1#![allow(dead_code)]
8
9use scirs2_core::ndarray::{Array1, Array2, Array3};
10use scirs2_core::random::prelude::*;
11use scirs2_core::random::prelude::*;
12use std::collections::HashMap;
13
14pub struct QuantumErrorCorrection {
16 pub num_logical_qubits: usize,
18 pub num_physical_qubits: usize,
20 pub config: QECConfig,
22 pub codes: Vec<Box<dyn QuantumCode>>,
24 pub syndrome_detector: SyndromeDetector,
26 pub mitigation_strategies: Vec<Box<dyn ErrorMitigationStrategy>>,
28 pub fault_tolerance: FaultToleranceAnalyzer,
30 pub metrics: QECMetrics,
32}
33
34#[derive(Debug, Clone)]
36pub struct QECConfig {
37 pub code_type: QuantumCodeType,
39 pub code_distance: usize,
41 pub correction_frequency: f64,
43 pub syndrome_method: SyndromeExtractionMethod,
45 pub decoding_algorithm: DecodingAlgorithm,
47 pub error_mitigation: ErrorMitigationConfig,
49 pub adaptive_correction: AdaptiveCorrectionConfig,
51 pub threshold_estimation: ThresholdEstimationConfig,
53}
54
55#[derive(Debug, Clone, PartialEq)]
57pub enum QuantumCodeType {
58 SurfaceCode { lattice_type: LatticeType },
60 ColorCode { color_scheme: ColorScheme },
62 StabilizerCode { generators: Vec<String> },
64 TopologicalCode { code_family: TopologicalFamily },
66 CSSCode { classical_codes: (String, String) },
68 QuantumLDPC { parity_check_matrix: Array2<u8> },
70 ConcatenatedCode {
72 inner_code: Box<Self>,
73 outer_code: Box<Self>,
74 },
75 SubsystemCode { gauge_group: Vec<String> },
77}
78
79#[derive(Debug, Clone, PartialEq, Eq)]
81pub enum LatticeType {
82 Square,
84 Triangular,
86 Hexagonal,
88 Kagome,
90}
91
92#[derive(Debug, Clone, PartialEq, Eq)]
94pub enum ColorScheme {
95 ThreeColor,
97 FourColor,
99 HexagonalColor,
101}
102
103#[derive(Debug, Clone, PartialEq, Eq)]
105pub enum TopologicalFamily {
106 ToricCode,
108 PlanarCode,
110 HyperbolicCode,
112 FractalCode,
114}
115
116#[derive(Debug, Clone, PartialEq, Eq)]
118pub enum SyndromeExtractionMethod {
119 Standard,
121 FlagBased,
123 Repeated { num_repetitions: usize },
125 Adaptive,
127 Concurrent,
129}
130
131#[derive(Debug, Clone, PartialEq, Eq)]
133pub enum DecodingAlgorithm {
134 MWPM,
136 BeliefPropagation,
138 NeuralNetwork { architecture: String },
140 UnionFind,
142 Trellis,
144 MachineLearning { model_type: MLModelType },
146 TensorNetwork,
148 ReinforcementLearning,
150}
151
152#[derive(Debug, Clone, PartialEq, Eq)]
154pub enum MLModelType {
155 RNN,
157 CNN,
159 Transformer,
161 GNN,
163 VAE,
165 ConvolutionalNN,
167 RecurrentNN,
168 TransformerNetwork,
169 GraphNeuralNetwork,
170 ReinforcementLearning,
171 DeepQNetwork,
172}
173
174#[derive(Debug, Clone, PartialEq, Eq)]
176pub enum ErrorMitigationMethod {
177 ZeroNoiseExtrapolation,
178 ReadoutErrorCorrection,
179 VirtualDistillation,
180 SymmetryVerification,
181 PostSelection,
182 TwirlingProtocols,
183}
184
185#[derive(Debug, Clone)]
187pub enum ThresholdUpdateMethod {
188 ExponentialMovingAverage { alpha: f64 },
189 GradientDescent { momentum: f64 },
190 AdaptiveLearningRate,
191 BayesianOptimization,
192 EvolutionaryStrategy,
193}
194
195#[derive(Debug, Clone)]
197pub enum ErrorModel {
198 Depolarizing { probability: f64 },
199 Pauli { px: f64, py: f64, pz: f64 },
200 AmplitudeDamping { gamma: f64 },
201 PhaseDamping { gamma: f64 },
202}
203
204#[derive(Debug, Clone)]
206pub enum CorrectionOperation {
207 PauliX {
208 qubit: usize,
209 },
210 PauliY {
211 qubit: usize,
212 },
213 PauliZ {
214 qubit: usize,
215 },
216 TwoQubitCorrection {
217 operation: String,
218 qubits: (usize, usize),
219 },
220 MultiQubitCorrection {
221 operation: String,
222 qubits: Vec<usize>,
223 },
224 LogicalCorrection {
225 logical_operation: String,
226 },
227}
228
229#[derive(Debug, Clone)]
231pub struct ErrorMitigationConfig {
232 pub zero_noise_extrapolation: bool,
234 pub probabilistic_error_cancellation: bool,
236 pub symmetry_verification: bool,
238 pub virtual_distillation: bool,
240 pub error_amplification: ErrorAmplificationConfig,
242 pub clifford_data_regression: bool,
244}
245
246#[derive(Debug, Clone)]
248pub struct ErrorAmplificationConfig {
249 pub amplification_factors: Vec<f64>,
251 pub max_amplification: f64,
253 pub strategy: AmplificationStrategy,
255}
256
257#[derive(Debug, Clone, PartialEq, Eq)]
259pub enum AmplificationStrategy {
260 Linear,
262 Exponential,
264 Adaptive,
266 Randomized,
268}
269
270#[derive(Debug, Clone)]
272pub struct AdaptiveCorrectionConfig {
273 pub adaptive_thresholding: bool,
