quantrs2_tytan/sampler/hardware/
azure_quantum.rs

1//! Azure Quantum Sampler Implementation
2//!
3//! This module provides integration with Microsoft Azure Quantum
4//! for solving optimization problems using various quantum and quantum-inspired solvers.
5
6use scirs2_core::ndarray::{Array, Ix2};
7use scirs2_core::random::{thread_rng, Rng};
8use std::collections::HashMap;
9
10use quantrs2_anneal::QuboModel;
11
12use super::super::{SampleResult, Sampler, SamplerError, SamplerResult};
13
14/// Azure Quantum solver types
15#[derive(Debug, Clone)]
16pub enum AzureSolver {
17    /// Microsoft QIO - Simulated Annealing
18    SimulatedAnnealing,
19    /// Microsoft QIO - Parallel Tempering
20    ParallelTempering,
21    /// Microsoft QIO - Tabu Search
22    TabuSearch,
23    /// Microsoft QIO - Population Annealing
24    PopulationAnnealing,
25    /// Microsoft QIO - Substrate Monte Carlo
26    SubstrateMonteCarlo,
27    /// IonQ quantum computer
28    IonQ,
29    /// Quantinuum (Honeywell) quantum computer
30    Quantinuum,
31    /// Rigetti quantum computer
32    Rigetti,
33}
34
35/// Azure Quantum Sampler Configuration
36#[derive(Debug, Clone)]
37pub struct AzureQuantumConfig {
38    /// Azure subscription ID
39    pub subscription_id: String,
40    /// Resource group name
41    pub resource_group: String,
42    /// Workspace name
43    pub workspace_name: String,
44    /// Solver to use
45    pub solver: AzureSolver,
46    /// Timeout in seconds
47    pub timeout: u64,
48    /// Additional solver-specific parameters
49    pub solver_params: HashMap<String, String>,
50}
51
52impl Default for AzureQuantumConfig {
53    fn default() -> Self {
54        Self {
55            subscription_id: String::new(),
56            resource_group: String::new(),
57            workspace_name: String::new(),
58            solver: AzureSolver::SimulatedAnnealing,
59            timeout: 300,
60            solver_params: HashMap::new(),
61        }
62    }
63}
64
65/// Azure Quantum Sampler
66///
67/// This sampler connects to Microsoft Azure Quantum to solve QUBO problems
68/// using various quantum and quantum-inspired optimization solvers.
69pub struct AzureQuantumSampler {
70    config: AzureQuantumConfig,
71}
72
73impl AzureQuantumSampler {
74    /// Create a new Azure Quantum sampler
75    ///
76    /// # Arguments
77    ///
78    /// * `config` - The Azure Quantum configuration
79    #[must_use]
80    pub const fn new(config: AzureQuantumConfig) -> Self {
81        Self { config }
82    }
83
84    /// Create a new Azure Quantum sampler with workspace details
85    ///
86    /// # Arguments
87    ///
88    /// * `subscription_id` - Azure subscription ID
89    /// * `resource_group` - Resource group name
90    /// * `workspace_name` - Workspace name
91    #[must_use]
92    pub fn with_workspace(
93        subscription_id: &str,
94        resource_group: &str,
95        workspace_name: &str,
96    ) -> Self {
97        Self {
98            config: AzureQuantumConfig {
99                subscription_id: subscription_id.to_string(),
100                resource_group: resource_group.to_string(),
101                workspace_name: workspace_name.to_string(),
102                ..Default::default()
103            },
104        }
105    }
106
107    /// Set the solver to use
108    #[must_use]
109    pub const fn with_solver(mut self, solver: AzureSolver) -> Self {
110        self.config.solver = solver;
111        self
112    }
113
114    /// Set the timeout
115    #[must_use]
116    pub const fn with_timeout(mut self, timeout: u64) -> Self {
117        self.config.timeout = timeout;
118        self
119    }
120
121    /// Add a solver-specific parameter
122    #[must_use]
123    pub fn with_param(mut self, key: String, value: String) -> Self {
124        self.config.solver_params.insert(key, value);
125        self
126    }
127}
128
129impl Sampler for AzureQuantumSampler {
130    fn run_qubo(
131        &self,
132        qubo: &(Array<f64, Ix2>, HashMap<String, usize>),
133        shots: usize,
134    ) -> SamplerResult<Vec<SampleResult>> {
