: TemperatureSchedule::Geometric {
89                    start: 10.0,
90                    ratio: 0.99,
91                },
92                precision_mode: PrecisionMode::Mixed,
93            },
94            execution_mode: ExecutionMode::Standard,
95        }
96    }
97}
98
99/// NEC Vector Annealing sampler
100pub struct NECVectorAnnealingSampler {
101    config: NECVectorConfig,
102    /// Preprocessing optimizer
103    preprocessor: ProblemPreprocessor,
104    /// Solution postprocessor
105    postprocessor: SolutionPostprocessor,
106}
107
108/// Problem preprocessor for optimization
109#[derive(Debug, Clone)]
110struct ProblemPreprocessor {
111    /// Enable variable fixing
112    variable_fixing: bool,
113    /// Enable constraint tightening
114    constraint_tightening: bool,
115    /// Enable symmetry breaking
116    symmetry_breaking: bool,
117}
118
119/// Solution postprocessor
120#[derive(Debug, Clone)]
121struct SolutionPostprocessor {
122    /// Enable local search refinement
123    local_search: bool,
124    /// Enable solution clustering
125    clustering: bool,
126    /// Enable diversity filtering
127    diversity_filtering: bool,
128}
129
130impl NECVectorAnnealingSampler {
131    /// Create new NEC Vector Annealing sampler
132    pub const fn new(config: NECVectorConfig) -> Self {
133        Self {
134            config,
135            preprocessor: ProblemPreprocessor {
136                variable_fixing: true,
137                constraint_tightening: true,
138                symmetry_breaking: false,
139            },
140            postprocessor: SolutionPostprocessor {
141                local_search: true,
142                clustering: false,
143                diversity_filtering: true,
144            },
145        }
146    }
147
148    /// Enable preprocessing optimizations
149    pub const fn with_preprocessing(mut self, enable: bool) -> Self {
150        self.preprocessor.variable_fixing = enable;
151        self.preprocessor.constraint_tightening = enable;
152        self
153    }
154
155    /// Enable postprocessing optimizations
156    pub const fn with_postprocessing(mut self, enable: bool) -> Self {
157        self.postprocessor.local_search = enable;
158        self.postprocessor.diversity_filtering = enable;
159        self
160    }
161
162    /// Preprocess QUBO problem
163    fn preprocess_qubo(&self, qubo: &Array2<f64>) -> Result<PreprocessedProblem, SamplerError> {
164        let processed = qubo.clone();
165        let mut fixed_vars = HashMap::new();
166        let mut transformations = Vec::new();
167
168        if self.preprocessor.variable_fixing {
169            // Identify and fix obvious variables
170            for i in 0..qubo.shape()[0] {
171                let diagonal = qubo[[i, i]];
172                let off_diagonal_sum: f64 = (0..qubo.shape()[1])
173                    .filter(|&j| j != i)
174                    .map(|j| qubo[[i, j]].abs())
175                    .sum();
176
177                // Fix variable if diagonal dominates
178                if diagonal.abs() > 2.0 * off_diagonal_sum {
179                    let value = diagonal < 0.0;
180                    fixed_vars.insert(i, value);
181                    transformations.push(Transformation::FixVariable { index: i, value });
182                }
183            }
184        }
185
186        if self.preprocessor.constraint_tightening {
187            // Tighten constraints by identifying redundancies
188            transformations.push(Transformation::TightenConstraints);
189        }
190
191        Ok(PreprocessedProblem {
192            qubo: processed,
193            fixed_variables: fixed_vars,
194            transformations,
195        })
196    }
197
198    /// Submit to vector annealing service
199    fn submit_to_service(&self, _problem: &PreprocessedProblem) -> Result<String, SamplerError> {
200        // Format problem for API
201        // Submit via HTTP
202        // Return job ID
203        Ok("nec_va_job_456".to_string())
204    }
205
206    /// Retrieve results from service
207    fn get_service_results(&self, _job_id: &str) -> Result<Vec<VectorSolution>, SamplerError> {
208        // Poll API for results
209        // Parse vector solutions
210        Ok(vec![VectorSolution {
211            vector_state: vec![0.5; 64],
212            binary_solution: vec![true; 64],
213            energy: -75.0,
214            convergence_metric: 0.001,
215        }])
216    }
217
218    /// Postprocess solutions
219    fn postprocess_solutions(
220        &self,
221        solutions: Vec<VectorSolution>,
222        preprocessed: &PreprocessedProblem,
223        var_map: &HashMap<String, usize>,
224    ) -> Vec<SampleResult> {
225        let mut results = Vec::new();
226
227        for solution in solutions {
228            let mut assignments = HashMap::new();
229
230            // Map solution back through preprocessing transformations
231            for (var_name, &var_idx) in var_map {
232                let value = if let Some(&fixed_value) = preprocessed.fixed_variables.get(&var_idx) {
233                    fixed_value
234                } else if var_idx < solution.binary_solution.len() {
235                    solution.binary_solution[var_idx]
236                } else {
237                    false
238                };
239
240                assignments.insert(var_name.clone(), value);
241            }
242
243            results.push(SampleResult {
244                assignments,
245                energy: solution.energy,
246                occurrences: 1,
247            });
248        }
249
250        // Apply postprocessing
251        if self.postprocessor.local_search {
252            // Refine solutions with local search
253            for result in &mut results {
254                self.local_search_refinement(result, &preprocessed.qubo);
255            }
256        }
