1#![allow(dead_code)]
8
9use scirs2_core::ndarray::{Array1, Array2, Array4};
10use scirs2_core::random::prelude::*;
11use std::collections::HashMap;
12use std::f64::consts::PI;
13
14pub struct QuantumStateTomography {
16 pub num_qubits: usize,
18 pub config: TomographyConfig,
20 pub measurement_data: MeasurementDatabase,
22 pub reconstruction_methods: Vec<Box<dyn ReconstructionMethod>>,
24 pub fidelity_estimators: Vec<Box<dyn FidelityEstimator>>,
26 pub error_analysis: ErrorAnalysisTools,
28 pub metrics: TomographyMetrics,
30}
31
32#[derive(Debug, Clone)]
34pub struct TomographyConfig {
35 pub tomography_type: TomographyType,
37 pub shots_per_setting: usize,
39 pub measurement_bases: Vec<MeasurementBasis>,
41 pub reconstruction_method: ReconstructionMethodType,
43 pub error_mitigation: ErrorMitigationConfig,
45 pub optimization: OptimizationConfig,
47 pub validation: ValidationConfig,
49}
50
51#[derive(Debug, Clone, PartialEq, Eq)]
53pub enum TomographyType {
54 QuantumState,
56 QuantumProcess,
58 ShadowTomography { num_shadows: usize },
60 CompressedSensing { sparsity_level: usize },
62 AdaptiveTomography,
64 EntanglementCharacterization,
66}
67
68#[derive(Debug, Clone)]
70pub struct MeasurementBasis {
71 pub name: String,
73 pub operators: Vec<PauliOperator>,
75 pub angles: Vec<f64>,
77 pub basis_type: BasisType,
79}
80
81#[derive(Debug, Clone, PartialEq, Eq)]
83pub enum BasisType {
84 Computational,
86 Pauli,
88 MUB,
90 SIC,
92 Stabilizer,
94 RandomPauli,
96 Adaptive,
98}
99
100#[derive(Debug, Clone, PartialEq, Eq)]
102pub enum PauliOperator {
103 I, X, Y, Z, }
108
109#[derive(Debug, Clone, PartialEq, Eq)]
111pub enum ReconstructionMethodType {
112 MaximumLikelihood,
114 LeastSquares,
116 CompressedSensing,
118 BayesianInference,
120 NeuralNetwork,
122 Variational,
124 MatrixCompletion,
126}
127
128#[derive(Debug, Clone)]
130pub struct ErrorMitigationConfig {
131 pub readout_error_correction: bool,
133 pub gate_error_mitigation: bool,
135 pub symmetry_verification: bool,
137 pub noise_characterization: NoiseCharacterizationConfig,
139 pub error_correction_protocols: Vec<ErrorCorrectionProtocol>,
141}
142
143#[derive(Debug, Clone)]
145pub struct NoiseCharacterizationConfig {
146 pub coherent_errors: bool,
148 pub incoherent_errors: bool,
150 pub crosstalk: bool,
152 pub temporal_correlations: bool,
154 pub spatial_correlations: bool,
156}
157
158#[derive(Debug, Clone, PartialEq, Eq)]
160pub enum ErrorCorrectionProtocol {
161 ZeroNoiseExtrapolation,
163 ProbabilisticErrorCancellation,
165 SymmetryVerification,
167 VirtualDistillation,
169 CliffordDataRegression,
171}
172
173#[derive(Debug, Clone)]
175pub struct OptimizationConfig {
176 pub max_iterations: usize,
178 pub tolerance: f64,
180 pub regularization: RegularizationConfig,
182 pub constraints: ConstraintConfig,
184 pub algorithm: OptimizationAlgorithm,
186}
187
188#[derive(Debug, Clone)]
190pub struct RegularizationConfig {
191 pub l1_strength: f64,
193 pub l2_strength: f64,
195 pub nuclear_norm_strength: f64,
197 pub trace_norm_strength: f64,
199 pub entropy_strength: f64,
201}
202
203#[derive(Debug, Clone)]
205pub struct ConstraintConfig {
206 pub trace_preserving: bool,
208 pub completely_positive: bool,
210 pub hermitian: bool,
212 pub positive_semidefinite: bool,
214 pub physical_constraints: Vec<PhysicalConstraint>,
216}
217
218#[derive(Debug, Clone, PartialEq, Eq)]
220pub enum PhysicalConstraint {
221 UnitTrace,
223 PositiveEigenvalues,
225 Separability,
227 EntanglementConstraints,
229 SymmetryConstraints,
231}
232
233#[derive(Debug, Clone, PartialEq, Eq)]
235pub enum OptimizationAlgorithm {
236 GradientDescent,
238 QuasiNewton,
240 InteriorPoint,
242 SemidefiniteProgramming,
244 AlternatingProjections,
246 ExpectationMaximization,
248}
249
250#[derive(Debug, Clone)]
252pub struct ValidationConfig {
253 pub cross_validation_folds: usize,
255 pub bootstrap_samples: usize,
257 pub confidence_level: f64,
259 pub validation_metrics: Vec<ValidationMetric>,
261 pub statistical_tests: Vec<StatisticalTest>,
263}
264
265#[derive(Debug, Clone, PartialEq, Eq)]
267pub enum ValidationMetric {
268 Fidelity,
270 TraceDistance,
272 Negativity,
274 Concurrence,
276 MutualInformation,
278 VonNeumannEntropy,
280}
281
282#[derive(Debug, Clone, PartialEq, Eq)]
284pub enum StatisticalTest {
285 ChiSquared,
287 KolmogorovSmirnov,
289 Bootstrap,
291 Permutation,
293}
294
295#[derive(Debug)]
297pub struct MeasurementDatabase {
298 pub raw_outcomes: HashMap<String, Vec<Vec<u8>>>,
300 pub statistics: HashMap<String, MeasurementStatistics>,
302 pub metadata: HashMap<String, MeasurementMetadata>,
304 pub error_data: ErrorCharacterizationData,
306}
307
308#[derive(Debug, Clone)]
310pub struct MeasurementStatistics {
311 pub probabilities: Array1<f64>,
313 pub expectation_values: Array1<f64>,
315 pub variances: Array1<f64>,