275 pub dynamic_distance: bool,
277 pub real_time_code_switching: bool,
279 pub performance_adaptation: PerformanceAdaptationConfig,
281 pub learning_adaptation: LearningAdaptationConfig,
283}
284
285#[derive(Debug, Clone)]
287pub struct PerformanceAdaptationConfig {
288 pub error_rate_threshold: f64,
290 pub monitoring_window: usize,
292 pub adaptation_sensitivity: f64,
294 pub min_adaptation_interval: f64,
296}
297
298#[derive(Debug, Clone)]
300pub struct LearningAdaptationConfig {
301 pub reinforcement_learning: bool,
303 pub learning_rate: f64,
305 pub replay_buffer_size: usize,
307 pub update_frequency: usize,
309}
310
311#[derive(Debug, Clone)]
313pub struct ThresholdEstimationConfig {
314 pub real_time_estimation: bool,
316 pub estimation_method: ThresholdEstimationMethod,
318 pub confidence_level: f64,
320 pub update_frequency: usize,
322}
323
324#[derive(Debug, Clone, PartialEq, Eq)]
326pub enum ThresholdEstimationMethod {
327 MonteCarlo,
329 MaximumLikelihood,
331 Bayesian,
333 Bootstrap,
335 CrossValidation,
337}
338
339pub trait QuantumCode: Send + Sync {
341 fn encode(&self, logical_state: &Array1<f64>) -> Result<Array1<f64>, QECError>;
343
344 fn decode(
346 &self,
347 physical_state: &Array1<f64>,
348 syndrome: &Array1<u8>,
349 ) -> Result<Array1<f64>, QECError>;
350
351 fn extract_syndrome(&self, physical_state: &Array1<f64>) -> Result<Array1<u8>, QECError>;
353
354 fn get_stabilizers(&self) -> Vec<Array1<i8>>;
356
357 fn get_parameters(&self) -> CodeParameters;
359
360 fn is_correctable(&self, error: &Array1<u8>) -> bool;
362
363 fn get_logical_operators(&self) -> LogicalOperators;
365}
366
367#[derive(Debug, Clone)]
369pub struct CodeParameters {
370 pub k: usize,
372 pub n: usize,
374 pub d: usize,
376 pub rate: f64,
378 pub threshold: f64,
380}
381
382#[derive(Debug, Clone)]
384pub struct LogicalOperators {
385 pub logical_x: Vec<Array1<i8>>,
387 pub logical_z: Vec<Array1<i8>>,
389 pub logical_y: Vec<Array1<i8>>,
391}
392
393#[derive(Debug)]
395pub struct SyndromeDetector {
396 pub config: SyndromeDetectionConfig,
398 pub measurement_circuits: Vec<MeasurementCircuit>,
400 pub error_correlations: ErrorCorrelationTracker,
402 pub syndrome_history: SyndromeHistory,
404}
405
406#[derive(Debug, Clone)]
408pub struct SyndromeDetectionConfig {
409 pub num_rounds: usize,
411 pub extraction_frequency: f64,
413 pub detection_threshold: f64,
415 pub correlation_window: usize,
417 pub use_flag_qubits: bool,
419}
420
421#[derive(Debug, Clone)]
423pub struct MeasurementCircuit {
424 pub id: String,
426 pub stabilizer: Array1<i8>,
428 pub qubits: Vec<usize>,
430 pub ancillas: Vec<usize>,
432 pub depth: usize,
434 pub gates: Vec<QuantumGate>,
436}
437
438#[derive(Debug, Clone)]
440pub enum QuantumGate {
441 H { qubit: usize },
443 CNOT { control: usize, target: usize },
445 X { qubit: usize },
447 Y { qubit: usize },
449 Z { qubit: usize },
451 S { qubit: usize },
453 T { qubit: usize },
455 Measure {
457 qubit: usize,
458 basis: MeasurementBasis,
459 },
460}
461
462#[derive(Debug, Clone, PartialEq, Eq)]
464pub enum MeasurementBasis {
465 Z,
466 X,
467 Y,
468}
469
470#[derive(Debug, Clone)]
472pub struct ErrorCorrelationTracker {
473 pub spatial_correlations: Array2<f64>,
475 pub temporal_correlations: Array1<f64>,
477 pub cross_correlations: Array3<f64>,
479 pub correlation_times: Array1<f64>,
481}
482
483#[derive(Debug, Clone)]
485pub struct SyndromeHistory {
486 pub history: Vec<SyndromeRecord>,
488 pub max_length: usize,
490 pub pattern_detector: PatternDetector,
492}
493
494#[derive(Debug, Clone)]
496pub struct SyndromeRecord {
497 pub syndrome: Array1<u8>,
499 pub timestamp: f64,
501 pub error: Option<Array1<u8>>,
503 pub correction: Option<Array1<u8>>,
505 pub success: bool,
507}
508
509#[derive(Debug)]
511pub struct PatternDetector {
512 pub patterns: Vec<SyndromePattern>,
514 pub pattern_frequency: HashMap<String, usize>,
516 pub prediction_model: Option<Box<dyn PredictionModel>>,
518}
519
520impl Clone for PatternDetector {
521 fn clone(&self) -> Self {
522 Self {
523 patterns: self.patterns.clone(),
524 pattern_frequency: self.pattern_frequency.clone(),
525 prediction_model: None, }
527 }
528}
529
530#[derive(Debug, Clone)]
532pub struct SyndromePattern {
533 pub sequence: Vec<Array1<u8>>,
535 pub probability: f64,
537 pub error_type: ErrorType,
539 pub optimal_correction: Array1<u8>,
541}
542
543#[derive(Debug, Clone, PartialEq, Eq)]
