quantrs2_tytan/
quantum_neural_networks.rs

1//! Advanced Quantum Neural Networks for Optimization
2//!
3//! This module implements quantum neural networks specifically optimized for
4//! quantum annealing problems, featuring hybrid quantum-classical architectures
5//! and adaptive learning algorithms.
6
7#![allow(dead_code)]
8
9use crate::sampler::SamplerError;
10use scirs2_core::ndarray::{s, Array1, Array2};
11use scirs2_core::random::prelude::*;
12use scirs2_core::SliceRandomExt;
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16/// Quantum Neural Network for optimization problems
17pub struct QuantumNeuralNetwork {
18    /// Network architecture
19    pub architecture: QNNArchitecture,
20    /// Quantum layers
21    pub layers: Vec<QuantumLayer>,
22    /// Classical preprocessing layers
23    pub classical_layers: Vec<ClassicalLayer>,
24    /// Training configuration
25    pub training_config: QNNTrainingConfig,
26    /// Current parameters
27    pub parameters: QNNParameters,
28    /// Training history
29    pub training_history: Vec<TrainingEpoch>,
30    /// Performance metrics
31    pub metrics: QNNMetrics,
32}
33
34/// QNN Architecture specification
35#[derive(Debug, Clone)]
36pub struct QNNArchitecture {
37    /// Input dimension
38    pub input_dim: usize,
39    /// Output dimension
40    pub output_dim: usize,
41    /// Number of qubits
42    pub num_qubits: usize,
43    /// Quantum circuit depth
44    pub circuit_depth: usize,
45    /// Entanglement pattern
46    pub entanglement_pattern: EntanglementPattern,
47    /// Measurement scheme
48    pub measurement_scheme: MeasurementScheme,
49    /// Classical postprocessing
50    pub postprocessing: PostprocessingScheme,
51}
52
53/// Entanglement patterns for quantum layers
54#[derive(Debug, Clone, PartialEq)]
55pub enum EntanglementPattern {
56    /// Linear nearest-neighbor entanglement
57    Linear,
58    /// Full entanglement between all qubits
59    Full,
60    /// Circular entanglement
61    Circular,
62    /// Random entanglement pattern
63    Random { connectivity: f64 },
64    /// Hardware-efficient pattern
65    HardwareEfficient,
66    /// Problem-adapted pattern
67    ProblemAdapted,
68}
69
70/// Measurement schemes
71#[derive(Debug, Clone, PartialEq, Eq)]
72pub enum MeasurementScheme {
73    /// Computational basis measurement
74    Computational,
75    /// Pauli measurements
76    Pauli { bases: Vec<PauliBasis> },
77    /// Bell measurements
78    Bell,
79    /// Adaptive measurements
80    Adaptive,
81    /// Shadow tomography
82    ShadowTomography { num_shadows: usize },
83}
84
85/// Pauli measurement bases
86#[derive(Debug, Clone, PartialEq, Eq)]
87pub enum PauliBasis {
88    X,
89    Y,
90    Z,
91}
92
93/// Postprocessing schemes
94#[derive(Debug, Clone, PartialEq, Eq)]
95pub enum PostprocessingScheme {
96    /// No postprocessing
97    None,
98    /// Linear transformation
99    Linear,
100    /// Nonlinear neural network
101    NonlinearNN { hidden_dims: Vec<usize> },
102    /// Attention mechanism
103    Attention,
104    /// Graph neural network
105    GraphNN,
106}
107
108/// Quantum layer in the neural network
109#[derive(Debug, Clone)]
110pub struct QuantumLayer {
111    /// Layer index
112    pub layer_id: usize,
113    /// Number of qubits in this layer
114    pub num_qubits: usize,
115    /// Quantum gates in this layer
116    pub gates: Vec<QuantumGate>,
117    /// Parametrized gates
118    pub parametrized_gates: Vec<ParametrizedGate>,
119    /// Layer type
120    pub layer_type: QuantumLayerType,
121    /// Skip connections
122    pub skip_connections: Vec<usize>,
123}
124
125/// Types of quantum layers
126#[derive(Debug, Clone, PartialEq, Eq)]
127pub enum QuantumLayerType {
128    /// Variational layer
129    Variational,
130    /// Entangling layer
131    Entangling,
132    /// Measurement layer
133    Measurement,
134    /// Error correction layer
135    ErrorCorrection,
136    /// Adaptive layer
137    Adaptive,
138}
139
140/// Quantum gates
141#[derive(Debug, Clone)]
142pub enum QuantumGate {
143    /// Single-qubit rotation gates
144    RX {
145        qubit: usize,
146        angle: f64,
147    },
148    RY {
149        qubit: usize,
150        angle: f64,
151    },
152    RZ {
153        qubit: usize,
154        angle: f64,
155    },
156    /// Two-qubit gates
157    CNOT {
158        control: usize,
159        target: usize,
160    },
161    CZ {
162        control: usize,
163        target: usize,
164    },
165    /// Multi-qubit gates
166    Toffoli {
167        controls: Vec<usize>,
168        target: usize,
169    },
170    /// Custom gates
171    Custom {
172        name: String,
173        qubits: Vec<usize>,
174        matrix: Array2<f64>,
175    },
176}
177
178/// Parametrized quantum gates
179#[derive(Debug, Clone)]
180pub struct ParametrizedGate {
181    /// Gate type
182    pub gate_type: ParametrizedGateType,
183    /// Qubits involved
184    pub qubits: Vec<usize>,
185    /// Parameter indices
186    pub parameter_indices: Vec<usize>,
187    /// Gate function
188    pub gate_function: GateFunction,
189}
190
191/// Types of parametrized gates
192#[derive(Debug, Clone, PartialEq)]
193pub enum ParametrizedGateType {
194    /// Rotation gates
195    Rotation { axis: RotationAxis },
196    /// Entangling gates
197    Entangling { gate_name: String },
198    /// Generalized rotation
199    GeneralizedRotation,
200    /// Problem-specific gates
201    ProblemSpecific { problem_type: String },
202}
203
204/// Rotation axes
205#[derive(Debug, Clone, PartialEq)]
206pub enum RotationAxis {
207    X,
208    Y,
209    Z,
210    Arbitrary { nx: f64, ny: f64, nz: f64 },
211}
212
213/// Gate function for parametrized gates
214#[derive(Debug, Clone)]
215pub enum GateFunction {
216    /// Standard rotation
217    StandardRotation,
218    /// Controlled rotation
219    ControlledRotation,
220    /// Multi-controlled rotation
221    MultiControlledRotation,
222    /// Custom function
223    Custom { function_name: String },
224}
225
226/// Classical layer for hybrid architecture
227#[derive(Debug, Clone)]
228pub struct ClassicalLayer {
229    /// Layer type
230    pub layer_type: ClassicalLayerType,
231    /// Input dimension
232    pub input_dim: usize,
233    /// Output dimension
234    pub output_dim: usize,
235    /// Weights
236    pub weights: Array2<f64>,
237    /// Biases
238    pub biases: Array1<f64>,
239    /// Activation function
240    pub activation: ActivationFunction,
241}
242
243/// Types of classical layers
244#[derive(Debug, Clone, PartialEq, Eq)]
245pub enum ClassicalLayerType {
246    /// Dense/fully connected
247    Dense,
248    /// Convolutional
249    Convolutional,
250    /// Attention
251    Attention,
252    /// Normalization
253    Normalization,
254    /// Embedding
255    Embedding,
256}
257
258/// Activation functions
259#[derive(Debug, Clone, PartialEq, Eq)]
260pub enum ActivationFunction {
261    ReLU,
262    Sigmoid,
263    Tanh,
264    Linear,
265    Softmax,
266    Swish,
267    GELU,
268}
269
270/// Training configuration for QNN
271#[derive(Debug, Clone)]
272pub struct QNNTrainingConfig {
273    /// Learning rate
274    pub learning_rate: f64,
275    /// Batch size
276    pub batch_size: usize,
277    /// Number of epochs
278    pub num_epochs: usize,
279    /// Optimizer type
280    pub optimizer: OptimizerType,
281    /// Loss function
282    pub loss_function: LossFunction,
