quantrs2_tytan/sampler/hardware/
ibm_quantum.rs

1//! IBM Quantum Sampler Implementation
2//!
3//! This module provides integration with IBM Quantum (IBM Q) systems
4//! for solving optimization problems using quantum annealing approaches.
5
6use scirs2_core::ndarray::{Array, Ix2};
7use scirs2_core::random::{thread_rng, Rng};
8use std::collections::HashMap;
9
10use quantrs2_anneal::QuboModel;
11
12use super::super::{SampleResult, Sampler, SamplerError, SamplerResult};
13
14/// IBM Quantum backend types
15#[derive(Debug, Clone)]
16pub enum IBMBackend {
17    /// IBM Quantum simulator
18    Simulator,
19    /// IBM Quantum hardware - specific backend name
20    Hardware(String),
21    /// IBM Quantum hardware - any available backend
22    AnyHardware,
23}
24
25/// IBM Quantum Sampler Configuration
26#[derive(Debug, Clone)]
27pub struct IBMQuantumConfig {
28    /// IBM Quantum API token
29    pub api_token: String,
30    /// Backend to use for execution
31    pub backend: IBMBackend,
32    /// Maximum circuit depth allowed
33    pub max_circuit_depth: usize,
34    /// Optimization level (0-3)
35    pub optimization_level: u8,
36    /// Number of shots per execution
37    pub shots: usize,
38    /// Use error mitigation techniques
39    pub error_mitigation: bool,
40}
41
42impl Default for IBMQuantumConfig {
43    fn default() -> Self {
44        Self {
45            api_token: String::new(),
46            backend: IBMBackend::Simulator,
47            max_circuit_depth: 100,
48            optimization_level: 1,
49            shots: 1024,
50            error_mitigation: true,
51        }
52    }
53}
54
55/// IBM Quantum Sampler
56///
57/// This sampler connects to IBM Quantum systems to solve QUBO problems
58/// using variational quantum algorithms like QAOA.
59pub struct IBMQuantumSampler {
60    config: IBMQuantumConfig,
61}
62
63impl IBMQuantumSampler {
64    /// Create a new IBM Quantum sampler
65    ///
66    /// # Arguments
67    ///
68    /// * `config` - The IBM Quantum configuration
69    #[must_use]
70    pub const fn new(config: IBMQuantumConfig) -> Self {
71        Self { config }
72    }
73
74    /// Create a new IBM Quantum sampler with API token
75    ///
76    /// # Arguments
77    ///
78    /// * `api_token` - The IBM Quantum API token
79    #[must_use]
80    pub fn with_token(api_token: &str) -> Self {
81        Self {
82            config: IBMQuantumConfig {
83                api_token: api_token.to_string(),
84                ..Default::default()
85            },
86        }
87    }
88
89    /// Set the backend to use
90    #[must_use]
91    pub fn with_backend(mut self, backend: IBMBackend) -> Self {
92        self.config.backend = backend;
93        self
94    }
95
96    /// Enable or disable error mitigation
97    #[must_use]
98    pub const fn with_error_mitigation(mut self, enabled: bool) -> Self {
99        self.config.error_mitigation = enabled;
100        self
101    }
102
103    /// Set the optimization level
104    #[must_use]
105    pub fn with_optimization_level(mut self, level: u8) -> Self {
106        self.config.optimization_level = level.min(3);
107        self
108    }
109}
110
111impl Sampler for IBMQuantumSampler {
112    fn run_qubo(
113        &self,
114        qubo: &(Array<f64, Ix2>, HashMap<String, usize>),
115        shots: usize,
116    ) -> SamplerResult<Vec<SampleResult>> {
117        // Extract matrix and variable mapping
118        let (matrix, var_map) = qubo;
119
120        // Get the problem dimension
121        let n_vars = var_map.len();
122
123        // Validate problem size for IBM Quantum
124        if n_vars > 127 {
125            return Err(SamplerError::InvalidParameter(
126                "IBM Quantum currently supports up to 127 qubits".to_string(),
127            ));
128        }
129
130        // Map from indices back to variable names
131        let idx_to_var: HashMap<usize, String> = var_map
132            .iter()
133            .map(|(var, &idx)| (idx, var.clone()))
134            .collect();
135
136        // Convert ndarray to a QuboModel
137        let mut qubo_model = QuboModel::new(n_vars);
138
139        // Set linear and quadratic terms
140        for i in 0..n_vars {
141            if matrix[[i, i]] != 0.0 {
142                qubo_model.set_linear(i, matrix[[i, i]])?;
143            }
144
145            for j in (i + 1)..n_vars {
146                if matrix[[i, j]] != 0.0 {
147                    qubo_model.set_quadratic(i, j, matrix[[i, j]])?;
148                }
149            }
150        }
151
152        // Initialize the IBM Quantum client
153        #[cfg(feature = "ibm_quantum")]
154        {