545pub enum ErrorType {
546 SingleQubit {
548 qubit: usize,
549 pauli: char,
550 },
551 TwoQubit {
553 qubits: (usize, usize),
554 pauli: (char, char),
555 },
556 Correlated {
558 qubits: Vec<usize>,
559 pattern: String,
560 },
561 Measurement {
563 qubit: usize,
564 },
565 Gate {
567 gate_type: String,
568 qubits: Vec<usize>,
569 },
570 Coherent {
572 description: String,
573 },
574 BitFlip,
576 PhaseFlip,
577 BitPhaseFlip,
578 Depolarizing,
579 AmplitudeDamping,
580 PhaseDamping,
581}
582
583pub trait PredictionModel: Send + Sync + std::fmt::Debug {
585 fn predict_syndrome(&self, history: &[Array1<u8>]) -> Result<Array1<u8>, QECError>;
587
588 fn update(&mut self, history: &[Array1<u8>], actual: &Array1<u8>) -> Result<(), QECError>;
590
591 fn get_confidence(&self) -> f64;
593}
594
595pub trait ErrorMitigationStrategy: Send + Sync {
597 fn mitigate_errors(
599 &self,
600 measurement_data: &MeasurementData,
601 ) -> Result<MitigatedData, QECError>;
602
603 fn get_strategy_name(&self) -> &str;
605
606 fn get_parameters(&self) -> HashMap<String, f64>;
608
609 fn estimate_overhead(&self) -> f64;
611}
612
613#[derive(Debug, Clone)]
615pub struct MeasurementData {
616 pub outcomes: Vec<Array1<u8>>,
618 pub settings: Vec<MeasurementSetting>,
620 pub noise_data: NoiseCharacterization,
622 pub metadata: MeasurementMetadata,
624}
625
626#[derive(Debug, Clone)]
628pub struct MeasurementSetting {
629 pub observable: Observable,
631 pub num_shots: usize,
633 pub basis_angles: Vec<f64>,
635 pub error_rates: ErrorRates,
637}
638
639#[derive(Debug, Clone)]
641pub struct Observable {
642 pub pauli_string: String,
644 pub coefficient: f64,
646 pub qubits: Vec<usize>,
648}
649
650#[derive(Debug, Clone)]
652pub struct ErrorRates {
653 pub single_qubit: Array1<f64>,
655 pub two_qubit: Array2<f64>,
657 pub readout: Array1<f64>,
659 pub preparation: Array1<f64>,
661}
662
663#[derive(Debug, Clone)]
665pub struct NoiseCharacterization {
666 pub noise_type: NoiseModelType,
668 pub parameters: HashMap<String, f64>,
670 pub temporal_correlations: Array1<f64>,
672 pub spatial_correlations: Array2<f64>,
674}
675
676#[derive(Debug, Clone, PartialEq, Eq)]
678pub enum NoiseModelType {
679 Depolarizing,
681 AmplitudeDamping,
683 PhaseDamping,
685 Pauli,
687 Coherent,
689 Correlated,
691 NonMarkovian,
693}
694
695#[derive(Debug, Clone)]
697pub struct MeasurementMetadata {
698 pub device_info: String,
700 pub calibration_timestamp: f64,
702 pub environment: HashMap<String, f64>,
704 pub software_versions: HashMap<String, String>,
706}
707
708#[derive(Debug, Clone)]
710pub struct MitigatedData {
711 pub expectation_values: Array1<f64>,
713 pub uncertainties: Array1<f64>,
715 pub overhead: f64,
717 pub confidence_intervals: Array2<f64>,
719 pub metadata: MitigationMetadata,
721}
722
723#[derive(Debug, Clone)]
725pub struct MitigationMetadata {
726 pub strategies_applied: Vec<String>,
728 pub parameters: HashMap<String, f64>,
730 pub success_indicators: HashMap<String, f64>,
732 pub performance_metrics: HashMap<String, f64>,
734}
735
736#[derive(Debug)]
738pub struct FaultToleranceAnalyzer {
739 pub config: FaultToleranceConfig,
741 pub threshold_calculators: Vec<Box<dyn ThresholdCalculator>>,
743 pub propagation_models: Vec<Box<dyn FaultPropagationModel>>,
745 pub resource_estimators: Vec<Box<dyn ResourceEstimator>>,
747}
748
749#[derive(Debug, Clone)]
751pub struct FaultToleranceConfig {
752 pub target_logical_error_rate: f64,
754 pub physical_error_rate: f64,
756 pub computation_depth: usize,
758 pub optimization_objective: OptimizationObjective,
760}
761
762#[derive(Debug, Clone, PartialEq)]
764pub enum OptimizationObjective {
765 MinimizeQubits,
767 MinimizeTime,
769 MinimizeResources,
771 MaximizeSuccess,
773 MultiObjective { weights: Vec<f64> },
775}
776
777pub trait ThresholdCalculator: Send + Sync + std::fmt::Debug {
779 fn calculate_threshold(&self, code: &dyn QuantumCode) -> Result<f64, QECError>;
781
782 fn get_calculator_name(&self) -> &str;
784
785 fn get_parameters(&self) -> HashMap<String, f64>;
787}
788
789pub trait FaultPropagationModel: Send + Sync + std::fmt::Debug {
791 fn propagate_faults(
793 &self,
794 initial_faults: &Array1<u8>,
795 circuit: &QuantumCircuit,
796 ) -> Result<Array1<u8>, QECError>;
797
798 fn get_model_name(&self) -> &str;
800
801 fn get_parameters(&self) -> HashMap<String, f64>;
803}
804
805#[derive(Debug, Clone)]
807pub struct QuantumCircuit {
808 pub num_qubits: usize,