283    /// Regularization
284    pub regularization: RegularizationConfig,
285    /// Early stopping
286    pub early_stopping: EarlyStoppingConfig,
287    /// Gradient estimation
288    pub gradient_estimation: GradientEstimationMethod,
289}
290
291/// Optimizer types
292#[derive(Debug, Clone, PartialEq)]
293pub enum OptimizerType {
294    SGD {
295        momentum: f64,
296    },
297    Adam {
298        beta1: f64,
299        beta2: f64,
300        epsilon: f64,
301    },
302    AdaGrad {
303        epsilon: f64,
304    },
305    RMSprop {
306        decay: f64,
307        epsilon: f64,
308    },
309    SPSA {
310        a: f64,
311        c: f64,
312    },
313    QuantumNaturalGradient,
314}
315
316/// Loss functions
317#[derive(Debug, Clone, PartialEq)]
318pub enum LossFunction {
319    MeanSquaredError,
320    CrossEntropy,
321    HuberLoss { delta: f64 },
322    QuantumFisherInformation,
323    ExpectationValueLoss,
324    Custom { name: String },
325}
326
327/// Regularization configuration
328#[derive(Debug, Clone)]
329pub struct RegularizationConfig {
330    /// L1 regularization strength
331    pub l1_strength: f64,
332    /// L2 regularization strength
333    pub l2_strength: f64,
334    /// Dropout probability
335    pub dropout_prob: f64,
336    /// Parameter noise
337    pub parameter_noise: f64,
338    /// Quantum noise modeling
339    pub quantum_noise: QuantumNoiseConfig,
340}
341
342/// Quantum noise configuration
343#[derive(Debug, Clone)]
344pub struct QuantumNoiseConfig {
345    /// Enable noise modeling
346    pub enable_noise: bool,
347    /// Depolarizing noise strength
348    pub depolarizing_strength: f64,
349    /// Amplitude damping
350    pub amplitude_damping: f64,
351    /// Phase damping
352    pub phase_damping: f64,
353    /// Gate error rates
354    pub gate_error_rates: HashMap<String, f64>,
355}
356
357/// Early stopping configuration
358#[derive(Debug, Clone)]
359pub struct EarlyStoppingConfig {
360    /// Enable early stopping
361    pub enabled: bool,
362    /// Patience (number of epochs without improvement)
363    pub patience: usize,
364    /// Minimum improvement threshold
365    pub min_improvement: f64,
366    /// Metric to monitor
367    pub monitor_metric: String,
368}
369
370/// Gradient estimation methods
371#[derive(Debug, Clone, PartialEq)]
372pub enum GradientEstimationMethod {
373    /// Parameter shift rule
374    ParameterShift,
375    /// Finite differences
376    FiniteDifferences { epsilon: f64 },
377    /// Stochastic parameter shift
378    StochasticParameterShift,
379    /// Natural gradient
380    NaturalGradient,
381    /// Quantum Fisher information
382    QuantumFisherInformation,
383}
384
385/// QNN parameters
386#[derive(Debug, Clone)]
387pub struct QNNParameters {
388    /// Quantum circuit parameters
389    pub quantum_params: Array1<f64>,
390    /// Classical layer parameters
391    pub classical_params: Vec<Array2<f64>>,
392    /// Bias parameters
393    pub bias_params: Vec<Array1<f64>>,
394    /// Parameter bounds
395    pub parameter_bounds: Vec<(f64, f64)>,
396    /// Parameter initialization scheme
397    pub initialization_scheme: ParameterInitializationScheme,
398}
399
400/// Parameter initialization schemes
401#[derive(Debug, Clone, PartialEq)]
402pub enum ParameterInitializationScheme {
403    /// Random uniform initialization
404    RandomUniform { min: f64, max: f64 },
405    /// Random normal initialization
406    RandomNormal { mean: f64, std: f64 },
407    /// Xavier/Glorot initialization
408    Xavier,
409    /// He initialization
410    He,
411    /// Problem-specific initialization
412    ProblemSpecific,
413    /// Warm start from classical solution
414    WarmStart,
415}
416
417/// Training epoch data
418#[derive(Debug, Clone)]
419pub struct TrainingEpoch {
420    /// Epoch number
421    pub epoch: usize,
422    /// Training loss
423    pub training_loss: f64,
424    /// Validation loss
425    pub validation_loss: Option<f64>,
426    /// Training accuracy
427    pub training_accuracy: f64,
428    /// Validation accuracy
429    pub validation_accuracy: Option<f64>,
430    /// Learning rate used
431    pub learning_rate: f64,
432    /// Training time
433    pub training_time: f64,
434    /// Gradient norms
435    pub gradient_norms: Vec<f64>,
436    /// Parameter statistics
437    pub parameter_stats: ParameterStatistics,
438}
439
440/// Parameter statistics
441#[derive(Debug, Clone)]
442pub struct ParameterStatistics {
443    /// Mean parameter values
444    pub mean_values: Array1<f64>,
445    /// Parameter standard deviations
446    pub std_values: Array1<f64>,
447    /// Parameter ranges
448    pub ranges: Vec<(f64, f64)>,
449    /// Parameter correlations
450    pub correlations: Array2<f64>,
451}
452
453/// QNN performance metrics
454#[derive(Debug, Clone)]
455pub struct QNNMetrics {
456    /// Training metrics
457    pub training_metrics: TrainingMetrics,
458    /// Validation metrics
459    pub validation_metrics: ValidationMetrics,
460    /// Quantum-specific metrics
461    pub quantum_metrics: QuantumMetrics,
462    /// Computational metrics
463    pub computational_metrics: ComputationalMetrics,
464}
465
466/// Training metrics
467#[derive(Debug, Clone)]
468pub struct TrainingMetrics {
469    /// Final training loss
470    pub final_training_loss: f64,
471    /// Training convergence rate
472    pub convergence_rate: f64,
473    /// Number of epochs to convergence
474    pub epochs_to_convergence: usize,
475    /// Training stability
476    pub training_stability: f64,
477    /// Overfitting measure
478    pub overfitting_measure: f64,
479}
480
481/// Validation metrics
482#[derive(Debug, Clone)]
483pub struct ValidationMetrics {
484    /// Best validation loss
485    pub best_validation_loss: f64,
486    /// Validation accuracy
487    pub validation_accuracy: f64,
488    /// Generalization gap
489    pub generalization_gap: f64,
490    /// Cross-validation scores
491    pub cv_scores: Vec<f64>,
492    /// Bootstrap confidence intervals
493    pub confidence_intervals: Vec<(f64, f64)>,
494}
495
496/// Quantum-specific metrics
497#[derive(Debug, Clone)]
498pub struct QuantumMetrics {
499    /// Quantum volume utilized
500    pub quantum_volume: f64,
501    /// Entanglement measures
502    pub entanglement_measures: Vec<f64>,
503    /// Quantum advantage indicators
504    pub quantum_advantage: f64,
505    /// Fidelity measures
506    pub fidelity_measures: Vec<f64>,
507    /// Coherence utilization
508    pub coherence_utilization: f64,
509}
510
511/// Computational metrics
512#[derive(Debug, Clone)]
513pub struct ComputationalMetrics {
514    /// Training time per epoch
515    pub training_time_per_epoch: f64,
516    /// Inference time
517    pub inference_time: f64,
518    /// Memory usage
519    pub memory_usage: f64,
520    /// Quantum circuit execution time
521    pub quantum_execution_time: f64,
522    /// Classical computation time
523    pub classical_computation_time: f64,
524}
525
526impl QuantumNeuralNetwork {
527    /// Create a new quantum neural network
528    pub fn new(
529        architecture: QNNArchitecture,
530        training_config: QNNTrainingConfig,
531    ) -> Result<Self, SamplerError> {
532        let num_quantum_params = Self::calculate_quantum_params(&architecture);
533        let _num_classical_params = Self::calculate_classical_params(&architecture);
534
535        let parameters = QNNParameters {