317 pub covariances: Array2<f64>,
319 pub higher_moments: HashMap<String, f64>,
321}
322
323#[derive(Debug, Clone)]
325pub struct MeasurementMetadata {
326 pub basis: MeasurementBasis,
328 pub num_shots: usize,
330 pub timestamp: std::time::Instant,
332 pub hardware_info: HardwareInfo,
334 pub calibration_data: CalibrationData,
336}
337
338#[derive(Debug, Clone)]
340pub struct HardwareInfo {
341 pub device_name: String,
343 pub connectivity: Array2<bool>,
345 pub gate_fidelities: HashMap<String, f64>,
347 pub readout_fidelities: Array1<f64>,
349 pub coherence_times: CoherenceTimes,
351}
352
353#[derive(Debug, Clone)]
355pub struct CoherenceTimes {
356 pub t1_times: Array1<f64>,
358 pub t2_times: Array1<f64>,
360 pub t2_echo_times: Array1<f64>,
362}
363
364#[derive(Debug, Clone)]
366pub struct CalibrationData {
367 pub readout_matrix: Array2<f64>,
369 pub gate_parameters: HashMap<String, Array1<f64>>,
371 pub state_prep_fidelity: f64,
373 pub measurement_fidelity: f64,
375}
376
377#[derive(Debug, Clone)]
379pub struct ErrorCharacterizationData {
380 pub process_matrices: HashMap<String, Array4<f64>>,
382 pub noise_models: Vec<NoiseModel>,
384 pub crosstalk_parameters: Array2<f64>,
386 pub temporal_correlations: TemporalCorrelationData,
388}
389
390#[derive(Debug, Clone)]
392pub struct NoiseModel {
393 pub model_type: NoiseModelType,
395 pub parameters: HashMap<String, f64>,
397 pub applicability: ApplicabilityRange,
399 pub accuracy: f64,
401}
402
403#[derive(Debug, Clone, PartialEq, Eq)]
405pub enum NoiseModelType {
406 Depolarizing,
408 AmplitudeDamping,
410 PhaseDamping,
412 Pauli,
414 Coherent,
416 Correlated,
418}
419
420#[derive(Debug, Clone)]
422pub struct ApplicabilityRange {
423 pub time_range: (f64, f64),
425 pub gate_count_range: (usize, usize),
427 pub frequency_range: (f64, f64),
429 pub temperature_range: (f64, f64),
431}
432
433#[derive(Debug, Clone)]
435pub struct TemporalCorrelationData {
436 pub correlation_functions: Array2<f64>,
438 pub memory_kernels: Array1<f64>,
440 pub correlation_times: Array1<f64>,
442 pub non_markovian_indicators: Array1<f64>,
444}
445
446pub trait ReconstructionMethod: Send + Sync {
448 fn reconstruct_state(
450 &self,
451 data: &MeasurementDatabase,
452 ) -> Result<ReconstructedState, TomographyError>;
453
454 fn get_method_name(&self) -> &str;
456
457 fn get_parameters(&self) -> HashMap<String, f64>;
459
460 fn validate_reconstruction(
462 &self,
463 state: &ReconstructedState,
464 data: &MeasurementDatabase,
465 ) -> ValidationResult;
466}
467
468#[derive(Debug, Clone)]
470pub struct ReconstructedState {
471 pub density_matrix: Array2<f64>,
473 pub uncertainty: Array2<f64>,
475 pub eigenvalues: Array1<f64>,
477 pub eigenvectors: Array2<f64>,
479 pub purity: f64,
481 pub entropy: f64,
483 pub entanglement_measures: EntanglementMeasures,
485 pub metadata: ReconstructionMetadata,
487}
488
489#[derive(Debug, Clone)]
491pub struct EntanglementMeasures {
492 pub concurrence: f64,
494 pub negativity: f64,
496 pub entanglement_of_formation: f64,
498 pub distillable_entanglement: f64,
500 pub logarithmic_negativity: f64,
502 pub schmidt_number: f64,
504}
505
506#[derive(Debug, Clone)]
508pub struct ReconstructionMetadata {
509 pub method: String,
511 pub convergence_info: ConvergenceInfo,
513 pub computational_cost: ComputationalCost,
515 pub quality_metrics: QualityMetrics,
517}
518
519#[derive(Debug, Clone)]
521pub struct ConvergenceInfo {
522 pub iterations: usize,
524 pub final_objective: f64,
526 pub converged: bool,
528 pub tolerance: f64,
530 pub history: Vec<f64>,
532}
533
534#[derive(Debug, Clone)]
536pub struct ComputationalCost {
537 pub wall_time: f64,
539 pub cpu_time: f64,
541 pub memory_usage: f64,
543 pub function_evaluations: usize,
545 pub gradient_evaluations: usize,
547}
548
549#[derive(Debug, Clone)]
551pub struct QualityMetrics {
552 pub fidelity: Option<f64>,
554 pub trace_distance: Option<f64>,
556 pub log_likelihood: f64,
558 pub chi_squared: f64,
560 pub degrees_of_freedom: usize,
562 pub p_value: f64,
564}
565
566pub trait FidelityEstimator: Send + Sync {
568 fn estimate_fidelity(
570 &self,
571 state1: &ReconstructedState,
572 state2: &ReconstructedState,
573 ) -> Result<f64, TomographyError>;
574
575 fn estimate_fidelity_from_data(
577 &self,
578 state: &ReconstructedState,
579 data: &MeasurementDatabase,
580 ) -> Result<f64, TomographyError>;
581
582 fn get_estimator_name(&self) -> &str;
584}
585
586#[derive(Debug)]
588pub struct ErrorAnalysisTools {
589 pub error_propagation: Vec<Box<dyn ErrorPropagationMethod>>,
591 pub uncertainty_quantification: Vec<Box<dyn UncertaintyQuantificationMethod>>,
593 pub sensitivity_analysis: SensitivityAnalysis,
595 pub bootstrap_methods: BootstrapMethods,
597}
598
599pub trait ErrorPropagationMethod: Send + Sync + std::fmt::Debug {
601 fn propagate_errors(
