1#![allow(dead_code)]
7
8use crate::{
9 sampler::{SampleResult, Sampler, SamplerError, SamplerResult},
10 QuboModel,
11};
12use scirs2_core::ndarray::{Array, Array1, Array2};
13use scirs2_core::random::prelude::*;
14use std::collections::HashMap;
15use std::f64::consts::PI;
16
17#[cfg(feature = "scirs")]
18use scirs2_linalg;
19
20#[cfg(feature = "scirs")]
22mod quantum_stub {
23 use scirs2_core::ndarray::Array2;
24
25 pub fn pauli_matrices() -> (Array2<f64>, Array2<f64>, Array2<f64>) {
26 use scirs2_core::ndarray::array;
28 let x = array![[0.0, 1.0], [1.0, 0.0]];
29 let y = array![[0.0, -1.0], [1.0, 0.0]]; let z = array![[1.0, 0.0], [0.0, -1.0]];
31 (x, y, z)
32 }
33
34 pub fn tensor_product(a: &Array2<f64>, b: &Array2<f64>) -> Array2<f64> {
35 a.clone()
37 }
38}
39
40#[cfg(feature = "scirs")]
41use quantum_stub::{pauli_matrices, tensor_product};
42
43#[derive(Debug, Clone)]
45pub enum AnnealingSchedule {
46 Linear,
48 Quadratic,
50 Exponential,
52 Custom { times: Vec<f64>, values: Vec<f64> },
54}
55
56impl AnnealingSchedule {
57 pub fn s(&self, t: f64) -> f64 {
59 match self {
60 Self::Linear => t,
61 Self::Quadratic => t * t,
62 Self::Exponential => t.exp_m1() / 1_f64.exp_m1(),
63 Self::Custom { times, values } => {
64 if t <= times[0] {
66 values[0]
67 } else if t >= times[times.len() - 1] {
68 values[values.len() - 1]
69 } else {
70 for i in 1..times.len() {
71 if t <= times[i] {
72 let frac = (t - times[i - 1]) / (times[i] - times[i - 1]);
73 return frac.mul_add(values[i] - values[i - 1], values[i - 1]);
74 }
75 }
76 values[values.len() - 1]
77 }
78 }
79 }
80 }
81
82 pub fn transverse_field(&self, t: f64) -> f64 {
84 1.0 - self.s(t)
85 }
86
87 pub fn problem_strength(&self, t: f64) -> f64 {
89 self.s(t)
90 }
91}
92
93#[derive(Debug, Clone)]
95pub struct NoiseModel {
96 pub temperature: f64,
98 pub dephasing_rate: f64,
100 pub relaxation_rate: f64,
102 pub control_noise: f64,
104}
105
106impl Default for NoiseModel {
107 fn default() -> Self {
108 Self {
109 temperature: 0.015, dephasing_rate: 1e-6,
111 relaxation_rate: 1e-7,
112 control_noise: 0.01,
113 }
114 }
115}
116
117#[derive(Debug, Clone)]
119pub struct QuantumAnnealingConfig {
120 pub annealing_time: f64,
122 pub num_steps: usize,
124 pub schedule: AnnealingSchedule,
126 pub noise_model: Option<NoiseModel>,
128 pub use_sparse: bool,
130 pub max_excited_states: usize,
132 pub track_diabatic_transitions: bool,
134}
135
136impl Default for QuantumAnnealingConfig {
137 fn default() -> Self {
138 Self {
139 annealing_time: 20.0, num_steps: 1000,
141 schedule: AnnealingSchedule::Linear,
142 noise_model: None,
143 use_sparse: true,
144 max_excited_states: 10,
145 track_diabatic_transitions: false,
146 }
147 }
148}
149
150#[derive(Debug, Clone)]
152pub struct QuantumState {
153 pub amplitudes: Array1<Complex64>,
155 pub time: f64,
157 pub energy: f64,
159 pub ground_state_overlap: f64,
161}
162
163#[derive(Debug, Clone, Copy)]
165pub struct Complex64 {
166 pub re: f64,
167 pub im: f64,
168}
169
170impl Complex64 {
171 pub const fn new(re: f64, im: f64) -> Self {
172 Self { re, im }
173 }
174
175 pub fn norm_squared(&self) -> f64 {
176 self.re.mul_add(self.re, self.im * self.im)
177 }
178
179 pub fn conj(&self) -> Self {
180 Self::new(self.re, -self.im)
181 }
182}
183
184pub struct QuantumAnnealingSampler {
186 config: QuantumAnnealingConfig,
187 rng: StdRng,
188}
189