536            quantum_params: Array1::zeros(num_quantum_params),
537            classical_params: vec![],
538            bias_params: vec![],
539            parameter_bounds: vec![(-PI, PI); num_quantum_params],
540            initialization_scheme: ParameterInitializationScheme::RandomUniform {
541                min: -PI,
542                max: PI,
543            },
544        };
545
546        let layers = Self::build_quantum_layers(&architecture)?;
547        let classical_layers = Self::build_classical_layers(&architecture)?;
548
549        Ok(Self {
550            architecture,
551            layers,
552            classical_layers,
553            training_config,
554            parameters,
555            training_history: Vec::new(),
556            metrics: QNNMetrics::default(),
557        })
558    }
559
560    /// Train the quantum neural network
561    pub fn train(
562        &mut self,
563        training_data: &[(Array1<f64>, Array1<f64>)],
564    ) -> Result<TrainingMetrics, SamplerError> {
565        println!("Starting QNN training with {} samples", training_data.len());
566
567        // Initialize parameters
568        self.initialize_parameters()?;
569
570        let mut best_loss = f64::INFINITY;
571        let mut patience_counter = 0;
572
573        for epoch in 0..self.training_config.num_epochs {
574            let epoch_start = std::time::Instant::now();
575
576            // Shuffle training data
577            let mut shuffled_data = training_data.to_vec();
578            shuffled_data.shuffle(&mut thread_rng());
579
580            let mut epoch_loss = 0.0;
581            let mut epoch_accuracy = 0.0;
582            let batch_count = shuffled_data
583                .len()
584                .div_ceil(self.training_config.batch_size);
585
586            for batch_idx in 0..batch_count {
587                let batch_start = batch_idx * self.training_config.batch_size;
588                let batch_end = std::cmp::min(
589                    batch_start + self.training_config.batch_size,
590                    shuffled_data.len(),
591                );
592                let batch = &shuffled_data[batch_start..batch_end];
593
594                // Forward pass
595                let batch_predictions = self.forward_batch(batch)?;
596
597                // Compute loss and gradients
598                let (batch_loss, gradients) =
599                    self.compute_loss_and_gradients(batch, &batch_predictions)?;
600
601                // Update parameters
602                self.update_parameters(&gradients)?;
603
604                epoch_loss += batch_loss;
605                epoch_accuracy += self.compute_batch_accuracy(batch, &batch_predictions);
606            }
607
608            epoch_loss /= batch_count as f64;
609            epoch_accuracy /= batch_count as f64;
610
611            let epoch_time = epoch_start.elapsed().as_secs_f64();
612
613            // Validation
614            let validation_loss = self.compute_validation_loss(training_data)?;
615
616            // Create epoch record
617            let epoch_record = TrainingEpoch {
618                epoch,
619                training_loss: epoch_loss,
620                validation_loss: Some(validation_loss),
621                training_accuracy: epoch_accuracy,
622                validation_accuracy: Some(epoch_accuracy), // Simplified
623                learning_rate: self.training_config.learning_rate,
624                training_time: epoch_time,
625                gradient_norms: vec![0.1], // Placeholder
626                parameter_stats: self.compute_parameter_statistics(),
627            };
628
629            self.training_history.push(epoch_record);
630
631            // Early stopping check
632            if self.training_config.early_stopping.enabled {
633                if validation_loss < best_loss - self.training_config.early_stopping.min_improvement
634                {
635                    best_loss = validation_loss;
636                    patience_counter = 0;
637                } else {
638                    patience_counter += 1;
639                    if patience_counter >= self.training_config.early_stopping.patience {
640                        println!("Early stopping at epoch {epoch} due to no improvement");
641                        break;
642                    }
643                }
644            }
645
646            if epoch % 10 == 0 {
647                println!(
648                    "Epoch {epoch}: Loss = {epoch_loss:.6}, Accuracy = {epoch_accuracy:.3}, Val Loss = {validation_loss:.6}"
649                );
650            }
651        }
652
653        // Compute final training metrics
654        let final_loss = self
655            .training_history
656            .last()
657            .map(|epoch| epoch.training_loss)
658            .unwrap_or(f64::INFINITY);
659
660        let training_metrics = TrainingMetrics {
661            final_training_loss: final_loss,
662            convergence_rate: self.compute_convergence_rate(),
663            epochs_to_convergence: self.training_history.len(),
664            training_stability: self.compute_training_stability(),
665            overfitting_measure: self.compute_overfitting_measure(),
666        };
667
668        self.metrics.training_metrics = training_metrics.clone();
669
670        println!(
671            "QNN training completed. Final loss: {:.6}",
672            training_metrics.final_training_loss
673        );
674        Ok(training_metrics)
675    }
676
677    /// Forward pass through the network
678    pub fn forward(&self, input: &Array1<f64>) -> Result<Array1<f64>, SamplerError> {
679        // Classical preprocessing
680        let mut current_state = input.clone();
681        for layer in &self.classical_layers {
682            current_state = self.apply_classical_layer(&current_state, layer)?;
683        }
684
685        // Quantum processing
686        let quantum_output = self.apply_quantum_layers(&current_state)?;
687
688        // Classical postprocessing
689        self.apply_postprocessing(&quantum_output)
690    }
691
692    /// Apply quantum layers to input state
693    fn apply_quantum_layers(&self, input: &Array1<f64>) -> Result<Array1<f64>, SamplerError> {
694        // Initialize quantum state
695        let mut quantum_state = self.initialize_quantum_state(input)?;
696
697        // Apply each quantum layer
698        for layer in &self.layers {
699            quantum_state = self.apply_quantum_layer(&quantum_state, layer)?;
700        }
701
702        // Measure quantum state
703        self.measure_quantum_state(&quantum_state)
704    }
705
706    /// Initialize quantum state from classical input
707    fn initialize_quantum_state(&self, input: &Array1<f64>) -> Result<Array1<f64>, SamplerError> {
708        // Encode classical data into quantum state
709        let num_qubits = self.architecture.num_qubits;
710        let state_dim = 1 << num_qubits;
711        let mut quantum_state = Array1::zeros(state_dim);
712
713        // Simple amplitude encoding
714        if input.len() <= state_dim {
715            for (i, &val) in input.iter().enumerate() {
716                if i < state_dim {
717                    quantum_state[i] = val;
718                }
719            }
720            // Normalize state
721            let norm = quantum_state.dot(&quantum_state).sqrt();
722            if norm > 1e-10 {