603 &self,
604 measurement_errors: &Array1<f64>,
605 reconstruction: &ReconstructedState,
606 ) -> Array2<f64>;
607
608 fn get_method_name(&self) -> &str;
610}
611
612pub trait UncertaintyQuantificationMethod: Send + Sync + std::fmt::Debug {
614 fn quantify_uncertainty(
616 &self,
617 data: &MeasurementDatabase,
618 reconstruction: &ReconstructedState,
619 ) -> UncertaintyAnalysis;
620
621 fn get_method_name(&self) -> &str;
623}
624
625#[derive(Debug, Clone)]
627pub struct UncertaintyAnalysis {
628 pub parameter_uncertainties: Array1<f64>,
630 pub confidence_intervals: Array2<f64>,
632 pub covariance_matrix: Array2<f64>,
634 pub sensitivity_coefficients: Array1<f64>,
636 pub model_selection_uncertainty: f64,
638}
639
640#[derive(Debug, Clone)]
642pub struct SensitivityAnalysis {
643 pub parameter_sensitivities: Array1<f64>,
645 pub cross_sensitivities: Array2<f64>,
647 pub robustness_indicators: Array1<f64>,
649 pub critical_parameters: Vec<usize>,
651}
652
653#[derive(Debug, Clone)]
655pub struct BootstrapMethods {
656 pub num_samples: usize,
658 pub confidence_intervals: Array2<f64>,
660 pub bootstrap_distributions: Array2<f64>,
662 pub bias_estimates: Array1<f64>,
664}
665
666#[derive(Debug, Clone)]
668pub struct ValidationResult {
669 pub passed: bool,
671 pub score: f64,
673 pub test_results: HashMap<String, TestResult>,
675 pub recommendations: Vec<String>,
677}
678
679#[derive(Debug, Clone)]
681pub struct TestResult {
682 pub statistic: f64,
684 pub p_value: f64,
686 pub critical_value: f64,
688 pub passed: bool,
690 pub effect_size: f64,
692}
693
694#[derive(Debug, Clone)]
696pub struct TomographyMetrics {
697 pub reconstruction_accuracy: f64,
699 pub computational_efficiency: f64,
701 pub statistical_power: f64,
703 pub robustness_score: f64,
705 pub overall_quality: f64,
707}
708
709#[derive(Debug, Clone)]
711pub enum TomographyError {
712 InsufficientData(String),
714 ReconstructionFailed(String),
716 InvalidBasis(String),
718 ConvergenceFailed(String),
720 ValidationFailed(String),
722 NumericalError(String),
724}
725
726impl std::fmt::Display for TomographyError {
727 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
728 match self {
729 Self::InsufficientData(msg) => write!(f, "Insufficient data: {msg}"),
730 Self::ReconstructionFailed(msg) => {
731 write!(f, "Reconstruction failed: {msg}")
732 }
733 Self::InvalidBasis(msg) => write!(f, "Invalid basis: {msg}"),
734 Self::ConvergenceFailed(msg) => write!(f, "Convergence failed: {msg}"),
735 Self::ValidationFailed(msg) => write!(f, "Validation failed: {msg}"),
736 Self::NumericalError(msg) => write!(f, "Numerical error: {msg}"),
737 }
738 }
739}
740
741impl std::error::Error for TomographyError {}
742
743impl QuantumStateTomography {
744 pub fn new(num_qubits: usize, config: TomographyConfig) -> Self {
746 Self {
747 num_qubits,
748 config,
749 measurement_data: MeasurementDatabase {
750 raw_outcomes: HashMap::new(),
751 statistics: HashMap::new(),
752 metadata: HashMap::new(),
753 error_data: ErrorCharacterizationData {
754 process_matrices: HashMap::new(),
755 noise_models: Vec::new(),
756 crosstalk_parameters: Array2::zeros((num_qubits, num_qubits)),
757 temporal_correlations: TemporalCorrelationData {
758 correlation_functions: Array2::zeros((num_qubits, num_qubits)),
759 memory_kernels: Array1::zeros(100),
760 correlation_times: Array1::zeros(num_qubits),
761 non_markovian_indicators: Array1::zeros(num_qubits),
762 },
763 },
764 },
765 reconstruction_methods: Vec::new(),
766 fidelity_estimators: Vec::new(),
767 error_analysis: ErrorAnalysisTools {
768 error_propagation: Vec::new(),
769 uncertainty_quantification: Vec::new(),
770 sensitivity_analysis: SensitivityAnalysis {
771 parameter_sensitivities: Array1::zeros(num_qubits * num_qubits),
772 cross_sensitivities: Array2::zeros((num_qubits, num_qubits)),
773 robustness_indicators: Array1::zeros(num_qubits),
774 critical_parameters: Vec::new(),
775 },
776 bootstrap_methods: BootstrapMethods {
777 num_samples: 1000,
778 confidence_intervals: Array2::zeros((num_qubits * num_qubits, 2)),
779 bootstrap_distributions: Array2::zeros((1000, num_qubits * num_qubits)),
780 bias_estimates: Array1::zeros(num_qubits * num_qubits),
781 },
782 },
783 metrics: TomographyMetrics {
784 reconstruction_accuracy: 0.0,
785 computational_efficiency: 0.0,
786 statistical_power: 0.0,
787 robustness_score: 0.0,
788 overall_quality: 0.0,
789 },
790 }
791 }
792
793 pub fn perform_tomography(&mut self) -> Result<ReconstructedState, TomographyError> {
795 println!(
796 "Starting quantum state tomography for {} qubits",
797 self.num_qubits
798 );
799
800 let measurement_settings = self.generate_measurement_settings()?;
802
803 self.collect_measurement_data(&measurement_settings)?;
805
806 self.process_measurement_statistics()?;
808
809 let reconstructed_state = self.reconstruct_quantum_state()?;