810 pub gates: Vec<QuantumGate>,
812 pub depth: usize,
814 pub parallel_layers: Vec<Vec<usize>>,
816}
817
818pub trait ResourceEstimator: Send + Sync + std::fmt::Debug {
820 fn estimate_resources(
822 &self,
823 code: &dyn QuantumCode,
824 computation: &QuantumCircuit,
825 ) -> Result<ResourceEstimate, QECError>;
826
827 fn get_estimator_name(&self) -> &str;
829}
830
831#[derive(Debug, Clone)]
833pub struct ResourceEstimate {
834 pub total_qubits: usize,
836 pub total_time: usize,
838 pub gate_counts: HashMap<String, usize>,
840 pub memory_requirements: usize,
842 pub success_probability: f64,
844 pub overhead: ResourceOverhead,
846}
847
848#[derive(Debug, Clone)]
850pub struct ResourceOverhead {
851 pub space_overhead: f64,
853 pub time_overhead: f64,
855 pub computational_overhead: f64,
857 pub energy_overhead: f64,
859}
860
861#[derive(Debug, Clone)]
863pub struct QECMetrics {
864 pub logical_error_rate: f64,
866 pub syndrome_fidelity: f64,
868 pub decoding_success_rate: f64,
870 pub correction_latency: f64,
872 pub resource_efficiency: f64,
874 pub fault_tolerance_margin: f64,
876 pub overall_performance: f64,
878}
879
880#[derive(Debug, Clone)]
882pub struct SyndromeData {
883 pub syndrome_bits: Vec<bool>,
884 pub measurement_round: usize,
885 pub timestamp: std::time::SystemTime,
886 pub confidence_scores: Vec<f64>,
887 pub measurement_errors: Vec<bool>,
888}
889
890#[derive(Debug, Clone)]
892pub struct ErrorSyndrome {
893 pub detected_errors: Vec<DetectedError>,
894 pub syndrome_weight: usize,
895 pub decoding_confidence: f64,
896 pub correction_success_probability: f64,
897}
898
899#[derive(Debug, Clone)]
901pub struct DetectedError {
902 pub error_type: ErrorType,
903 pub qubit_index: usize,
904 pub error_probability: f64,
905 pub correction_operation: CorrectionOperation,
906}
907
908#[derive(Debug, Clone)]
910pub struct PerformanceBenchmark {
911 pub test_name: String,
912 pub error_rates: Vec<f64>,
913 pub logical_error_rates: Vec<f64>,
914 pub decoding_times: Vec<f64>,
915 pub memory_usage: Vec<f64>,
916 pub success_rates: Vec<f64>,
917 pub benchmark_timestamp: std::time::SystemTime,
918}
919
920#[derive(Debug, Clone)]
922pub enum QECError {
923 InvalidCodeParameters(String),
925 SyndromeExtractionFailed(String),
927 DecodingFailed(String),
929 InsufficientCorrection(String),
931 ThresholdExceeded(String),
933 ResourceEstimationFailed(String),
935 NumericalError(String),
937}
938
939impl std::fmt::Display for QECError {
940 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
941 match self {
942 Self::InvalidCodeParameters(msg) => write!(f, "Invalid code parameters: {msg}"),
943 Self::SyndromeExtractionFailed(msg) => {
944 write!(f, "Syndrome extraction failed: {msg}")
945 }
946 Self::DecodingFailed(msg) => write!(f, "Decoding failed: {msg}"),
947 Self::InsufficientCorrection(msg) => write!(f, "Insufficient correction: {msg}"),
948 Self::ThresholdExceeded(msg) => write!(f, "Threshold exceeded: {msg}"),
949 Self::ResourceEstimationFailed(msg) => {
950 write!(f, "Resource estimation failed: {msg}")
951 }
952 Self::NumericalError(msg) => write!(f, "Numerical error: {msg}"),
953 }
954 }
955}
956
957impl std::error::Error for QECError {}
958
959impl QuantumErrorCorrection {
960 pub fn new(num_logical_qubits: usize, config: QECConfig) -> Self {
962 let num_physical_qubits = Self::estimate_physical_qubits(num_logical_qubits, &config);
963
964 Self {
965 num_logical_qubits,
966 num_physical_qubits,
967 config,
968 codes: Vec::new(),
969 syndrome_detector: SyndromeDetector::new(num_physical_qubits),
970 mitigation_strategies: Vec::new(),
971 fault_tolerance: FaultToleranceAnalyzer::new(),
972 metrics: QECMetrics::default(),
973 }
974 }
975
976 pub fn correct_errors(&mut self, quantum_state: &Array1<f64>) -> Result<Array1<f64>, QECError> {
978 println!(
979 "Starting quantum error correction for {} logical qubits",
980 self.num_logical_qubits
981 );
982
983 let syndrome = self.extract_syndrome(quantum_state)?;
985
986 let error_estimate = self.decode_syndrome(&syndrome)?;
988
989 let corrected_state = self.apply_correction(quantum_state, &error_estimate)?;
991
992 let correction_successful = self.verify_correction(&corrected_state, quantum_state)?;
994
995 self.update_metrics(&syndrome, &error_estimate, correction_successful);
997
998 let final_state = if correction_successful {
1000 corrected_state
1001 } else {
1002 self.apply_error_mitigation(&corrected_state)?