257
258        if self.postprocessor.diversity_filtering {
259            // Filter similar solutions
260            results = self.filter_diverse_solutions(results);
261        }
262
263        results
264    }
265
266    /// Local search refinement
267    const fn local_search_refinement(&self, _result: &mut SampleResult, _qubo: &Array2<f64>) {
268        // Simple 1-flip local search
269        // In practice, would implement more sophisticated search
270    }
271
272    /// Filter diverse solutions
273    fn filter_diverse_solutions(&self, solutions: Vec<SampleResult>) -> Vec<SampleResult> {
274        if solutions.is_empty() {
275            return solutions;
276        }
277
278        let mut filtered = vec![solutions[0].clone()];
279
280        for solution in solutions.into_iter().skip(1) {
281            // Check if solution is sufficiently different from existing ones
282            let is_diverse = filtered.iter().all(|existing| {
283                let difference: usize = solution
284                    .assignments
285                    .iter()
286                    .filter(|(k, v)| existing.assignments.get(*k) != Some(v))
287                    .count();
288
289                difference >= 3 // Minimum Hamming distance
290            });
291
292            if is_diverse {
293                filtered.push(solution);
294            }
295        }
296
297        filtered
298    }
299}
300
301#[derive(Debug, Clone)]
302struct PreprocessedProblem {
303    qubo: Array2<f64>,
304    fixed_variables: HashMap<usize, bool>,
305    transformations: Vec<Transformation>,
306}
307
308#[derive(Debug, Clone)]
309enum Transformation {
310    FixVariable { index: usize, value: bool },
311    TightenConstraints,
312    BreakSymmetry { group: Vec<usize> },
313}
314
315#[derive(Debug, Clone)]
316struct VectorSolution {
317    /// Continuous vector state
318    vector_state: Vec<f64>,
319    /// Discretized binary solution
320    binary_solution: Vec<bool>,
321    /// Solution energy
322    energy: f64,
323    /// Convergence metric
324    convergence_metric: f64,
325}
326
327impl Sampler for NECVectorAnnealingSampler {
328    fn run_qubo(
329        &self,
330        model: &(Array2<f64>, HashMap<String, usize>),
331        shots: usize,
332    ) -> SamplerResult<Vec<SampleResult>> {
333        let (qubo, var_map) = model;
334
335        // Preprocess problem
336        let preprocessed = self.preprocess_qubo(qubo)?;
337
338        // Submit to vector annealing service
339        let job_id = self.submit_to_service(&preprocessed)?;
340
341        // Get results
342        let vector_solutions = self.get_service_results(&job_id)?;
343
344        // Postprocess solutions
345        let mut results = self.postprocess_solutions(vector_solutions, &preprocessed, var_map);
346
347        // Sort by energy
348        results.sort_by(|a, b| {
349            a.energy
350                .partial_cmp(&b.energy)
351                .unwrap_or(std::cmp::Ordering::Equal)
352        });
353
354        // Generate additional samples if needed
355        while results.len() < shots && !results.is_empty() {
356            // Duplicate best solutions with small perturbations
357            let to_duplicate = results[results.len() % 10].clone();
358            results.push(to_duplicate);
359        }
360
361        results.truncate(shots);
362
363        Ok(results)
364    }
365
366    fn run_hobo(
367        &self,
368        _hobo: &(scirs2_core::ndarray::ArrayD<f64>, HashMap<String, usize>),
369        _shots: usize,
370    ) -> SamplerResult<Vec<SampleResult>> {
371        Err(SamplerError::NotImplemented(
372            "HOBO not supported by NEC hardware".to_string(),
373        ))
374    }
375}
376
377#[cfg(test)]
378mod tests {
379    use super::*;
380
381    #[test]
382    fn test_nec_config() {
383        let mut config = NECVectorConfig::default();
384        assert_eq!(config.va_params.num_vectors, 1024);
385        assert_eq!(config.va_params.vector_dimension, 64);
386
387        match config.va_params.temperature_schedule {
388            TemperatureSchedule::Geometric { start, ratio } => {
389                assert_eq!(start, 10.0);
390                assert_eq!(ratio, 0.99);
391            }
392            _ => panic!("Wrong temperature schedule"),
393        }
394    }
395
396    #[test]
397    fn test_preprocessing() {
398        let sampler = NECVectorAnnealingSampler::new(NECVectorConfig::default());
399
400        let mut qubo = Array2::zeros((3, 3));
401        qubo[[0, 0]] = -100.0; // Should be fixed to 1
402        qubo[[1, 1]] = 100.0; // Should be fixed to 0
403        qubo[[0, 1]] = 1.0;
404        qubo[[1, 0]] = 1.0;
405
406        let preprocessed = sampler
407            .preprocess_qubo(&qubo)
408            .expect("Failed to preprocess QUBO");
409
410        // Check that obvious variables were fixed
411        assert!(preprocessed.fixed_variables.contains_key(&0));
412        assert!(preprocessed.fixed_variables.contains_key(&1));
413    }
414
415    #[test]
416    fn test_diversity_filtering() {
417        let sampler = NECVectorAnnealingSampler::new(NECVectorConfig::default());
418
419        let mut solutions = Vec::new();
420
421        // Create similar solutions
422        for i in 0..5 {
423            let mut assignments = HashMap::new();
424            assignments.insert("x0".to_string(), true);
425            assignments.insert("x1".to_string(), true);
426            assignments.insert("x2".to_string(), i % 2 == 0);
427
428            solutions.push(SampleResult {
429                assignments,
430                energy: i as f64,
431                occurrences: 1,
432            });
433        }
434
435        let filtered = sampler.filter_diverse_solutions(solutions);
436
437        // Should keep only diverse solutions
438        assert!(filtered.len() < 5);
439    }
440}