811
812 let validation_result = self.validate_reconstruction(&reconstructed_state)?;
814
815 self.perform_error_analysis(&reconstructed_state)?;
817
818 self.compute_tomography_metrics(&reconstructed_state, &validation_result);
820
821 println!("Quantum state tomography completed");
822 println!(
823 "Reconstruction fidelity: {:.4}",
824 self.metrics.reconstruction_accuracy
825 );
826 println!("Overall quality score: {:.4}", self.metrics.overall_quality);
827
828 Ok(reconstructed_state)
829 }
830
831 fn generate_measurement_settings(&self) -> Result<Vec<MeasurementBasis>, TomographyError> {
833 match &self.config.tomography_type {
834 TomographyType::QuantumState => self.generate_pauli_measurements(),
835 TomographyType::ShadowTomography { num_shadows } => {
836 self.generate_shadow_measurements(*num_shadows)
837 }
838 TomographyType::CompressedSensing { sparsity_level: _ } => {
839 self.generate_compressed_sensing_measurements()
840 }
841 TomographyType::AdaptiveTomography => self.generate_adaptive_measurements(),
842 _ => self.generate_pauli_measurements(),
843 }
844 }
845
846 fn generate_pauli_measurements(&self) -> Result<Vec<MeasurementBasis>, TomographyError> {
848 let mut measurements = Vec::new();
849 let pauli_ops = [PauliOperator::X, PauliOperator::Y, PauliOperator::Z];
850
851 for measurement_index in 0..(3_usize.pow(self.num_qubits as u32)) {
853 let mut operators = Vec::new();
854 let mut temp_index = measurement_index;
855
856 for _ in 0..self.num_qubits {
857 operators.push(pauli_ops[temp_index % 3].clone());
858 temp_index /= 3;
859 }
860
861 measurements.push(MeasurementBasis {
862 name: format!("pauli_{measurement_index}"),
863 operators,
864 angles: vec![0.0; self.num_qubits],
865 basis_type: BasisType::Pauli,
866 });
867 }
868
869 Ok(measurements)
870 }
871
872 fn generate_shadow_measurements(
874 &self,
875 num_shadows: usize,
876 ) -> Result<Vec<MeasurementBasis>, TomographyError> {
877 let mut measurements = Vec::new();
878 let mut rng = thread_rng();
879
880 for shadow_idx in 0..num_shadows {
881 let mut operators = Vec::new();
882 let mut angles = Vec::new();
883
884 for _ in 0..self.num_qubits {
885 let pauli_choice: usize = rng.gen_range(0..3);
887 operators.push(match pauli_choice {
888 0 => PauliOperator::X,
889 1 => PauliOperator::Y,
890 _ => PauliOperator::Z,
891 });
892
893 angles.push(rng.gen_range(0.0..2.0 * PI));
895 }
896
897 measurements.push(MeasurementBasis {
898 name: format!("shadow_{shadow_idx}"),
899 operators,
900 angles,
901 basis_type: BasisType::RandomPauli,
902 });
903 }
904
905 Ok(measurements)
906 }
907
908 fn generate_compressed_sensing_measurements(
910 &self,
911 ) -> Result<Vec<MeasurementBasis>, TomographyError> {
912 let num_measurements = self.num_qubits * self.num_qubits * 2; let mut measurements = Vec::new();
915 let mut rng = thread_rng();
916
917 for measurement_idx in 0..num_measurements {
918 let mut operators = Vec::new();
919
920 for _ in 0..self.num_qubits {
921 let pauli_choice: usize = rng.gen_range(0..4);
922 operators.push(match pauli_choice {
923 0 => PauliOperator::I,
924 1 => PauliOperator::X,
925 2 => PauliOperator::Y,
926 _ => PauliOperator::Z,
927 });
928 }
929
930 measurements.push(MeasurementBasis {
931 name: format!("compressed_sensing_{measurement_idx}"),
932 operators,
933 angles: vec![0.0; self.num_qubits],
934 basis_type: BasisType::RandomPauli,
935 });
936 }
937
938 Ok(measurements)
939 }
940
941 fn generate_adaptive_measurements(&self) -> Result<Vec<MeasurementBasis>, TomographyError> {
943 let mut measurements = self.generate_pauli_measurements()?;
945
946 for optimal_idx in 0..self.num_qubits {
949 let mut operators = vec![PauliOperator::Z; self.num_qubits];
950 operators[optimal_idx] = PauliOperator::X;
951
952 measurements.push(MeasurementBasis {
953 name: format!("adaptive_{optimal_idx}"),
954 operators,
955 angles: vec![PI / 4.0; self.num_qubits],
956 basis_type: BasisType::Adaptive,
957 });
958 }
959
960 Ok(measurements)
961 }
962
963 fn collect_measurement_data(
965 &mut self,
966 measurement_settings: &[MeasurementBasis],
967 ) -> Result<(), TomographyError> {
968 let mut rng = thread_rng();
969
970 for setting in measurement_settings {
971 let mut outcomes = Vec::new();
972
973 for _ in 0..self.config.shots_per_setting {
974 let mut outcome = Vec::new();
975
976 for _qubit in 0..self.num_qubits {
978 outcome.push(u8::from(rng.gen::<f64>() >= 0.5));
980 }
981
982 outcomes.push(outcome);
983 }
984
985 self.measurement_data
986 .raw_outcomes
987 .insert(setting.name.clone(), outcomes);
988
989 self.measurement_data.metadata.insert(
991 setting.name.clone(),
992 MeasurementMetadata {
993 basis: setting.clone(),
994 num_shots: self.config.shots_per_setting,
995 timestamp: std::time::Instant::now(),
996 hardware_info: HardwareInfo {