1003 };
1004
1005 println!(
1006 "Error correction completed. Success rate: {:.4}",
1007 self.metrics.decoding_success_rate
1008 );
1009 Ok(final_state)
1010 }
1011
1012 fn extract_syndrome(&mut self, quantum_state: &Array1<f64>) -> Result<Array1<u8>, QECError> {
1014 if self.codes.is_empty() {
1015 return Err(QECError::InvalidCodeParameters(
1016 "No quantum codes loaded".to_string(),
1017 ));
1018 }
1019
1020 let syndrome = self.codes[0].extract_syndrome(quantum_state)?;
1022
1023 self.syndrome_detector
1025 .syndrome_history
1026 .history
1027 .push(SyndromeRecord {
1028 syndrome: syndrome.clone(),
1029 timestamp: std::time::SystemTime::now()
1030 .duration_since(std::time::UNIX_EPOCH)
1031 .unwrap_or_default()
1032 .as_secs_f64(),
1033 error: None,
1034 correction: None,
1035 success: false,
1036 });
1037
1038 let max_length = self.syndrome_detector.syndrome_history.max_length;
1040 if self.syndrome_detector.syndrome_history.history.len() > max_length {
1041 self.syndrome_detector.syndrome_history.history.remove(0);
1042 }
1043
1044 Ok(syndrome)
1045 }
1046
1047 fn decode_syndrome(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1049 match &self.config.decoding_algorithm {
1050 DecodingAlgorithm::MWPM => self.decode_mwpm(syndrome),
1051 DecodingAlgorithm::BeliefPropagation => self.decode_belief_propagation(syndrome),
1052 DecodingAlgorithm::NeuralNetwork { architecture: _ } => {
1053 self.decode_neural_network(syndrome)
1054 }
1055 DecodingAlgorithm::UnionFind => self.decode_union_find(syndrome),
1056 DecodingAlgorithm::MachineLearning { model_type } => {
1057 self.decode_machine_learning(syndrome, model_type)
1058 }
1059 _ => self.decode_lookup_table(syndrome),
1060 }
1061 }
1062
1063 fn decode_mwpm(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1065 let mut error_estimate = Array1::zeros(self.num_physical_qubits);
1067
1068 let syndrome_positions: Vec<usize> = syndrome
1070 .iter()
1071 .enumerate()
1072 .filter_map(|(i, &s)| if s != 0 { Some(i) } else { None })
1073 .collect();
1074
1075 for chunk in syndrome_positions.chunks(2) {
1077 if chunk.len() == 2 {
1078 let start = chunk[0];
1079 let end = chunk[1];
1080
1081 for i in start..=end {
1083 if i < error_estimate.len() {
1084 error_estimate[i] = 1;
1085 }
1086 }
1087 }
1088 }
1089
1090 Ok(error_estimate)
1091 }
1092
1093 fn decode_belief_propagation(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1095 let mut beliefs = Array1::from_elem(self.num_physical_qubits, 0.5);
1097 let max_iterations = 100;
1098 let tolerance = 1e-6;
1099
1100 for _iteration in 0..max_iterations {
1101 let old_beliefs = beliefs.clone();
1102
1103 for (i, &syndrome_bit) in syndrome.iter().enumerate() {
1105 if syndrome_bit != 0 {
1106 for j in 0..self.num_physical_qubits {
1108 if self.are_connected(i, j) {
1109 beliefs[j] = 1.0 - beliefs[j];
1110 }
1111 }
1112 }
1113 }
1114
1115 let diff = (&beliefs - &old_beliefs).mapv(|x: f64| x.abs()).sum();
1117 if diff < tolerance {
1118 break;
1119 }
1120 }
1121
1122 let error_estimate = beliefs.mapv(|x| u8::from(x > 0.5));
1124 Ok(error_estimate)
1125 }
1126
1127 fn decode_neural_network(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1129 let input_size = syndrome.len();
1131 let hidden_size = input_size * 2;
1132 let output_size = self.num_physical_qubits;
1133
1134 let mut rng = thread_rng();
1136 let w1 = Array2::from_shape_fn((hidden_size, input_size), |_| rng.gen_range(-1.0..1.0));
1137 let w2 = Array2::from_shape_fn((output_size, hidden_size), |_| rng.gen_range(-1.0..1.0));
1138
1139 let syndrome_float = syndrome.mapv(|x| x as f64);
1141
1142 let hidden = w1
1144 .dot(&syndrome_float)
1145 .mapv(|x| if x > 0.0 { x } else { 0.0 }); let output = w2.dot(&hidden).mapv(|x| 1.0 / (1.0 + (-x).exp())); let error_estimate = output.mapv(|x| u8::from(x > 0.5));
1150 Ok(error_estimate)
1151 }
1152
1153 fn decode_union_find(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1155 let mut error_estimate = Array1::zeros(self.num_physical_qubits);
1157
1158 let mut parent: Vec<usize> = (0..syndrome.len()).collect();
1160
1161 for i in 0..syndrome.len() {
1163 if syndrome[i] != 0 {
1164 for j in (i + 1)..syndrome.len() {
1165 if syndrome[j] != 0 && self.are_syndrome_connected(i, j) {
1166 parent[j] = i;
1167 }
1168 }
1169 }
1170 }
1171
1172 for i in 0..syndrome.len() {
1174 if syndrome[i] != 0 {
1175 let root = self.find_root(&parent, i);
1176 if root < error_estimate.len() {
1177 error_estimate[root] = 1;
1178 }
1179 }
1180 }
1181
1182 Ok(error_estimate)
1183 }
1184
1185 fn decode_machine_learning(
1187 &self,
1188 syndrome: &Array1<u8>,
1189 model_type: &MLModelType,
1190 ) -> Result<Array1<u8>, QECError> {
1191 match model_type {
1192 MLModelType::RNN => self.decode_rnn(syndrome),
1193 MLModelType::CNN => self.decode_cnn(syndrome),
1194 MLModelType::Transformer => self.decode_transformer(syndrome),
1195 MLModelType::GNN => self.decode_gnn(syndrome),
1196 MLModelType::VAE => self.decode_vae(syndrome),
1197 MLModelType::ConvolutionalNN => self.decode_cnn(syndrome),
1199 MLModelType::RecurrentNN => self.decode_rnn(syndrome),
1200 MLModelType::TransformerNetwork => self.decode_transformer(syndrome),
1201 MLModelType::GraphNeuralNetwork => self.decode_gnn(syndrome),
1202 MLModelType::ReinforcementLearning => self.decode_rnn(syndrome), MLModelType::DeepQNetwork => self.decode_rnn(syndrome), }
1205 }
1206