723                quantum_state /= norm;
724            } else {
725                quantum_state[0] = 1.0; // Default to |0...0>
726            }
727        } else {
728            // Use angle encoding for high-dimensional input
729            for i in 0..std::cmp::min(input.len(), num_qubits) {
730                let angle = input[i] * PI;
731                // Apply rotation based on input value
732                quantum_state[0] = angle.cos();
733                quantum_state[1] = angle.sin();
734            }
735        }
736
737        Ok(quantum_state)
738    }
739
740    /// Apply a single quantum layer
741    fn apply_quantum_layer(
742        &self,
743        state: &Array1<f64>,
744        layer: &QuantumLayer,
745    ) -> Result<Array1<f64>, SamplerError> {
746        let mut current_state = state.clone();
747
748        // Apply parametrized gates
749        for gate in &layer.parametrized_gates {
750            current_state = self.apply_parametrized_gate(&current_state, gate)?;
751        }
752
753        // Apply fixed gates
754        for gate in &layer.gates {
755            current_state = self.apply_quantum_gate(&current_state, gate)?;
756        }
757
758        Ok(current_state)
759    }
760
761    /// Apply a parametrized quantum gate
762    fn apply_parametrized_gate(
763        &self,
764        state: &Array1<f64>,
765        gate: &ParametrizedGate,
766    ) -> Result<Array1<f64>, SamplerError> {
767        match &gate.gate_type {
768            ParametrizedGateType::Rotation { axis } => {
769                if gate.parameter_indices.is_empty() || gate.qubits.is_empty() {
770                    return Ok(state.clone());
771                }
772
773                let param_idx = gate.parameter_indices[0];
774                let qubit = gate.qubits[0];
775
776                if param_idx >= self.parameters.quantum_params.len() {
777                    return Ok(state.clone());
778                }
779
780                let angle = self.parameters.quantum_params[param_idx];
781
782                match axis {
783                    RotationAxis::X => self.apply_rx_gate(state, qubit, angle),
784                    RotationAxis::Y => self.apply_ry_gate(state, qubit, angle),
785                    RotationAxis::Z => self.apply_rz_gate(state, qubit, angle),
786                    RotationAxis::Arbitrary { nx, ny, nz } => {
787                        self.apply_arbitrary_rotation(state, qubit, angle, *nx, *ny, *nz)
788                    }
789                }
790            }
791            ParametrizedGateType::Entangling { gate_name } => {
792                self.apply_entangling_gate(state, &gate.qubits, gate_name)
793            }
794            _ => Ok(state.clone()), // Placeholder for other gate types
795        }
796    }
797
798    /// Apply RX rotation gate
799    fn apply_rx_gate(
800        &self,
801        state: &Array1<f64>,
802        qubit: usize,
803        angle: f64,
804    ) -> Result<Array1<f64>, SamplerError> {
805        let num_qubits = self.architecture.num_qubits;
806        if qubit >= num_qubits {
807            return Ok(state.clone());
808        }
809
810        let mut new_state = state.clone();
811        let state_dim = state.len();
812
813        for i in 0..state_dim {
814            // Map qubit index to bit position (qubit 0 is the most significant bit)
815            let bit_pos = num_qubits - 1 - qubit;
816            if (i & (1 << bit_pos)) == 0 {
817                let j = i | (1 << bit_pos);
818                if j < state_dim {
819                    let cos_half = (angle / 2.0).cos();
820                    let sin_half = (angle / 2.0).sin();
821
822                    let state_i = state[i];
823                    let state_j = state[j];
824
825                    new_state[i] = cos_half * state_i + sin_half * state_j;
826                    new_state[j] = sin_half * state_i + cos_half * state_j;
827                }
828            }
829        }
830
831        Ok(new_state)
832    }
833
834    /// Apply RY rotation gate
835    fn apply_ry_gate(
836        &self,
837        state: &Array1<f64>,
838        qubit: usize,
839        angle: f64,
840    ) -> Result<Array1<f64>, SamplerError> {
841        let num_qubits = self.architecture.num_qubits;
842        if qubit >= num_qubits {
843            return Ok(state.clone());
844        }
845
846        let mut new_state = state.clone();
847        let state_dim = state.len();
848
849        for i in 0..state_dim {
850            // Map qubit index to bit position (qubit 0 is the most significant bit)
851            let bit_pos = num_qubits - 1 - qubit;
852            if (i & (1 << bit_pos)) == 0 {
853                let j = i | (1 << bit_pos);
854                if j < state_dim {
855                    let cos_half = (angle / 2.0).cos();
856                    let sin_half = (angle / 2.0).sin();
857
858                    let state_i = state[i];
859                    let state_j = state[j];
860
861                    new_state[i] = cos_half * state_i + sin_half * state_j;
862                    new_state[j] = (-sin_half).mul_add(state_i, cos_half * state_j);
863                }
864            }
865        }
866
867        Ok(new_state)
868    }
869
870    /// Apply RZ rotation gate
871    fn apply_rz_gate(
872        &self,
873        state: &Array1<f64>,
874        qubit: usize,
875        angle: f64,
876    ) -> Result<Array1<f64>, SamplerError> {
877        let num_qubits = self.architecture.num_qubits;
878        if qubit >= num_qubits {
879            return Ok(state.clone());
880        }
881
882        let mut new_state = state.clone();
883        let exp_neg = (-angle / 2.0).exp();
884        let exp_pos = (angle / 2.0).exp();
885
886        for i in 0..state.len() {
887            // Map qubit index to bit position (qubit 0 is the most significant bit)
888            let bit_pos = num_qubits - 1 - qubit;
889            if (i & (1 << bit_pos)) == 0 {
890                new_state[i] = state[i] * exp_neg;
891            } else {
892                new_state[i] = state[i] * exp_pos;
893            }
894        }
895
896        Ok(new_state)
897    }
898
899    /// Apply arbitrary rotation gate
900    fn apply_arbitrary_rotation(
901        &self,
902        state: &Array1<f64>,
903        qubit: usize,
904        angle: f64,
905        nx: f64,
906        ny: f64,
907        nz: f64,
908    ) -> Result<Array1<f64>, SamplerError> {
909        // Normalize rotation axis
910        let norm = nz.mul_add(nz, nx.mul_add(nx, ny * ny)).sqrt();
911        if norm < 1e-10 {
912            return Ok(state.clone());
913        }
914        let (_nx, _ny, nz) = (nx / norm, ny / norm, nz / norm);
915
916        // Apply rotation using Rodrigues' formula approach
917        let _cos_half = (angle / 2.0).cos();
918        let _sin_half = (angle / 2.0).sin();
919
920        // For simplicity, approximate with Z rotation
921        self.apply_rz_gate(state, qubit, angle * nz)
922    }
923
924    /// Apply entangling gate
925    fn apply_entangling_gate(
926        &self,
927        state: &Array1<f64>,
928        qubits: &[usize],
929        gate_name: &str,
930    ) -> Result<Array1<f64>, SamplerError> {
931        if qubits.len() < 2 {
932            return Ok(state.clone());
933        }
934
935        match gate_name {
936            "CNOT" => self.apply_cnot_gate(state, qubits[0], qubits[1]),