997 device_name: "simulator".to_string(),
998 connectivity: {
999 let mut conn =
1000 Array2::from_elem((self.num_qubits, self.num_qubits), false);
1001 for i in 0..self.num_qubits {
1002 conn[(i, i)] = true;
1003 }
1004 conn
1005 },
1006 gate_fidelities: HashMap::new(),
1007 readout_fidelities: Array1::ones(self.num_qubits) * 0.99,
1008 coherence_times: CoherenceTimes {
1009 t1_times: Array1::ones(self.num_qubits) * 100e-6, t2_times: Array1::ones(self.num_qubits) * 50e-6, t2_echo_times: Array1::ones(self.num_qubits) * 80e-6, },
1013 },
1014 calibration_data: CalibrationData {
1015 readout_matrix: Array2::eye(1 << self.num_qubits),
1016 gate_parameters: HashMap::new(),
1017 state_prep_fidelity: 0.99,
1018 measurement_fidelity: 0.99,
1019 },
1020 },
1021 );
1022 }
1023
1024 Ok(())
1025 }
1026
1027 fn process_measurement_statistics(&mut self) -> Result<(), TomographyError> {
1029 for (setting_name, outcomes) in &self.measurement_data.raw_outcomes {
1030 let num_outcomes = 1 << self.num_qubits;
1031 let mut probabilities = Array1::zeros(num_outcomes);
1032 let mut expectation_values = Array1::zeros(self.num_qubits);
1033
1034 for outcome in outcomes {
1036 let outcome_index = self.outcome_to_index(outcome);
1037 probabilities[outcome_index] += 1.0;
1038 }
1039 probabilities /= outcomes.len() as f64;
1040
1041 for qubit in 0..self.num_qubits {
1043 let mut expectation = 0.0;
1044 for outcome in outcomes {
1045 expectation += if outcome[qubit] == 0 { 1.0 } else { -1.0 };
1046 }
1047 expectation_values[qubit] = expectation / outcomes.len() as f64;
1048 }
1049
1050 let variances = Array1::ones(self.num_qubits) - expectation_values.mapv(|x| x * x);
1052 let covariances = Array2::zeros((self.num_qubits, self.num_qubits));
1053
1054 self.measurement_data.statistics.insert(
1055 setting_name.clone(),
1056 MeasurementStatistics {
1057 probabilities,
1058 expectation_values,
1059 variances,
1060 covariances,
1061 higher_moments: HashMap::new(),
1062 },
1063 );
1064 }
1065
1066 Ok(())
1067 }
1068
1069 fn outcome_to_index(&self, outcome: &[u8]) -> usize {
1071 let mut index = 0;
1072 for (i, &bit) in outcome.iter().enumerate() {
1073 index += (bit as usize) << i;
1074 }
1075 index
1076 }
1077
1078 fn reconstruct_quantum_state(&self) -> Result<ReconstructedState, TomographyError> {
1080 let state_dim = 1 << self.num_qubits;
1081
1082 let mut density_matrix = Array2::eye(state_dim) / state_dim as f64;
1084
1085 let max_iterations = self.config.optimization.max_iterations;
1087 let tolerance = self.config.optimization.tolerance;
1088
1089 let mut log_likelihood = self.compute_log_likelihood(&density_matrix)?;
1090 let mut converged = false;
1091 let mut iteration = 0;
1092 let mut history = Vec::new();
1093
1094 while iteration < max_iterations && !converged {
1095 let gradient = self.compute_likelihood_gradient(&density_matrix)?;
1096
1097 let step_size = 0.01;
1099 density_matrix = &density_matrix + &(gradient * step_size);
1100
1101 density_matrix = self.project_to_density_matrix(density_matrix)?;
1103
1104 let new_log_likelihood = self.compute_log_likelihood(&density_matrix)?;
1105
1106 if (new_log_likelihood - log_likelihood).abs() < tolerance {
1107 converged = true;
1108 }
1109
1110 log_likelihood = new_log_likelihood;
1111 history.push(log_likelihood);
1112 iteration += 1;
1113 }
1114
1115 let eigendecomposition = self.compute_eigendecomposition(&density_matrix)?;
1117
1118 let entanglement_measures = self.compute_entanglement_measures(&density_matrix)?;
1120
1121 let purity = self.compute_purity(&density_matrix);
1123 let entropy = self.compute_von_neumann_entropy(&density_matrix);
1124
1125 Ok(ReconstructedState {
1126 density_matrix,
1127 uncertainty: Array2::zeros((state_dim, state_dim)), eigenvalues: eigendecomposition.0,
1129 eigenvectors: eigendecomposition.1,
1130 purity,
1131 entropy,
1132 entanglement_measures,
1133 metadata: ReconstructionMetadata {
1134 method: "Maximum Likelihood".to_string(),
1135 convergence_info: ConvergenceInfo {
1136 iterations: iteration,
1137 final_objective: log_likelihood,
1138 converged,
1139 tolerance,
1140 history,
1141 },
1142 computational_cost: ComputationalCost {
1143 wall_time: 1.0, cpu_time: 1.0,
1145 memory_usage: 1.0,
1146 function_evaluations: iteration,
1147 gradient_evaluations: iteration,
1148 },
1149 quality_metrics: QualityMetrics {
1150 fidelity: None,
1151 trace_distance: None,
1152 log_likelihood,
1153 chi_squared: 0.0, degrees_of_freedom: state_dim * state_dim - 1,
1155 p_value: 0.05, },
1157 },
1158 })
1159 }
1160
1161 fn compute_log_likelihood(&self, density_matrix: &Array2<f64>) -> Result<f64, TomographyError> {
1163 let mut log_likelihood = 0.0;
1164
1165 for (setting_name, statistics) in &self.measurement_data.statistics {
1166 if let Some(metadata) = self.measurement_data.metadata.get(setting_name) {
1167 let predicted_probs =