1207 fn decode_rnn(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1209 let hidden_size = syndrome.len();
1211 let mut hidden_state = Array1::<f64>::zeros(hidden_size);
1212 let mut output = Array1::zeros(self.num_physical_qubits);
1213
1214 for &syndrome_bit in syndrome {
1216 hidden_state =
1218 hidden_state.mapv(|h: f64| 0.5f64.mul_add(h, 0.5 * (syndrome_bit as f64)));
1219 }
1220
1221 for i in 0..output.len() {
1223 output[i] = if hidden_state[i % hidden_state.len()] > 0.5 {
1224 1.0
1225 } else {
1226 0.0
1227 };
1228 }
1229
1230 Ok(output.mapv(|x| x as u8))
1231 }
1232
1233 fn decode_cnn(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1235 let kernel_size = 3;
1237 let mut convolved = Array1::zeros(syndrome.len());
1238
1239 for i in 0..syndrome.len() {
1241 let mut sum = 0.0;
1242 for j in 0..kernel_size {
1243 let idx = (i + j).saturating_sub(kernel_size / 2);
1244 if idx < syndrome.len() {
1245 sum += syndrome[idx] as f64;
1246 }
1247 }
1248 convolved[i] = sum / kernel_size as f64;
1249 }
1250
1251 let error_estimate = Array1::from_vec(
1253 (0..self.num_physical_qubits)
1254 .map(|i| u8::from(convolved[i % convolved.len()] > 0.5))
1255 .collect(),
1256 );
1257
1258 Ok(error_estimate)
1259 }
1260
1261 fn decode_transformer(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1263 let seq_len = syndrome.len();
1265 let _d_model = seq_len;
1266
1267 let mut attention_output = Array1::zeros(seq_len);
1269 for i in 0..seq_len {
1270 let mut weighted_sum = 0.0;
1271 let mut weight_sum = 0.0;
1272
1273 for j in 0..seq_len {
1274 let attention_weight = (-((i as f64 - j as f64).powi(2)) / 2.0).exp();
1275 weighted_sum += attention_weight * syndrome[j] as f64;
1276 weight_sum += attention_weight;
1277 }
1278
1279 attention_output[i] = if weight_sum > 0.0 {
1280 weighted_sum / weight_sum
1281 } else {
1282 0.0
1283 };
1284 }
1285
1286 let error_estimate = Array1::from_vec(
1288 (0..self.num_physical_qubits)
1289 .map(|i| u8::from(attention_output[i % attention_output.len()] > 0.5))
1290 .collect(),
1291 );
1292
1293 Ok(error_estimate)
1294 }
1295
1296 fn decode_gnn(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1298 let num_nodes = syndrome.len();
1300 let mut node_features = syndrome.mapv(|x| x as f64);
1301
1302 for _ in 0..3 {
1304 let mut new_features = node_features.clone();
1305
1306 for i in 0..num_nodes {
1307 let mut neighbor_sum = 0.0;
1308 let mut neighbor_count = 0;
1309
1310 for j in 0..num_nodes {
1312 if i != j && self.are_syndrome_connected(i, j) {
1313 neighbor_sum += node_features[j];
1314 neighbor_count += 1;
1315 }
1316 }
1317
1318 if neighbor_count > 0 {
1319 new_features[i] =
1320 f64::midpoint(node_features[i], neighbor_sum / neighbor_count as f64);
1321 }
1322 }
1323
1324 node_features = new_features;
1325 }
1326
1327 let error_estimate = Array1::from_vec(
1329 (0..self.num_physical_qubits)
1330 .map(|i| u8::from(node_features[i % node_features.len()] > 0.5))
1331 .collect(),
1332 );
1333
1334 Ok(error_estimate)
1335 }
1336
1337 fn decode_vae(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1339 let latent_dim = syndrome.len() / 2;
1341 let syndrome_float = syndrome.mapv(|x| x as f64);
1342
1343 let mut latent = Array1::zeros(latent_dim);
1345 for i in 0..latent_dim {
1346 let start_idx = i * 2;
1347 let end_idx = ((i + 1) * 2).min(syndrome.len());
1348
1349 let mut sum = 0.0;
1350 for j in start_idx..end_idx {
1351 sum += syndrome_float[j];
1352 }
1353 latent[i] = sum / (end_idx - start_idx) as f64;
1354 }
1355
1356 let mut error_estimate = Array1::zeros(self.num_physical_qubits);
1358 for i in 0..self.num_physical_qubits {
1359 let latent_idx = i % latent_dim;
1360 error_estimate[i] = u8::from(latent[latent_idx] > 0.5);
1361 }
1362
1363 Ok(error_estimate)
1364 }
1365
1366 fn decode_lookup_table(&self, syndrome: &Array1<u8>) -> Result<Array1<u8>, QECError> {
1368 let mut error_estimate = Array1::zeros(self.num_physical_qubits);
1370
1371 let pattern: String = syndrome
1373 .iter()
1374 .map(|&x| char::from_digit(x as u32, 10).unwrap_or('0'))
1375 .collect();
1376
1377 match pattern.as_str() {
1379 s if s.contains('1') => {
1380 if let Some(pos) = syndrome.iter().position(|&x| x != 0) {
1382 if pos < error_estimate.len() {
1383 error_estimate[pos] = 1;
1384 }
1385 }
1386 }
1387 _ => {
1388 }
1390 }
1391
1392 Ok(error_estimate)
1393 }
1394
1395 fn apply_correction(
1397 &self,
1398 quantum_state: &Array1<f64>,
1399 error_estimate: &Array1<u8>,
1400 ) -> Result<Array1<f64>, QECError> {
1401 let mut corrected_state = quantum_state.clone();
1402
1403 for (i, &error_bit) in error_estimate.iter().enumerate() {
1405 if error_bit != 0 && i < corrected_state.len() {
1406 self.apply_pauli_x(&mut corrected_state, i);
1408 }
1409 }
1410
1411 Ok(corrected_state)
1412 }
1413
1414 fn apply_pauli_x(&self, state: &mut Array1<f64>, qubit: usize) {
1416 let num_qubits = (state.len() as f64).log2() as usize;
1417 if qubit >= num_qubits {
1418 return;
1419 }
1420
1421 let qubit_mask = 1 << qubit;
1422
1423 for i in 0..state.len() {
1424 let j = i ^ qubit_mask;
1425 if i < j {
1426 let temp = state[i];
1427 state[i] = state[j];
1428 state[j] = temp;
1429 }
1430 }
1431 }
1432
1433 fn verify_correction(
1435 &self,
1436 corrected_state: &Array1<f64>,
1437 original_state: &Array1<f64>,
1438 ) -> Result<bool, QECError> {
1439 let original_syndrome = if self.codes.is_empty() {
1441 Array1::zeros(1)
1442 } else {
1443 self.codes[0].extract_syndrome(original_state)?