937            "CZ" => self.apply_cz_gate(state, qubits[0], qubits[1]),
938            _ => Ok(state.clone()),
939        }
940    }
941
942    /// Apply CNOT gate
943    fn apply_cnot_gate(
944        &self,
945        state: &Array1<f64>,
946        control: usize,
947        target: usize,
948    ) -> Result<Array1<f64>, SamplerError> {
949        let num_qubits = self.architecture.num_qubits;
950        if control >= num_qubits || target >= num_qubits {
951            return Ok(state.clone());
952        }
953
954        let mut new_state = state.clone();
955
956        for i in 0..state.len() {
957            if (i & (1 << control)) != 0 {
958                let j = i ^ (1 << target);
959                new_state[i] = state[j];
960            }
961        }
962
963        Ok(new_state)
964    }
965
966    /// Apply CZ gate
967    fn apply_cz_gate(
968        &self,
969        state: &Array1<f64>,
970        control: usize,
971        target: usize,
972    ) -> Result<Array1<f64>, SamplerError> {
973        let num_qubits = self.architecture.num_qubits;
974        if control >= num_qubits || target >= num_qubits {
975            return Ok(state.clone());
976        }
977
978        let mut new_state = state.clone();
979
980        for i in 0..state.len() {
981            if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
982                new_state[i] = -state[i];
983            }
984        }
985
986        Ok(new_state)
987    }
988
989    /// Apply a quantum gate
990    fn apply_quantum_gate(
991        &self,
992        state: &Array1<f64>,
993        gate: &QuantumGate,
994    ) -> Result<Array1<f64>, SamplerError> {
995        match gate {
996            QuantumGate::RX { qubit, angle } => self.apply_rx_gate(state, *qubit, *angle),
997            QuantumGate::RY { qubit, angle } => self.apply_ry_gate(state, *qubit, *angle),
998            QuantumGate::RZ { qubit, angle } => self.apply_rz_gate(state, *qubit, *angle),
999            QuantumGate::CNOT { control, target } => self.apply_cnot_gate(state, *control, *target),
1000            QuantumGate::CZ { control, target } => self.apply_cz_gate(state, *control, *target),
1001            _ => Ok(state.clone()), // Placeholder for other gates
1002        }
1003    }
1004
1005    /// Measure quantum state to get classical output
1006    fn measure_quantum_state(&self, state: &Array1<f64>) -> Result<Array1<f64>, SamplerError> {
1007        match &self.architecture.measurement_scheme {
1008            MeasurementScheme::Computational => {
1009                // Probability distribution over computational basis states
1010                let probabilities: Array1<f64> = state.mapv(|x| x * x);
1011                Ok(probabilities)
1012            }
1013            MeasurementScheme::Pauli { bases } => {
1014                // Expectation values of Pauli measurements
1015                let mut expectations = Array1::zeros(bases.len());
1016                for (i, basis) in bases.iter().enumerate() {
1017                    expectations[i] = self.compute_pauli_expectation(state, basis)?;
1018                }
1019                Ok(expectations)
1020            }
1021            _ => {
1022                // Default to computational basis
1023                let probabilities: Array1<f64> = state.mapv(|x| x * x);
1024                Ok(probabilities)
1025            }
1026        }
1027    }
1028
1029    /// Compute Pauli expectation value
1030    fn compute_pauli_expectation(
1031        &self,
1032        state: &Array1<f64>,
1033        basis: &PauliBasis,
1034    ) -> Result<f64, SamplerError> {
1035        match basis {
1036            PauliBasis::Z => {
1037                let mut expectation = 0.0;
1038                for i in 0..state.len() {
1039                    let parity = (i.count_ones() % 2) as f64;
1040                    expectation += state[i] * state[i] * 2.0f64.mul_add(-parity, 1.0);
1041                }
1042                Ok(expectation)
1043            }
1044            PauliBasis::X => {
1045                // Simplified X measurement
1046                let mut expectation = 0.0;
1047                for i in 0..state.len() {
1048                    let j = i ^ 1; // Flip first qubit
1049                    if j < state.len() {
1050                        expectation += state[i] * state[j];
1051                    }
1052                }
1053                Ok(expectation * 2.0)
1054            }
1055            PauliBasis::Y => {
1056                // Simplified Y measurement
1057                Ok(0.0) // Placeholder
1058            }
1059        }
1060    }
1061
1062    /// Apply classical layer
1063    fn apply_classical_layer(
1064        &self,
1065        input: &Array1<f64>,
1066        layer: &ClassicalLayer,
1067    ) -> Result<Array1<f64>, SamplerError> {
1068        let output = layer.weights.dot(input) + &layer.biases;
1069
1070        let activated_output = match layer.activation {
1071            ActivationFunction::ReLU => output.mapv(|x| x.max(0.0)),
1072            ActivationFunction::Sigmoid => output.mapv(|x| 1.0 / (1.0 + (-x).exp())),
1073            ActivationFunction::Tanh => output.mapv(|x| x.tanh()),
1074            ActivationFunction::Linear => output,
1075            ActivationFunction::Softmax => {
1076                let exp_vals = output.mapv(|x| x.exp());
1077                let sum = exp_vals.sum();
1078                exp_vals / sum
1079            }
1080            _ => output, // Placeholder for other activations
1081        };
1082
1083        Ok(activated_output)
1084    }
1085
1086    /// Apply postprocessing
1087    fn apply_postprocessing(
1088        &self,
1089        quantum_output: &Array1<f64>,
1090    ) -> Result<Array1<f64>, SamplerError> {
1091        match &self.architecture.postprocessing {
1092            PostprocessingScheme::None => Ok(quantum_output.clone()),
1093            PostprocessingScheme::Linear => {
1094                // Simple linear transformation
1095                let transformed = quantum_output.slice(s![..self.architecture.output_dim]);
1096                Ok(transformed.to_owned())
1097            }
1098            _ => Ok(quantum_output.clone()), // Placeholder for other schemes
1099        }
1100    }
1101
1102    /// Forward pass for a batch of inputs
1103    fn forward_batch(
1104        &self,
1105        batch: &[(Array1<f64>, Array1<f64>)],
1106    ) -> Result<Vec<Array1<f64>>, SamplerError> {
1107        let mut predictions = Vec::new();
1108        for (input, _) in batch {
1109            predictions.push(self.forward(input)?);
1110        }
1111        Ok(predictions)
1112    }
1113
1114    /// Compute loss and gradients
1115    fn compute_loss_and_gradients(
1116        &self,
1117        batch: &[(Array1<f64>, Array1<f64>)],
1118        predictions: &[Array1<f64>],
1119    ) -> Result<(f64, Array1<f64>), SamplerError> {
1120        let mut total_loss = 0.0;
1121        let mut gradients = Array1::zeros(self.parameters.quantum_params.len());
1122
1123        for ((_, target), prediction) in batch.iter().zip(predictions.iter()) {
1124            let loss = self.compute_loss(prediction, target)?;
1125            total_loss += loss;
1126
1127            // Compute gradients using parameter shift rule
1128            let param_gradients = self.compute_parameter_gradients(prediction, target)?;
1129            gradients += &param_gradients;
1130        }
1131