1169 self.compute_predicted_probabilities(density_matrix, &metadata.basis)?;
1170
1171 for (observed, predicted) in
1173 statistics.probabilities.iter().zip(predicted_probs.iter())
1174 {
1175 if *observed > 0.0 && *predicted > 1e-15 {
1176 log_likelihood += observed * predicted.ln();
1177 }
1178 }
1179 }
1180 }
1181
1182 Ok(log_likelihood)
1183 }
1184
1185 fn compute_likelihood_gradient(
1187 &self,
1188 density_matrix: &Array2<f64>,
1189 ) -> Result<Array2<f64>, TomographyError> {
1190 let state_dim = density_matrix.nrows();
1191 let mut gradient = Array2::zeros((state_dim, state_dim));
1192
1193 for i in 0..state_dim {
1195 for j in 0..state_dim {
1196 gradient[[i, j]] = 1.0 / (density_matrix[[i, j]] + 1e-15);
1197 }
1198 }
1199
1200 Ok(gradient)
1201 }
1202
1203 fn project_to_density_matrix(
1205 &self,
1206 mut matrix: Array2<f64>,
1207 ) -> Result<Array2<f64>, TomographyError> {
1208 for i in 0..matrix.nrows() {
1210 for j in i..matrix.ncols() {
1211 let avg = f64::midpoint(matrix[[i, j]], matrix[[j, i]]);
1212 matrix[[i, j]] = avg;
1213 matrix[[j, i]] = avg;
1214 }
1215 }
1216
1217 let (mut eigenvals, eigenvecs) = self.compute_eigendecomposition(&matrix)?;
1219
1220 for eigenval in &mut eigenvals {
1222 *eigenval = eigenval.max(0.0);
1223 }
1224
1225 let mut reconstructed = Array2::zeros(matrix.raw_dim());
1227 for i in 0..eigenvals.len() {
1228 let eigenvec = eigenvecs.column(i);
1229 for k in 0..reconstructed.nrows() {
1230 for l in 0..reconstructed.ncols() {
1231 reconstructed[[k, l]] += eigenvals[i] * eigenvec[k] * eigenvec[l];
1232 }
1233 }
1234 }
1235
1236 let trace = reconstructed.diag().sum();
1238 if trace > 1e-15 {
1239 reconstructed /= trace;
1240 }
1241
1242 Ok(reconstructed)
1243 }
1244
1245 fn compute_predicted_probabilities(
1247 &self,
1248 density_matrix: &Array2<f64>,
1249 basis: &MeasurementBasis,
1250 ) -> Result<Array1<f64>, TomographyError> {
1251 let num_outcomes = 1 << self.num_qubits;
1252 let mut probabilities = Array1::zeros(num_outcomes);
1253
1254 for outcome_idx in 0..num_outcomes {
1256 let measurement_operator = self.construct_measurement_operator(outcome_idx, basis)?;
1257
1258 let prob = self.matrix_trace(&measurement_operator.dot(density_matrix));
1260 probabilities[outcome_idx] = prob.max(0.0);
1261 }
1262
1263 let total_prob = probabilities.sum();
1265 if total_prob > 1e-15 {
1266 probabilities /= total_prob;
1267 }
1268
1269 Ok(probabilities)
1270 }
1271
1272 fn construct_measurement_operator(
1274 &self,
1275 outcome_idx: usize,
1276 basis: &MeasurementBasis,
1277 ) -> Result<Array2<f64>, TomographyError> {
1278 let state_dim = 1 << self.num_qubits;
1279 let mut operator = Array2::eye(state_dim);
1280
1281 let mut temp_outcome = outcome_idx;
1283 let mut outcome_bits = Vec::new();
1284 for _ in 0..self.num_qubits {
1285 outcome_bits.push(temp_outcome % 2);
1286 temp_outcome /= 2;
1287 }
1288
1289 for (qubit, pauli_op) in basis.operators.iter().enumerate() {
1291 let qubit_outcome = outcome_bits[qubit];
1292 let pauli_matrix = self.get_pauli_matrix(pauli_op, qubit_outcome);
1293
1294 operator = self.tensor_product_with_identity(&operator, &pauli_matrix, qubit)?;
1296 }
1297
1298 Ok(operator)
1299 }
1300
1301 fn get_pauli_matrix(&self, pauli_op: &PauliOperator, outcome: usize) -> Array2<f64> {
1303 match pauli_op {
1304 PauliOperator::I => Array2::eye(2),
1305 PauliOperator::X => {
1306 if outcome == 0 {
1307 Array2::from_shape_vec((2, 2), vec![0.5, 0.5, 0.5, 0.5])
1309 .expect("2x2 matrix with 4 elements is always valid")
1310 } else {
1311 Array2::from_shape_vec((2, 2), vec![0.5, -0.5, -0.5, 0.5])
1312 .expect("2x2 matrix with 4 elements is always valid")
1313 }
1314 }
1315 PauliOperator::Y => {
1316 if outcome == 0 {
1317 Array2::from_shape_vec((2, 2), vec![0.5, 0.0, 0.0, 0.5])
1318 .expect("2x2 matrix with 4 elements is always valid")
1319 } else {
1320 Array2::from_shape_vec((2, 2), vec![0.5, 0.0, 0.0, 0.5])
1321 .expect("2x2 matrix with 4 elements is always valid")
1322 }
1323 }
1324 PauliOperator::Z => {
1325 if outcome == 0 {
1326 Array2::from_shape_vec((2, 2), vec![1.0, 0.0, 0.0, 0.0])
1327 .expect("2x2 matrix with 4 elements is always valid")
1328 } else {
1329 Array2::from_shape_vec((2, 2), vec![0.0, 0.0, 0.0, 1.0])
1330 .expect("2x2 matrix with 4 elements is always valid")
1331 }
1332 }
1333 }
1334 }
1335
1336 fn tensor_product_with_identity(
1338 &self,
1339 operator: &Array2<f64>,
1340 pauli: &Array2<f64>,
1341 qubit: usize,
1342 ) -> Result<Array2<f64>, TomographyError> {
1343 if qubit == 0 {
1345 Ok(pauli.clone())
1346 } else {
1347 Ok(operator.clone())
1348 }
1349 }
1350
1351 fn matrix_trace(&self, matrix: &Array2<f64>) -> f64 {
1353 matrix.diag().sum()
1354 }
1355
1356 fn compute_eigendecomposition(
1358 &self,
1359 matrix: &Array2<f64>,
1360 ) -> Result<(Array1<f64>, Array2<f64>), TomographyError> {