1444 };
1445
1446 let corrected_syndrome = if self.codes.is_empty() {
1447 Array1::zeros(1)
1448 } else {
1449 self.codes[0].extract_syndrome(corrected_state)?
1450 };
1451
1452 let original_syndrome_weight = original_syndrome.iter().map(|&x| x as usize).sum::<usize>();
1453 let corrected_syndrome_weight = corrected_syndrome
1454 .iter()
1455 .map(|&x| x as usize)
1456 .sum::<usize>();
1457
1458 Ok(corrected_syndrome_weight <= original_syndrome_weight)
1459 }
1460
1461 fn apply_error_mitigation(&self, state: &Array1<f64>) -> Result<Array1<f64>, QECError> {
1463 let mut mitigated_state = state.clone();
1465
1466 let noise_threshold = 0.01;
1468 for value in &mut mitigated_state {
1469 if value.abs() < noise_threshold {
1470 *value = 0.0;
1471 }
1472 }
1473
1474 let norm = mitigated_state.dot(&mitigated_state).sqrt();
1476 if norm > 1e-15 {
1477 mitigated_state /= norm;
1478 }
1479
1480 Ok(mitigated_state)
1481 }
1482
1483 fn update_metrics(
1485 &mut self,
1486 syndrome: &Array1<u8>,
1487 error_estimate: &Array1<u8>,
1488 success: bool,
1489 ) {
1490 let syndrome_weight = syndrome.iter().map(|&x| x as f64).sum::<f64>();
1492 let total_syndromes = syndrome.len() as f64;
1493 self.metrics.syndrome_fidelity = 1.0 - syndrome_weight / total_syndromes;
1494
1495 let alpha = 0.1;
1497 let success_value = if success { 1.0 } else { 0.0 };
1498 self.metrics.decoding_success_rate =
1499 alpha * success_value + (1.0 - alpha) * self.metrics.decoding_success_rate;
1500
1501 let error_weight = error_estimate.iter().map(|&x| x as f64).sum::<f64>();
1503 let total_qubits = error_estimate.len() as f64;
1504 self.metrics.logical_error_rate = error_weight / total_qubits;
1505
1506 self.metrics.overall_performance = (1.0 - self.metrics.logical_error_rate).mul_add(
1508 0.3,
1509 self.metrics
1510 .syndrome_fidelity
1511 .mul_add(0.3, self.metrics.decoding_success_rate * 0.4),
1512 );
1513 }
1514
1515 const fn are_connected(&self, qubit1: usize, qubit2: usize) -> bool {
1517 (qubit1 as i32 - qubit2 as i32).abs() == 1
1519 }
1520
1521 const fn are_syndrome_connected(&self, pos1: usize, pos2: usize) -> bool {
1523 (pos1 as i32 - pos2 as i32).abs() <= 2
1525 }
1526
1527 fn find_root(&self, parent: &[usize], mut x: usize) -> usize {
1529 while parent[x] != x {
1530 x = parent[x];
1531 }
1532 x
1533 }
1534
1535 const fn estimate_physical_qubits(num_logical: usize, config: &QECConfig) -> usize {
1537 match &config.code_type {
1538 QuantumCodeType::SurfaceCode { .. } => {
1539 let d = config.code_distance;
1541 num_logical * d * d
1542 }
1543 QuantumCodeType::ColorCode { .. } => {
1544 let d = config.code_distance;
1546 num_logical * d * d
1547 }
1548 _ => {
1549 num_logical * config.code_distance * config.code_distance
1551 }
1552 }
1553 }
1554}
1555
1556impl SyndromeDetector {
1557 pub fn new(num_qubits: usize) -> Self {
1559 Self {
1560 config: SyndromeDetectionConfig {
1561 num_rounds: 3,
1562 extraction_frequency: 1000.0, detection_threshold: 0.5,
1564 correlation_window: 100,
1565 use_flag_qubits: false,
1566 },
1567 measurement_circuits: Vec::new(),
1568 error_correlations: ErrorCorrelationTracker {
1569 spatial_correlations: Array2::zeros((num_qubits, num_qubits)),
1570 temporal_correlations: Array1::zeros(100),
1571 cross_correlations: Array3::zeros((3, num_qubits, num_qubits)), correlation_times: Array1::ones(num_qubits),
1573 },
1574 syndrome_history: SyndromeHistory {
1575 history: Vec::new(),
1576 max_length: 1000,
1577 pattern_detector: PatternDetector {
1578 patterns: Vec::new(),
1579 pattern_frequency: HashMap::new(),
1580 prediction_model: None,
1581 },
1582 },
1583 }
1584 }
1585}
1586
1587impl Default for FaultToleranceAnalyzer {
1588 fn default() -> Self {
1589 Self::new()
1590 }
1591}
1592
1593impl FaultToleranceAnalyzer {
1594 pub fn new() -> Self {
1596 Self {
1597 config: FaultToleranceConfig {
1598 target_logical_error_rate: 1e-6,
1599 physical_error_rate: 1e-3,
1600 computation_depth: 1000,
1601 optimization_objective: OptimizationObjective::MinimizeQubits,
1602 },
1603 threshold_calculators: Vec::new(),
1604 propagation_models: Vec::new(),
1605 resource_estimators: Vec::new(),
1606 }
1607 }
1608}
1609
1610impl Default for QECMetrics {
1611 fn default() -> Self {
1612 Self {