135        // Extract matrix and variable mapping
136        let (matrix, var_map) = qubo;
137
138        // Get the problem dimension
139        let n_vars = var_map.len();
140
141        // Validate problem size based on solver
142        match self.config.solver {
143            AzureSolver::IonQ => {
144                if n_vars > 29 {
145                    return Err(SamplerError::InvalidParameter(
146                        "IonQ currently supports up to 29 qubits".to_string(),
147                    ));
148                }
149            }
150            AzureSolver::Quantinuum => {
151                if n_vars > 20 {
152                    return Err(SamplerError::InvalidParameter(
153                        "Quantinuum currently supports up to 20 qubits for this application"
154                            .to_string(),
155                    ));
156                }
157            }
158            AzureSolver::Rigetti => {
159                if n_vars > 40 {
160                    return Err(SamplerError::InvalidParameter(
161                        "Rigetti currently supports up to 40 qubits".to_string(),
162                    ));
163                }
164            }
165            _ => {
166                // QIO solvers can handle larger problems
167                if n_vars > 10000 {
168                    return Err(SamplerError::InvalidParameter(
169                        "Problem size exceeds Azure QIO limits".to_string(),
170                    ));
171                }
172            }
173        }
174
175        // Map from indices back to variable names
176        let idx_to_var: HashMap<usize, String> = var_map
177            .iter()
178            .map(|(var, &idx)| (idx, var.clone()))
179            .collect();
180
181        // Convert ndarray to a QuboModel
182        let mut qubo_model = QuboModel::new(n_vars);
183
184        // Set linear and quadratic terms
185        for i in 0..n_vars {
186            if matrix[[i, i]] != 0.0 {
187                qubo_model.set_linear(i, matrix[[i, i]])?;
188            }
189
190            for j in (i + 1)..n_vars {
191                if matrix[[i, j]] != 0.0 {
192                    qubo_model.set_quadratic(i, j, matrix[[i, j]])?;
193                }
194            }
195        }
196
197        // Initialize the Azure Quantum client
198        #[cfg(feature = "azure_quantum")]
199        {
200            // TODO: Implement actual Azure Quantum API integration
201            // This would involve:
202            // 1. Authenticate with Azure
203            // 2. Submit job to selected solver
204            // 3. Poll for completion
205            // 4. Retrieve and process results
206
207            let _azure_result = "placeholder";
208        }
209
210        // Placeholder implementation - simulate Azure Quantum behavior
211        let mut results = Vec::new();
212        let mut rng = thread_rng();
213
214        // Different solvers have different characteristics
215        let unique_solutions = match self.config.solver {
216            AzureSolver::SimulatedAnnealing => shots.min(50),
217            AzureSolver::ParallelTempering => shots.min(100),
218            AzureSolver::TabuSearch => shots.min(30),
219            AzureSolver::PopulationAnnealing => shots.min(200),
220            AzureSolver::SubstrateMonteCarlo => shots.min(150),
221            AzureSolver::IonQ | AzureSolver::Quantinuum | AzureSolver::Rigetti => {
222                // Quantum hardware typically provides many measurement samples
223                shots.min(1000)
224            }
225        };
226
227        for _ in 0..unique_solutions {
228            let assignments: HashMap<String, bool> = idx_to_var
229                .values()
230                .map(|name| (name.clone(), rng.gen::<bool>()))
231                .collect();
232
233            // Calculate energy
234            let mut energy = 0.0;
235            for (var_name, &val) in &assignments {
236                let i = var_map[var_name];
237                if val {
238                    energy += matrix[[i, i]];