1132        total_loss /= batch.len() as f64;
1133        gradients /= batch.len() as f64;
1134
1135        Ok((total_loss, gradients))
1136    }
1137
1138    /// Compute loss for a single prediction
1139    fn compute_loss(
1140        &self,
1141        prediction: &Array1<f64>,
1142        target: &Array1<f64>,
1143    ) -> Result<f64, SamplerError> {
1144        match &self.training_config.loss_function {
1145            LossFunction::MeanSquaredError => {
1146                let diff = prediction - target;
1147                Ok(diff.dot(&diff) / (2.0 * prediction.len() as f64))
1148            }
1149            LossFunction::CrossEntropy => {
1150                let mut loss = 0.0;
1151                for (pred, targ) in prediction.iter().zip(target.iter()) {
1152                    loss -= targ * pred.ln();
1153                }
1154                Ok(loss)
1155            }
1156            _ => {
1157                // Default to MSE
1158                let diff = prediction - target;
1159                Ok(diff.dot(&diff) / (2.0 * prediction.len() as f64))
1160            }
1161        }
1162    }
1163
1164    /// Compute parameter gradients using parameter shift rule
1165    fn compute_parameter_gradients(
1166        &self,
1167        prediction: &Array1<f64>,
1168        target: &Array1<f64>,
1169    ) -> Result<Array1<f64>, SamplerError> {
1170        let mut gradients = Array1::zeros(self.parameters.quantum_params.len());
1171        let shift = PI / 2.0;
1172
1173        for i in 0..self.parameters.quantum_params.len() {
1174            // Forward pass with positive shift
1175            let mut params_plus = self.parameters.quantum_params.clone();
1176            params_plus[i] += shift;
1177            let prediction_plus = self.forward_with_params(prediction, &params_plus)?;
1178            let loss_plus = self.compute_loss(&prediction_plus, target)?;
1179
1180            // Forward pass with negative shift
1181            let mut params_minus = self.parameters.quantum_params.clone();
1182            params_minus[i] -= shift;
1183            let prediction_minus = self.forward_with_params(prediction, &params_plus)?;
1184            let loss_minus = self.compute_loss(&prediction_minus, target)?;
1185
1186            // Compute gradient
1187            gradients[i] = (loss_plus - loss_minus) / (2.0 * shift);
1188        }
1189
1190        Ok(gradients)
1191    }
1192
1193    /// Forward pass with specific parameters
1194    fn forward_with_params(
1195        &self,
1196        input: &Array1<f64>,
1197        _params: &Array1<f64>,
1198    ) -> Result<Array1<f64>, SamplerError> {
1199        // This is a simplified version - would need to temporarily update parameters
1200        self.forward(input)
1201    }
1202
1203    /// Update parameters using optimizer
1204    fn update_parameters(&mut self, gradients: &Array1<f64>) -> Result<(), SamplerError> {
1205        match &self.training_config.optimizer {
1206            OptimizerType::SGD { momentum: _ } => {
1207                // Simple gradient descent
1208                let lr = self.training_config.learning_rate;
1209                self.parameters.quantum_params =
1210                    &self.parameters.quantum_params - &(gradients * lr);
1211            }
1212            OptimizerType::Adam {
1213                beta1: _,
1214                beta2: _,
1215                epsilon: _,
1216            } => {
1217                // Simplified Adam optimizer
1218                let lr = self.training_config.learning_rate;
1219                self.parameters.quantum_params =
1220                    &self.parameters.quantum_params - &(gradients * lr);
1221            }
1222            _ => {
1223                // Default to SGD
1224                let lr = self.training_config.learning_rate;
1225                self.parameters.quantum_params =
1226                    &self.parameters.quantum_params - &(gradients * lr);
1227            }
1228        }
1229
1230        // Clip parameters to bounds
1231        let clipped_params: Vec<f64> = self
1232            .parameters
1233            .quantum_params
1234            .iter()
1235            .enumerate()
1236            .map(|(i, &param)| {
1237                if i < self.parameters.parameter_bounds.len() {
1238                    let (min_val, max_val) = self.parameters.parameter_bounds[i];
1239                    param.max(min_val).min(max_val)
1240                } else {
1241                    param
1242                }
1243            })
1244            .collect();
1245
1246        for (i, value) in clipped_params.into_iter().enumerate() {
1247            self.parameters.quantum_params[i] = value;
1248        }
1249
1250        Ok(())
1251    }
1252
1253    /// Compute batch accuracy
1254    fn compute_batch_accuracy(
1255        &self,
1256        batch: &[(Array1<f64>, Array1<f64>)],
1257        predictions: &[Array1<f64>],
1258    ) -> f64 {
1259        let mut correct = 0;
1260        for ((_, target), prediction) in batch.iter().zip(predictions.iter()) {
1261            if self.is_prediction_correct(prediction, target) {
1262                correct += 1;
1263            }
1264        }
1265        correct as f64 / batch.len() as f64
1266    }
1267
1268    /// Check if prediction is correct
1269    fn is_prediction_correct(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> bool {
1270        // For classification: check if argmax matches
1271        if prediction.len() > 1 {
1272            let pred_class = prediction
1273                .iter()
1274                .enumerate()
1275                .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1276                .map(|(idx, _)| idx)
1277                .unwrap_or(0);
1278            let target_class = target
1279                .iter()
1280                .enumerate()
1281                .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1282                .map(|(idx, _)| idx)
1283                .unwrap_or(0);
1284            pred_class == target_class
1285        } else if !prediction.is_empty() && !target.is_empty() {
1286            // For regression: check if within tolerance
1287            (prediction[0] - target[0]).abs() < 0.1
1288        } else {
1289            false
1290        }
1291    }
1292
1293    /// Compute validation loss
1294    fn compute_validation_loss(
1295        &self,
1296        data: &[(Array1<f64>, Array1<f64>)],
1297    ) -> Result<f64, SamplerError> {
1298        let mut total_loss = 0.0;
1299        for (input, target) in data.iter().take(10) {
1300            // Use subset for validation
1301            let prediction = self.forward(input)?;
1302            total_loss += self.compute_loss(&prediction, target)?;
1303        }
1304        Ok(total_loss / 10.0)
1305    }
1306
1307    /// Initialize parameters
1308    fn initialize_parameters(&mut self) -> Result<(), SamplerError> {
1309        match &self.parameters.initialization_scheme {
1310            ParameterInitializationScheme::RandomUniform { min, max } => {
1311                let mut rng = thread_rng();
1312                for param in &mut self.parameters.quantum_params {
1313                    *param = rng.gen_range(*min..*max);
1314                }
1315            }
1316            ParameterInitializationScheme::RandomNormal { mean, std } => {
1317                let mut rng = thread_rng();
1318                for param in &mut self.parameters.quantum_params {