1613 logical_error_rate: 0.0,
1614 syndrome_fidelity: 1.0,
1615 decoding_success_rate: 1.0,
1616 correction_latency: 0.0,
1617 resource_efficiency: 1.0,
1618 fault_tolerance_margin: 1.0,
1619 overall_performance: 1.0,
1620 }
1621 }
1622}
1623
1624pub fn create_default_qec_config() -> QECConfig {
1626 QECConfig {
1627 code_type: QuantumCodeType::SurfaceCode {
1628 lattice_type: LatticeType::Square,
1629 },
1630 code_distance: 3,
1631 correction_frequency: 1000.0,
1632 syndrome_method: SyndromeExtractionMethod::Standard,
1633 decoding_algorithm: DecodingAlgorithm::MWPM,
1634 error_mitigation: ErrorMitigationConfig {
1635 zero_noise_extrapolation: true,
1636 probabilistic_error_cancellation: false,
1637 symmetry_verification: true,
1638 virtual_distillation: false,
1639 error_amplification: ErrorAmplificationConfig {
1640 amplification_factors: vec![1.0, 1.5, 2.0],
1641 max_amplification: 3.0,
1642 strategy: AmplificationStrategy::Linear,
1643 },
1644 clifford_data_regression: false,
1645 },
1646 adaptive_correction: AdaptiveCorrectionConfig {
1647 adaptive_thresholding: false,
1648 dynamic_distance: false,
1649 real_time_code_switching: false,
1650 performance_adaptation: PerformanceAdaptationConfig {
1651 error_rate_threshold: 0.01,
1652 monitoring_window: 100,
1653 adaptation_sensitivity: 0.1,
1654 min_adaptation_interval: 10.0,
1655 },
1656 learning_adaptation: LearningAdaptationConfig {
1657 reinforcement_learning: false,
1658 learning_rate: 0.01,
1659 replay_buffer_size: 10000,
1660 update_frequency: 100,
1661 },
1662 },
1663 threshold_estimation: ThresholdEstimationConfig {
1664 real_time_estimation: false,
1665 estimation_method: ThresholdEstimationMethod::MonteCarlo,
1666 confidence_level: 0.95,
1667 update_frequency: 1000,
1668 },
1669 }
1670}
1671
1672pub fn create_optimization_qec(num_logical_qubits: usize) -> QuantumErrorCorrection {
1674 let config = create_default_qec_config();
1675 QuantumErrorCorrection::new(num_logical_qubits, config)
1676}
1677
1678pub fn create_adaptive_qec_config() -> QECConfig {
1680 let mut config = create_default_qec_config();
1681 config.adaptive_correction.adaptive_thresholding = true;
1682 config.adaptive_correction.dynamic_distance = true;
1683 config.adaptive_correction.real_time_code_switching = true;
1684 config
1685 .adaptive_correction
1686 .learning_adaptation
1687 .reinforcement_learning = true;
1688 config.threshold_estimation.real_time_estimation = true;
1689 config
1690}
1691
1692#[cfg(test)]
1693mod tests {
1694 use super::*;
1695
1696 #[test]
1697 fn test_qec_creation() {
1698 let mut qec = create_optimization_qec(2);
1699 assert_eq!(qec.num_logical_qubits, 2);
1700 assert_eq!(qec.config.code_distance, 3);
1701 }
1702
1703 #[test]
1704 fn test_syndrome_extraction() {
1705 let mut qec = create_optimization_qec(1);
1706 let mut quantum_state = Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]); let mut result = qec.extract_syndrome(&quantum_state);
1710 assert!(result.is_err());
1711 }
1712
1713 #[test]
1714 fn test_mwpm_decoding() {
1715 let qec = create_optimization_qec(2);
1716 let syndrome = Array1::from_vec(vec![1, 0, 1, 0]);
1717
1718 let error_estimate = qec
1719 .decode_mwpm(&syndrome)
1720 .expect("MWPM decoding should succeed");
1721 assert_eq!(error_estimate.len(), qec.num_physical_qubits);
1722 }
1723
1724 #[test]
1725 fn test_belief_propagation_decoding() {
1726 let qec = create_optimization_qec(2);
1727 let syndrome = Array1::from_vec(vec![1, 1, 0, 0]);
1728
1729 let error_estimate = qec
1730 .decode_belief_propagation(&syndrome)
1731 .expect("Belief propagation decoding should succeed");
1732 assert_eq!(error_estimate.len(), qec.num_physical_qubits);
1733 }
1734
1735 #[test]
1736 fn test_pauli_x_application() {
1737 let mut qec = create_optimization_qec(1);
1738 let mut state = Array1::from_vec(vec![1.0, 0.0]);
1739
1740 qec.apply_pauli_x(&mut state, 0);
1741
1742 assert!((state[0] - 0.0).abs() < 1e-10);
1744 assert!((state[1] - 1.0).abs() < 1e-10);
1745 }
1746
1747 #[test]
1748 fn test_physical_qubit_estimation() {
1749 let mut config = create_default_qec_config();
1750 let num_physical = QuantumErrorCorrection::estimate_physical_qubits(2, &config);
1751
1752 assert_eq!(num_physical, 18);
1754 }
1755}