239                    for (other_var, &other_val) in &assignments {
240                        let j = var_map[other_var];
241                        if i < j && other_val {
242                            energy += matrix[[i, j]];
243                        }
244                    }
245                }
246            }
247
248            // Simulate measurement counts
249            let occurrences = match self.config.solver {
250                AzureSolver::IonQ | AzureSolver::Quantinuum | AzureSolver::Rigetti => {
251                    // Quantum solvers return actual shot counts
252                    rng.gen_range(1..=(shots / unique_solutions + 10))
253                }
254                _ => {
255                    // Classical solvers return occurrence frequencies
256                    1
257                }
258            };
259
260            results.push(SampleResult {
261                assignments,
262                energy,
263                occurrences,
264            });
265        }
266
267        // Sort by energy (best solutions first)
268        results.sort_by(|a, b| {
269            a.energy
270                .partial_cmp(&b.energy)
271                .unwrap_or(std::cmp::Ordering::Equal)
272        });
273
274        // Limit results to requested number
275        results.truncate(shots.min(100));
276
277        Ok(results)
278    }
279
280    fn run_hobo(
281        &self,
282        hobo: &(
283            Array<f64, scirs2_core::ndarray::IxDyn>,
284            HashMap<String, usize>,
285        ),
286        shots: usize,
287    ) -> SamplerResult<Vec<SampleResult>> {
288        use scirs2_core::ndarray::Ix2;
289
290        // For HOBO problems, convert to QUBO if possible
291        if hobo.0.ndim() <= 2 {
292            // If it's already 2D, just forward to run_qubo
293            let qubo_matrix = hobo.0.clone().into_dimensionality::<Ix2>().map_err(|e| {
294                SamplerError::InvalidParameter(format!(
295                    "Failed to convert HOBO to QUBO dimensionality: {e}"
296                ))
297            })?;
298            let qubo = (qubo_matrix, hobo.1.clone());
299            self.run_qubo(&qubo, shots)
300        } else {
301            // Azure Quantum doesn't directly support higher-order problems
302            Err(SamplerError::InvalidParameter(
303                "Azure Quantum doesn't support HOBO problems directly. Use a quadratization technique first.".to_string()
304            ))
305        }
306    }
307}
308
309#[cfg(test)]
310mod tests {
311    use super::*;
312
313    #[test]
314    fn test_azure_quantum_config() {
315        let config = AzureQuantumConfig::default();
316        assert_eq!(config.timeout, 300);
317        assert!(matches!(config.solver, AzureSolver::SimulatedAnnealing));
318    }
319
320    #[test]
321    fn test_azure_quantum_sampler_creation() {
322        let sampler =
323            AzureQuantumSampler::with_workspace("test-subscription", "test-rg", "test-workspace")
324                .with_solver(AzureSolver::ParallelTempering)
325                .with_timeout(600)
326                .with_param("temperature".to_string(), "0.5".to_string());
327
328        assert_eq!(sampler.config.subscription_id, "test-subscription");
329        assert_eq!(sampler.config.resource_group, "test-rg");
330        assert_eq!(sampler.config.workspace_name, "test-workspace");
331        assert_eq!(sampler.config.timeout, 600);
332        assert!(matches!(
333            sampler.config.solver,
334            AzureSolver::ParallelTempering
335        ));
336    }
337
338    #[test]
339    fn test_azure_solver_types() {
340        let solvers = [
341            AzureSolver::SimulatedAnnealing,
342            AzureSolver::ParallelTempering,
343            AzureSolver::TabuSearch,
344            AzureSolver::PopulationAnnealing,
345            AzureSolver::SubstrateMonteCarlo,
346            AzureSolver::IonQ,
347            AzureSolver::Quantinuum,
348            AzureSolver::Rigetti,
349        ];
350
351        assert_eq!(solvers.len(), 8);
352    }
353}