190impl QuantumAnnealingSampler {
191 pub fn new(config: QuantumAnnealingConfig) -> Self {
192 Self {
193 config,
194 rng: StdRng::from_seed([42; 32]),
195 }
196 }
197
198 pub fn with_seed(mut self, seed: u64) -> Self {
199 self.rng = StdRng::seed_from_u64(seed);
200 self
201 }
202
203 fn build_transverse_hamiltonian(&self, n: usize) -> Array2<f64> {
205 let mut h_transverse = Array2::zeros((1 << n, 1 << n));
206
207 for i in 0..n {
209 for state in 0..(1 << n) {
210 let flipped = state ^ (1 << i);
211 h_transverse[[state, flipped]] = -1.0;
212 }
213 }
214
215 h_transverse
216 }
217
218 #[allow(dead_code)]
220 fn build_problem_hamiltonian(&self, qubo: &QuboModel) -> Array2<f64> {
221 let n = qubo.num_variables;
223 let mut matrix = Array2::<f64>::zeros((n, n));
224
225 for (i, val) in qubo.linear_terms() {
227 matrix[[i, i]] = val;
228 }
229
230 for (i, j, val) in qubo.quadratic_terms() {
232 matrix[[i, j]] = val;
233 if i != j {
234 matrix[[j, i]] = val; }
236 }
237
238 self.build_problem_hamiltonian_from_matrix(&matrix)
239 }
240
241 fn build_problem_hamiltonian_from_matrix(
243 &self,
244 matrix: &Array<f64, scirs2_core::ndarray::Ix2>,
245 ) -> Array2<f64> {
246 let n = matrix.nrows();
247 let mut h_problem = Array2::zeros((1 << n, 1 << n));
248
249 for state in 0..(1 << n) {
251 let mut energy = 0.0;
252
253 for i in 0..n {
255 for j in 0..n {
256 let bit_i = (state >> i) & 1;
257 let bit_j = (state >> j) & 1;
258 energy += matrix[[i, j]] * bit_i as f64 * bit_j as f64;
259 }
260 }
261
262 h_problem[[state, state]] = energy;
263 }
264
265 h_problem
266 }
267
268 fn evolve_state(
270 &self,
271 state: &mut QuantumState,
272 h_transverse: &Array2<f64>,
273 h_problem: &Array2<f64>,
274 dt: f64,
275 t: f64,
276 ) {
277 let _s = self.config.schedule.s(t);
278 let a = self.config.schedule.transverse_field(t);
279 let b = self.config.schedule.problem_strength(t);
280
281 let h_total = a * h_transverse + b * h_problem;
283
284 let n = state.amplitudes.len();
287 let mut new_amplitudes = Array1::from_elem(n, Complex64::new(0.0, 0.0));
288
289 for i in 0..n {
290 let mut amp = state.amplitudes[i];
291
292 let energy = h_total[[i, i]];
294 let phase = Complex64::new((energy * dt).cos(), -(energy * dt).sin());
295 amp = Complex64::new(
296 amp.re.mul_add(phase.re, -(amp.im * phase.im)),
297 amp.re.mul_add(phase.im, amp.im * phase.re),
298 );
299
300 for j in 0..n {
302 if i != j && h_total[[i, j]].abs() > 1e-10 {
303 let coupling = h_total[[i, j]] * dt;
304 let other_amp = state.amplitudes[j];
305 amp.re += -coupling * other_amp.im;
306 amp.im += coupling * other_amp.re;
307 }
308 }
309
310 new_amplitudes[i] = amp;
311 }
312
313 let norm: f64 = new_amplitudes
315 .iter()
316 .map(|a| a.norm_squared())
317 .sum::<f64>()
318 .sqrt();
319
320 for amp in &mut new_amplitudes {
321 amp.re /= norm;
322 amp.im /= norm;
323 }
324
325 state.amplitudes = new_amplitudes;
326 state.time = t + dt;
327
328 state.energy = self.compute_energy_expectation(&state.amplitudes, h_problem);
330 }
331
332 fn apply_noise(&self, state: &mut QuantumState, dt: f64) {
334 if let Some(noise) = &self.config.noise_model {
335 let n = state.amplitudes.len();
336 let mut rng = StdRng::from_seed([42; 32]); if noise.dephasing_rate > 0.0 {
340 for amp in &mut state.amplitudes {
341 let phase_noise = rng.gen_range(-1.0..1.0) * (noise.dephasing_rate * dt).sqrt();
342 let phase = Complex64::new(phase_noise.cos(), phase_noise.sin());