1319                    *param = rng.gen::<f64>() * std + mean;
1320                }
1321            }
1322            _ => {
1323                // Default to random uniform [-π, π]
1324                let mut rng = thread_rng();
1325                for param in &mut self.parameters.quantum_params {
1326                    *param = rng.gen_range(-PI..PI);
1327                }
1328            }
1329        }
1330        Ok(())
1331    }
1332
1333    /// Compute parameter statistics
1334    fn compute_parameter_statistics(&self) -> ParameterStatistics {
1335        let params = &self.parameters.quantum_params;
1336        let mean = params.mean().unwrap_or(0.0);
1337        let std = params.std(0.0);
1338
1339        let ranges = vec![(
1340            *params
1341                .iter()
1342                .min_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1343                .unwrap_or(&0.0),
1344            *params
1345                .iter()
1346                .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1347                .unwrap_or(&0.0),
1348        )];
1349        let correlations = Array2::eye(params.len());
1350
1351        ParameterStatistics {
1352            mean_values: Array1::from_elem(params.len(), mean),
1353            std_values: Array1::from_elem(params.len(), std),
1354            ranges,
1355            correlations,
1356        }
1357    }
1358
1359    /// Compute convergence rate
1360    fn compute_convergence_rate(&self) -> f64 {
1361        if self.training_history.len() < 2 {
1362            return 0.0;
1363        }
1364
1365        let initial_loss = self.training_history[0].training_loss;
1366        let final_loss = self
1367            .training_history
1368            .last()
1369            .expect("training_history verified to have at least 2 elements")
1370            .training_loss;
1371
1372        if initial_loss > 0.0 {
1373            (initial_loss - final_loss) / initial_loss
1374        } else {
1375            0.0
1376        }
1377    }
1378
1379    /// Compute training stability
1380    fn compute_training_stability(&self) -> f64 {
1381        if self.training_history.len() < 10 {
1382            return 1.0;
1383        }
1384
1385        let losses: Vec<f64> = self
1386            .training_history
1387            .iter()
1388            .map(|epoch| epoch.training_loss)
1389            .collect();
1390        let mean_loss = losses.iter().sum::<f64>() / losses.len() as f64;
1391        let variance = losses
1392            .iter()
1393            .map(|loss| (loss - mean_loss).powi(2))
1394            .sum::<f64>()
1395            / losses.len() as f64;
1396
1397        1.0 / (1.0 + variance.sqrt())
1398    }
1399
1400    /// Compute overfitting measure
1401    fn compute_overfitting_measure(&self) -> f64 {
1402        if self.training_history.is_empty() {
1403            return 0.0;
1404        }
1405
1406        let last_epoch = self
1407            .training_history
1408            .last()
1409            .expect("training_history verified to be non-empty");
1410        if let Some(val_loss) = last_epoch.validation_loss {
1411            (val_loss - last_epoch.training_loss).max(0.0)
1412        } else {
1413            0.0
1414        }
1415    }
1416
1417    /// Calculate number of quantum parameters
1418    const fn calculate_quantum_params(architecture: &QNNArchitecture) -> usize {
1419        // Rough estimate: 3 parameters per qubit per layer
1420        architecture.num_qubits * architecture.circuit_depth * 3
1421    }
1422
1423    /// Calculate number of classical parameters
1424    const fn calculate_classical_params(architecture: &QNNArchitecture) -> usize {
1425        // Rough estimate based on architecture
1426        architecture.input_dim * architecture.output_dim
1427    }
1428
1429    /// Build quantum layers
1430    fn build_quantum_layers(
1431        architecture: &QNNArchitecture,
1432    ) -> Result<Vec<QuantumLayer>, SamplerError> {
1433        let mut layers = Vec::new();
1434
1435        for layer_id in 0..architecture.circuit_depth {
1436            let mut gates = Vec::new();
1437            let mut parametrized_gates = Vec::new();
1438
1439            // Add parametrized rotation gates
1440            for qubit in 0..architecture.num_qubits {
1441                parametrized_gates.push(ParametrizedGate {
1442                    gate_type: ParametrizedGateType::Rotation {
1443                        axis: RotationAxis::Y,
1444                    },
1445                    qubits: vec![qubit],
1446                    parameter_indices: vec![layer_id * architecture.num_qubits + qubit],
1447                    gate_function: GateFunction::StandardRotation,
1448                });
1449            }
1450
1451            // Add entangling gates based on pattern
1452            match &architecture.entanglement_pattern {
1453                EntanglementPattern::Linear => {
1454                    for qubit in 0..architecture.num_qubits - 1 {
1455                        gates.push(QuantumGate::CNOT {
1456                            control: qubit,
1457                            target: qubit + 1,
1458                        });
1459                    }
1460                }
1461                EntanglementPattern::Circular => {
1462                    for qubit in 0..architecture.num_qubits {
1463                        let target = (qubit + 1) % architecture.num_qubits;
1464                        gates.push(QuantumGate::CNOT {
1465                            control: qubit,
1466                            target,
1467                        });
1468                    }
1469                }
1470                _ => {
1471                    // Default to linear
1472                    for qubit in 0..architecture.num_qubits - 1 {
1473                        gates.push(QuantumGate::CNOT {
1474                            control: qubit,
1475                            target: qubit + 1,
1476                        });
1477                    }
1478                }
1479            }
1480
1481            layers.push(QuantumLayer {
1482                layer_id,
1483                num_qubits: architecture.num_qubits,
1484                gates,
1485                parametrized_gates,
1486                layer_type: QuantumLayerType::Variational,
1487                skip_connections: Vec::new(),
1488            });
1489        }
1490
1491        Ok(layers)
1492    }
1493
1494    /// Build classical layers
1495    fn build_classical_layers(
1496        architecture: &QNNArchitecture,
1497    ) -> Result<Vec<ClassicalLayer>, SamplerError> {
1498        let mut layers = Vec::new();
1499
1500        // Add a preprocessing layer if needed
1501        if architecture.input_dim != architecture.num_qubits {
1502            let weights = Array2::zeros((architecture.num_qubits, architecture.input_dim));
1503            let biases = Array1::zeros(architecture.num_qubits);
1504
1505            layers.push(ClassicalLayer {
1506                layer_type: ClassicalLayerType::Dense,
1507                input_dim: architecture.input_dim,
1508                output_dim: architecture.num_qubits,
1509                weights,
1510                biases,
1511                activation: ActivationFunction::Tanh,
1512            });
1513        }
1514
1515        Ok(layers)
1516    }
1517}
1518
1519// Implement default for various types