1361 let n = matrix.nrows();
1362
1363 if n == 2 {
1364 let a = matrix[[0, 0]];
1366 let b = matrix[[0, 1]];
1367 let c = matrix[[1, 0]];
1368 let d = matrix[[1, 1]];
1369
1370 let trace = a + d;
1371 let det = a.mul_add(d, -(b * c));
1372 let discriminant = trace.mul_add(trace, -(4.0 * det)).sqrt();
1373
1374 let eigenval1 = f64::midpoint(trace, discriminant);
1375 let eigenval2 = (trace - discriminant) / 2.0;
1376
1377 let eigenvals = Array1::from_vec(vec![eigenval1.max(0.0), eigenval2.max(0.0)]);
1378 let eigenvecs = Array2::eye(n); Ok((eigenvals, eigenvecs))
1381 } else {
1382 let eigenvals = Array1::ones(n) / n as f64;
1384 let eigenvecs = Array2::eye(n);
1385 Ok((eigenvals, eigenvecs))
1386 }
1387 }
1388
1389 fn compute_entanglement_measures(
1391 &self,
1392 density_matrix: &Array2<f64>,
1393 ) -> Result<EntanglementMeasures, TomographyError> {
1394 let purity = self.compute_purity(density_matrix);
1396
1397 Ok(EntanglementMeasures {
1398 concurrence: if purity < 1.0 {
1399 2.0 * (0.5 - purity / 2.0).sqrt()
1400 } else {
1401 0.0
1402 },
1403 negativity: 0.0, entanglement_of_formation: 0.0, distillable_entanglement: 0.0, logarithmic_negativity: 0.0, schmidt_number: 1.0, })
1409 }
1410
1411 fn compute_purity(&self, density_matrix: &Array2<f64>) -> f64 {
1413 let squared = density_matrix.dot(density_matrix);
1414 self.matrix_trace(&squared)
1415 }
1416
1417 fn compute_von_neumann_entropy(&self, density_matrix: &Array2<f64>) -> f64 {
1419 let (eigenvals, _) = self
1420 .compute_eigendecomposition(density_matrix)
1421 .unwrap_or_else(|_| {
1422 (
1423 Array1::ones(density_matrix.nrows()) / density_matrix.nrows() as f64,
1424 Array2::eye(density_matrix.nrows()),
1425 )
1426 });
1427
1428 let mut entropy = 0.0;
1429 for &eigenval in &eigenvals {
1430 if eigenval > 1e-15 {
1431 entropy -= eigenval * eigenval.ln();
1432 }
1433 }
1434
1435 entropy
1436 }
1437
1438 fn validate_reconstruction(
1440 &self,
1441 state: &ReconstructedState,
1442 ) -> Result<ValidationResult, TomographyError> {
1443 let mut test_results = HashMap::new();
1444 let mut passed = true;
1445
1446 let eigenvals_positive = state.eigenvalues.iter().all(|&eigenval| eigenval >= -1e-10);
1448 test_results.insert(
1449 "positive_semidefinite".to_string(),
1450 TestResult {
1451 statistic: *state
1452 .eigenvalues
1453 .iter()
1454 .min_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1455 .unwrap_or(&0.0),
1456 p_value: if eigenvals_positive { 1.0 } else { 0.0 },
1457 critical_value: 0.0,
1458 passed: eigenvals_positive,
1459 effect_size: 1.0,
1460 },
1461 );
1462
1463 if !eigenvals_positive {
1464 passed = false;
1465 }
1466
1467 let trace = self.matrix_trace(&state.density_matrix);
1469 let trace_valid = (trace - 1.0).abs() < 1e-6;
1470 test_results.insert(
1471 "unit_trace".to_string(),
1472 TestResult {
1473 statistic: trace,
1474 p_value: if trace_valid { 1.0 } else { 0.0 },
1475 critical_value: 1.0,
1476 passed: trace_valid,
1477 effect_size: (trace - 1.0).abs(),
1478 },
1479 );
1480
1481 if !trace_valid {
1482 passed = false;
1483 }
1484
1485 let hermitian = self.is_hermitian(&state.density_matrix);
1487 test_results.insert(
1488 "hermitian".to_string(),
1489 TestResult {
1490 statistic: 1.0,
1491 p_value: if hermitian { 1.0 } else { 0.0 },
1492 critical_value: 1.0,
1493 passed: hermitian,
1494 effect_size: 1.0,
1495 },
1496 );
1497
1498 if !hermitian {
1499 passed = false;
1500 }
1501
1502 let score = if passed { 1.0 } else { 0.5 };
1503
1504 Ok(ValidationResult {
1505 passed,
1506 score,
1507 test_results,
1508 recommendations: if passed {
1509 vec!["Reconstruction is physically valid".to_string()]
1510 } else {
1511 vec!["Consider adjusting reconstruction parameters".to_string()]
1512 },
1513 })
1514 }
1515
1516 fn is_hermitian(&self, matrix: &Array2<f64>) -> bool {
1518 for i in 0..matrix.nrows() {
1519 for j in 0..matrix.ncols() {
1520 if (matrix[[i, j]] - matrix[[j, i]]).abs() > 1e-10 {
1521 return false;
1522 }
1523 }
1524 }
1525 true
1526 }
1527
1528 fn perform_error_analysis(
1530 &mut self,
1531 _state: &ReconstructedState,
1532 ) -> Result<(), TomographyError> {
1533 println!("Performing error analysis...");
1535
1536 self.error_analysis
1538 .sensitivity_analysis
1539 .parameter_sensitivities
1540 .fill(0.1);
1541 self.error_analysis
1542 .sensitivity_analysis
1543 .robustness_indicators
1544 .fill(0.8);
1545
1546 self.error_analysis
1548 .bootstrap_methods
1549 .bias_estimates
1550 .fill(0.01);
1551
1552 Ok(())
1553 }
1554
1555 fn compute_tomography_metrics(
1557 &mut self,
1558 state: &ReconstructedState,
1559 validation: &ValidationResult,
1560 ) {
1561 self.metrics.reconstruction_accuracy = validation.score;
1562 self.metrics.computational_efficiency =
1563 1.0 / (state.metadata.computational_cost.wall_time + 1.0);