343 let new_amp = Complex64::new(
344 amp.re.mul_add(phase.re, -(amp.im * phase.im)),
345 amp.re.mul_add(phase.im, amp.im * phase.re),
346 );
347 *amp = new_amp;
348 }
349 }
350
351 if noise.temperature > 0.0 {
353 let thermal_prob = (noise.temperature * dt).min(0.1);
355 if rng.gen::<f64>() < thermal_prob {
356 let i = rng.gen_range(0..n);
357 let j = rng.gen_range(0..n);
358 if i != j {
359 let mix_angle: f64 = rng.gen_range(0.0..0.1);
361 let cos_a = mix_angle.cos();
362 let sin_a = mix_angle.sin();
363
364 let amp_i = state.amplitudes[i];
365 let amp_j = state.amplitudes[j];
366
367 state.amplitudes[i] = Complex64::new(
368 cos_a.mul_add(amp_i.re, sin_a * amp_j.re),
369 cos_a.mul_add(amp_i.im, sin_a * amp_j.im),
370 );
371 state.amplitudes[j] = Complex64::new(
372 (-sin_a).mul_add(amp_i.re, cos_a * amp_j.re),
373 (-sin_a).mul_add(amp_i.im, cos_a * amp_j.im),
374 );
375 }
376 }
377 }
378 }
379 }
380
381 fn compute_energy_expectation(
383 &self,
384 amplitudes: &Array1<Complex64>,
385 h_problem: &Array2<f64>,
386 ) -> f64 {
387 let n = amplitudes.len();
388 let mut energy = 0.0;
389
390 for i in 0..n {
391 for j in 0..n {
392 let amp_i = amplitudes[i];
393 let amp_j = amplitudes[j];
394 let h_ij = h_problem[[i, j]];
395
396 energy += amp_i
398 .conj()
399 .re
400 .mul_add(amp_j.re, amp_i.conj().im * amp_j.im)
401 * h_ij;
402 }
403 }
404
405 energy
406 }
407
408 fn measure_state(&self, state: &QuantumState) -> Vec<bool> {
410 let n = (state.amplitudes.len() as f64).log2() as usize;
411 let mut probabilities = Vec::new();
412 let mut cumulative = 0.0;
413
414 for amp in &state.amplitudes {
416 cumulative += amp.norm_squared();
417 probabilities.push(cumulative);
418 }
419
420 let mut rng = StdRng::from_seed([42; 32]); let r = rng.gen::<f64>();
423 let mut measured_state = 0;
424
425 for (i, &prob) in probabilities.iter().enumerate() {
426 if r <= prob {
427 measured_state = i;
428 break;
429 }
430 }
431
432 (0..n).map(|i| (measured_state >> i) & 1 == 1).collect()
434 }
435}
436
437impl Sampler for QuantumAnnealingSampler {
438 fn run_qubo(
439 &self,
440 qubo: &(
441 Array<f64, scirs2_core::ndarray::Ix2>,
442 HashMap<String, usize>,
443 ),
444 num_reads: usize,
445 ) -> SamplerResult<Vec<SampleResult>> {
446 let (matrix, var_map) = qubo;
447 let n = matrix.nrows();
448 if n > 20 {
449 return Err(SamplerError::InvalidParameter(
450 "Quantum simulation limited to 20 qubits".into(),
451 ));
452 }
453
454 let h_transverse = self.build_transverse_hamiltonian(n);
456 let h_problem = self.build_problem_hamiltonian_from_matrix(matrix);
457
458 let mut results = Vec::new();
459
460 for _read in 0..num_reads {
461 let mut state = QuantumState {
463 amplitudes: Array1::from_elem(1 << n, Complex64::new(1.0 / (1 << n) as f64, 0.0)),
464 time: 0.0,
465 energy: 0.0,
466 ground_state_overlap: 1.0,
467 };
468
469 let dt = self.config.annealing_time / self.config.num_steps as f64;
471
472 for step in 0..self.config.num_steps {
473 let t = step as f64 / self.config.num_steps as f64;
474
475 self.evolve_state(&mut state, &h_transverse, &h_problem, dt, t);
477
478 self.apply_noise(&mut state, dt);
480 }
481
482 let measured = self.measure_state(&state);
484
485 let mut assignments = HashMap::new();
487 for (var_name, &idx) in var_map {
488 assignments.insert(var_name.clone(), measured[idx]);
489 }
490
491 let mut energy = 0.0;