155            // TODO: Implement actual IBM Quantum API integration
156            // This would involve:
157            // 1. Create QAOA circuit for the QUBO problem
158            // 2. Optimize circuit parameters
159            // 3. Submit to IBM Quantum backend
160            // 4. Process measurement results
161
162            let _ibm_result = "placeholder";
163        }
164
165        // Placeholder implementation - simulate IBM Quantum behavior
166        let mut results = Vec::new();
167        let mut rng = thread_rng();
168
169        // Simulate quantum measurements with error mitigation
170        let effective_shots = if self.config.error_mitigation {
171            shots * 2 // More shots for error mitigation
172        } else {
173            shots
174        };
175
176        // Generate diverse solutions (simulating QAOA behavior)
177        let unique_solutions = (effective_shots / 10).max(1).min(100);
178
179        for _ in 0..unique_solutions {
180            let assignments: HashMap<String, bool> = idx_to_var
181                .values()
182                .map(|name| (name.clone(), rng.gen::<bool>()))
183                .collect();
184
185            // Calculate energy
186            let mut energy = 0.0;
187            for (var_name, &val) in &assignments {
188                let i = var_map[var_name];
189                if val {
190                    energy += matrix[[i, i]];
191                    for (other_var, &other_val) in &assignments {
192                        let j = var_map[other_var];
193                        if i < j && other_val {
194                            energy += matrix[[i, j]];
195                        }
196                    }
197                }
198            }
199
200            // Simulate measurement counts
201            let occurrences = rng.gen_range(1..=(effective_shots / unique_solutions + 10));
202
203            results.push(SampleResult {
204                assignments,
205                energy,
206                occurrences,
207            });
208        }
209
210        // Sort by energy (best solutions first)
211        results.sort_by(|a, b| {
212            a.energy
213                .partial_cmp(&b.energy)
214                .unwrap_or(std::cmp::Ordering::Equal)
215        });
216
217        Ok(results)
218    }
219
220    fn run_hobo(
221        &self,
222        hobo: &(
223            Array<f64, scirs2_core::ndarray::IxDyn>,
224            HashMap<String, usize>,
225        ),
226        shots: usize,
227    ) -> SamplerResult<Vec<SampleResult>> {
228        use scirs2_core::ndarray::Ix2;
229
230        // For HOBO problems, convert to QUBO if possible
231        if hobo.0.ndim() <= 2 {
232            // If it's already 2D, just forward to run_qubo
233            let qubo_matrix = hobo.0.clone().into_dimensionality::<Ix2>().map_err(|e| {
234                SamplerError::InvalidParameter(format!(
235                    "Failed to convert HOBO to QUBO dimensionality: {e}"
236                ))
237            })?;
238            let qubo = (qubo_matrix, hobo.1.clone());
239            self.run_qubo(&qubo, shots)
240        } else {
241            // IBM Quantum doesn't directly support higher-order problems
242            Err(SamplerError::InvalidParameter(
243                "IBM Quantum doesn't support HOBO problems directly. Use a quadratization technique first.".to_string()
244            ))
245        }
246    }
247}
248
249#[cfg(test)]
250mod tests {
251    use super::*;
252
253    #[test]
254    fn test_ibm_quantum_config() {
255        let config = IBMQuantumConfig::default();
256        assert_eq!(config.optimization_level, 1);
257        assert_eq!(config.shots, 1024);
258        assert!(config.error_mitigation);
259    }
260
261    #[test]
262    fn test_ibm_quantum_sampler_creation() {
263        let sampler = IBMQuantumSampler::with_token("test_token")
264            .with_backend(IBMBackend::Simulator)
265            .with_error_mitigation(true)
266            .with_optimization_level(2);
267
268        assert_eq!(sampler.config.api_token, "test_token");
269        assert_eq!(sampler.config.optimization_level, 2);
270        assert!(sampler.config.error_mitigation);
271    }
272
273    #[test]
274    fn test_ibm_quantum_backend_types() {
275        let simulator = IBMBackend::Simulator;
276        let hardware = IBMBackend::Hardware("ibmq_lima".to_string());
277        let any = IBMBackend::AnyHardware;
278
279        // Test that backends can be cloned
280        let _sim_clone = simulator;
281        let _hw_clone = hardware;
282        let _any_clone = any;
283    }
284}