1564 self.metrics.statistical_power = state.metadata.quality_metrics.p_value.min(0.95);
1565 self.metrics.robustness_score = self
1566 .error_analysis
1567 .sensitivity_analysis
1568 .robustness_indicators
1569 .mean()
1570 .unwrap_or(0.0);
1571
1572 self.metrics.overall_quality = self.metrics.robustness_score.mul_add(
1574 0.2,
1575 self.metrics.statistical_power.mul_add(
1576 0.2,
1577 self.metrics
1578 .reconstruction_accuracy
1579 .mul_add(0.4, self.metrics.computational_efficiency * 0.2),
1580 ),
1581 );
1582 }
1583}
1584
1585pub fn create_default_tomography_config() -> TomographyConfig {
1587 TomographyConfig {
1588 tomography_type: TomographyType::QuantumState,
1589 shots_per_setting: 1000,
1590 measurement_bases: Vec::new(),
1591 reconstruction_method: ReconstructionMethodType::MaximumLikelihood,
1592 error_mitigation: ErrorMitigationConfig {
1593 readout_error_correction: true,
1594 gate_error_mitigation: false,
1595 symmetry_verification: true,
1596 noise_characterization: NoiseCharacterizationConfig {
1597 coherent_errors: false,
1598 incoherent_errors: true,
1599 crosstalk: false,
1600 temporal_correlations: false,
1601 spatial_correlations: false,
1602 },
1603 error_correction_protocols: vec![ErrorCorrectionProtocol::ZeroNoiseExtrapolation],
1604 },
1605 optimization: OptimizationConfig {
1606 max_iterations: 1000,
1607 tolerance: 1e-6,
1608 regularization: RegularizationConfig {
1609 l1_strength: 0.0,
1610 l2_strength: 0.001,
1611 nuclear_norm_strength: 0.0,
1612 trace_norm_strength: 0.0,
1613 entropy_strength: 0.0,
1614 },
1615 constraints: ConstraintConfig {
1616 trace_preserving: true,
1617 completely_positive: true,
1618 hermitian: true,
1619 positive_semidefinite: true,
1620 physical_constraints: vec![
1621 PhysicalConstraint::UnitTrace,
1622 PhysicalConstraint::PositiveEigenvalues,
1623 ],
1624 },
1625 algorithm: OptimizationAlgorithm::GradientDescent,
1626 },
1627 validation: ValidationConfig {
1628 cross_validation_folds: 5,
1629 bootstrap_samples: 1000,
1630 confidence_level: 0.95,
1631 validation_metrics: vec![ValidationMetric::Fidelity, ValidationMetric::TraceDistance],
1632 statistical_tests: vec![StatisticalTest::ChiSquared, StatisticalTest::Bootstrap],
1633 },
1634 }
1635}
1636
1637pub fn create_tomography_system(num_qubits: usize) -> QuantumStateTomography {
1639 let config = create_default_tomography_config();
1640 QuantumStateTomography::new(num_qubits, config)
1641}
1642
1643pub fn create_shadow_tomography_config(num_shadows: usize) -> TomographyConfig {
1645 let mut config = create_default_tomography_config();
1646 config.tomography_type = TomographyType::ShadowTomography { num_shadows };
1647 config.shots_per_setting = 100; config
1649}
1650
1651#[cfg(test)]
1652mod tests {
1653 use super::*;
1654
1655 #[test]
1656 fn test_tomography_creation() {
1657 let tomography = create_tomography_system(2);
1658 assert_eq!(tomography.num_qubits, 2);
1659 assert_eq!(
1660 tomography.config.tomography_type,
1661 TomographyType::QuantumState
1662 );
1663 }
1664
1665 #[test]
1666 fn test_pauli_measurement_generation() {
1667 let tomography = create_tomography_system(2);
1668 let mut measurements = tomography
1669 .generate_pauli_measurements()
1670 .expect("Pauli measurement generation should succeed");
1671 assert_eq!(measurements.len(), 9); }
1673
1674 #[test]
1675 fn test_shadow_measurement_generation() {
1676 let tomography = create_tomography_system(2);
1677 let mut measurements = tomography
1678 .generate_shadow_measurements(100)
1679 .expect("Shadow measurement generation should succeed");
1680 assert_eq!(measurements.len(), 100);
1681 }
1682
1683 #[test]
1684 fn test_outcome_to_index() {
1685 let tomography = create_tomography_system(3);
1686 assert_eq!(tomography.outcome_to_index(&[0, 0, 0]), 0);
1687 assert_eq!(tomography.outcome_to_index(&[1, 0, 0]), 1);
1688 assert_eq!(tomography.outcome_to_index(&[0, 1, 0]), 2);
1689 assert_eq!(tomography.outcome_to_index(&[1, 1, 1]), 7);
1690 }
1691
1692 #[test]
1693 fn test_purity_computation() {
1694 let tomography = create_tomography_system(1);
1695 let pure_state = Array2::from_shape_vec((2, 2), vec![1.0, 0.0, 0.0, 0.0])
1696 .expect("Array creation from valid shape and data should succeed");
1697 let purity = tomography.compute_purity(&pure_state);
1698 assert!((purity - 1.0).abs() < 1e-10);
1699
1700 let mixed_state = Array2::eye(2) / 2.0;
1701 let mixed_purity = tomography.compute_purity(&mixed_state);
1702 assert!((mixed_purity - 0.5).abs() < 1e-10);
1703 }
1704
1705 #[test]
1706 fn test_entropy_computation() {
1707 let tomography = create_tomography_system(1);
1708 let pure_state = Array2::from_shape_vec((2, 2), vec![1.0, 0.0, 0.0, 0.0])
1709 .expect("Array creation from valid shape and data should succeed");
1710 let entropy = tomography.compute_von_neumann_entropy(&pure_state);
1711 assert!(entropy.abs() < 1e-10); }
1713}