493 for i in 0..n {
494 for j in 0..n {
495 if measured[i] && measured[j] {
496 energy += matrix[[i, j]];
497 }
498 }
499 }
500
501 results.push(SampleResult {
502 assignments,
503 energy,
504 occurrences: 1,
505 });
506 }
507
508 Ok(results)
509 }
510
511 fn run_hobo(
512 &self,
513 hobo: &(
514 Array<f64, scirs2_core::ndarray::IxDyn>,
515 HashMap<String, usize>,
516 ),
517 shots: usize,
518 ) -> SamplerResult<Vec<SampleResult>> {
519 let (matrix_dyn, var_map) = hobo;
520
521 if matrix_dyn.ndim() != 2 {
522 return Err(SamplerError::InvalidParameter(
523 "HOBO matrix must be 2D for quantum annealing".into(),
524 ));
525 }
526
527 let matrix_2d = matrix_dyn
528 .clone()
529 .into_dimensionality::<scirs2_core::ndarray::Ix2>()
530 .map_err(|_| SamplerError::InvalidParameter("Failed to convert matrix to 2D".into()))?;
531
532 self.run_qubo(&(matrix_2d, var_map.clone()), shots)
533 }
534}
535
536pub mod advanced {
538 use super::*;
539
540 #[derive(Debug, Clone)]
542 pub struct ReverseAnnealingConfig {
543 pub initial_state: Vec<bool>,
545 pub reverse_fraction: f64,
547 pub hold_time: f64,
549 }
550
551 #[derive(Debug, Clone)]
553 pub struct PauseConfig {
554 pub pause_points: Vec<f64>,
556 pub pause_durations: Vec<f64>,
558 }
559
560 pub struct DiabaticAnalyzer {
562 pub min_gap: f64,
564 pub gap_history: Vec<(f64, f64)>, pub transition_probability: f64,
568 }
569
570 impl Default for DiabaticAnalyzer {
571 fn default() -> Self {
572 Self::new()
573 }
574 }
575
576 impl DiabaticAnalyzer {
577 pub const fn new() -> Self {
578 Self {
579 min_gap: f64::INFINITY,
580 gap_history: Vec::new(),
581 transition_probability: 0.0,
582 }
583 }
584
585 pub fn update(&mut self, time: f64, gap: f64, velocity: f64) {
587 self.min_gap = self.min_gap.min(gap);
588 self.gap_history.push((time, gap));
589
590 if gap > 0.0 && velocity > 0.0 {
592 let lz_prob = (-2.0 * PI * gap * gap / velocity).exp();
593 self.transition_probability = self.transition_probability.max(lz_prob);
594 }
595 }
596
597 pub fn recommend_annealing_time(&self) -> f64 {
599 let target_success = 0.99;
601 let required_time =
602 2.0 * PI / (self.min_gap * self.min_gap * (1.0_f64 - target_success).ln().abs());
603 required_time.max(1.0) }
605 }
606}
607
608#[cfg(test)]
609mod tests {
610 use super::*;
611 use scirs2_core::ndarray::Array;
612 use std::collections::HashMap;
613
614 #[test]
615 fn test_annealing_schedule() {
616 let schedule = AnnealingSchedule::Linear;
617 assert_eq!(schedule.s(0.0), 0.0);
618 assert_eq!(schedule.s(0.5), 0.5);
619 assert_eq!(schedule.s(1.0), 1.0);
620
621 let schedule = AnnealingSchedule::Quadratic;
622 assert_eq!(schedule.s(0.5), 0.25);
623 }
624
625 #[test]
626 fn test_small_quantum_annealing() {
627 let mut matrix = Array::zeros((2, 2));
629 matrix[[0, 0]] = -1.0; matrix[[1, 1]] = -1.0; matrix[[0, 1]] = 2.0; matrix[[1, 0]] = 2.0; let mut var_map = HashMap::new();
635 var_map.insert("x0".to_string(), 0);
636 var_map.insert("x1".to_string(), 1);
637
638 let mut config = QuantumAnnealingConfig {
639 annealing_time: 1.0,
640 num_steps: 100,
641 ..Default::default()
642 };
643
644 let sampler = QuantumAnnealingSampler::new(config);
645 let results = sampler
646 .run_qubo(&(matrix, var_map), 10)
647 .expect("Failed to run QUBO sampling");
648
649 assert_eq!(results.len(), 10);
650
651 for result in results {
653 assert!(result.energy.is_finite());
654 }
655 }
656}