1520impl Default for QNNMetrics {
1521    fn default() -> Self {
1522        Self {
1523            training_metrics: TrainingMetrics {
1524                final_training_loss: 0.0,
1525                convergence_rate: 0.0,
1526                epochs_to_convergence: 0,
1527                training_stability: 0.0,
1528                overfitting_measure: 0.0,
1529            },
1530            validation_metrics: ValidationMetrics {
1531                best_validation_loss: 0.0,
1532                validation_accuracy: 0.0,
1533                generalization_gap: 0.0,
1534                cv_scores: Vec::new(),
1535                confidence_intervals: Vec::new(),
1536            },
1537            quantum_metrics: QuantumMetrics {
1538                quantum_volume: 0.0,
1539                entanglement_measures: Vec::new(),
1540                quantum_advantage: 0.0,
1541                fidelity_measures: Vec::new(),
1542                coherence_utilization: 0.0,
1543            },
1544            computational_metrics: ComputationalMetrics {
1545                training_time_per_epoch: 0.0,
1546                inference_time: 0.0,
1547                memory_usage: 0.0,
1548                quantum_execution_time: 0.0,
1549                classical_computation_time: 0.0,
1550            },
1551        }
1552    }
1553}
1554
1555/// Create a default QNN for binary classification
1556pub fn create_binary_classification_qnn(
1557    num_qubits: usize,
1558) -> Result<QuantumNeuralNetwork, SamplerError> {
1559    let architecture = QNNArchitecture {
1560        input_dim: num_qubits,
1561        output_dim: 1,
1562        num_qubits,
1563        circuit_depth: 3,
1564        entanglement_pattern: EntanglementPattern::Linear,
1565        measurement_scheme: MeasurementScheme::Computational,
1566        postprocessing: PostprocessingScheme::Linear,
1567    };
1568
1569    let training_config = QNNTrainingConfig {
1570        learning_rate: 0.01,
1571        batch_size: 32,
1572        num_epochs: 100,
1573        optimizer: OptimizerType::Adam {
1574            beta1: 0.9,
1575            beta2: 0.999,
1576            epsilon: 1e-8,
1577        },
1578        loss_function: LossFunction::MeanSquaredError,
1579        regularization: RegularizationConfig {
1580            l1_strength: 0.0,
1581            l2_strength: 0.001,
1582            dropout_prob: 0.0,
1583            parameter_noise: 0.0,
1584            quantum_noise: QuantumNoiseConfig {
1585                enable_noise: false,
1586                depolarizing_strength: 0.0,
1587                amplitude_damping: 0.0,
1588                phase_damping: 0.0,
1589                gate_error_rates: HashMap::new(),
1590            },
1591        },
1592        early_stopping: EarlyStoppingConfig {
1593            enabled: true,
1594            patience: 10,
1595            min_improvement: 1e-4,
1596            monitor_metric: "validation_loss".to_string(),
1597        },
1598        gradient_estimation: GradientEstimationMethod::ParameterShift,
1599    };
1600
1601    QuantumNeuralNetwork::new(architecture, training_config)
1602}
1603
1604/// Create a QNN for optimization problems
1605pub fn create_optimization_qnn(problem_size: usize) -> Result<QuantumNeuralNetwork, SamplerError> {
1606    let num_qubits = (problem_size as f64).log2().ceil() as usize;
1607
1608    let architecture = QNNArchitecture {
1609        input_dim: problem_size,
1610        output_dim: problem_size,
1611        num_qubits,
1612        circuit_depth: 5,
1613        entanglement_pattern: EntanglementPattern::HardwareEfficient,
1614        measurement_scheme: MeasurementScheme::Pauli {
1615            bases: vec![PauliBasis::Z, PauliBasis::X, PauliBasis::Y],
1616        },
1617        postprocessing: PostprocessingScheme::NonlinearNN {
1618            hidden_dims: vec![64, 32],
1619        },
1620    };
1621
1622    let training_config = QNNTrainingConfig {
1623        learning_rate: 0.005,
1624        batch_size: 16,
1625        num_epochs: 200,
1626        optimizer: OptimizerType::QuantumNaturalGradient,
1627        loss_function: LossFunction::ExpectationValueLoss,
1628        regularization: RegularizationConfig {
1629            l1_strength: 0.001,
1630            l2_strength: 0.01,
1631            dropout_prob: 0.1,
1632            parameter_noise: 0.01,
1633            quantum_noise: QuantumNoiseConfig {
1634                enable_noise: true,
1635                depolarizing_strength: 0.01,
1636                amplitude_damping: 0.001,
1637                phase_damping: 0.001,
1638                gate_error_rates: HashMap::new(),
1639            },
1640        },
1641        early_stopping: EarlyStoppingConfig {
1642            enabled: true,
1643            patience: 20,
1644            min_improvement: 1e-5,
1645            monitor_metric: "validation_loss".to_string(),
1646        },
1647        gradient_estimation: GradientEstimationMethod::QuantumFisherInformation,
1648    };
1649
1650    QuantumNeuralNetwork::new(architecture, training_config)
1651}
1652
1653#[cfg(test)]
1654mod tests {
1655    use super::*;
1656
1657    #[test]
1658    fn test_qnn_creation() {
1659        let qnn = create_binary_classification_qnn(4)
1660            .expect("Failed to create binary classification QNN with 4 qubits");
1661        assert_eq!(qnn.architecture.num_qubits, 4);
1662        assert_eq!(qnn.architecture.circuit_depth, 3);
1663        assert_eq!(qnn.layers.len(), 3);
1664    }
1665
1666    #[test]
1667    fn test_qnn_forward_pass() {
1668        let qnn = create_binary_classification_qnn(2)
1669            .expect("Failed to create binary classification QNN with 2 qubits");
1670        let input = Array1::from_vec(vec![0.5, 0.7]);
1671        let output = qnn.forward(&input);
1672        assert!(output.is_ok());
1673    }
1674
1675    #[test]
1676    fn test_optimization_qnn_creation() {
1677        let qnn = create_optimization_qnn(8)
1678            .expect("Failed to create optimization QNN with problem size 8");
1679        assert_eq!(qnn.architecture.input_dim, 8);
1680        assert_eq!(qnn.architecture.output_dim, 8);
1681        assert!(qnn.architecture.num_qubits >= 3); // log2(8) = 3
1682    }
1683
1684    #[test]
1685    fn test_parameter_initialization() {
1686        let mut qnn = create_binary_classification_qnn(3)
1687            .expect("Failed to create binary classification QNN with 3 qubits");
1688        qnn.initialize_parameters()
1689            .expect("Failed to initialize QNN parameters");
1690
1691        // Check that parameters are initialized within bounds
1692        for &param in &qnn.parameters.quantum_params {
1693            assert!((-PI..=PI).contains(&param));
1694        }
1695    }
1696
1697    #[test]
1698    fn test_quantum_gate_application() {
1699        let qnn = create_binary_classification_qnn(2)
1700            .expect("Failed to create binary classification QNN with 2 qubits");
1701        let state = Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]); // |00⟩
1702
1703        let new_state = qnn
1704            .apply_rx_gate(&state, 0, PI / 2.0)
1705            .expect("Failed to apply RX gate");
1706
1707        // After RX(π/2) on qubit 0, should be in superposition
1708        assert!((new_state[0] - 1.0 / 2.0_f64.sqrt()).abs() < 1e-10);
1709        assert!((new_state[2] - 1.0 / 2.0_f64.sqrt()).abs() < 1e-10);
1710    }
1711}