quantrs2_tytan/
quantum_annealing.rs

1//! Simulated Quantum Annealing implementation with SciRS2
2//!
3//! This module implements quantum annealing simulation using the transverse field Ising model
4//! and provides advanced features like noise modeling and diabatic transitions.
5
6#![allow(dead_code)]
7
8use crate::{
9    sampler::{SampleResult, Sampler, SamplerError, SamplerResult},
10    QuboModel,
11};
12use scirs2_core::ndarray::{Array, Array1, Array2};
13use scirs2_core::random::prelude::*;
14use std::collections::HashMap;
15use std::f64::consts::PI;
16
17#[cfg(feature = "scirs")]
18use scirs2_linalg;
19
20// Stub for missing quantum functionality
21#[cfg(feature = "scirs")]
22mod quantum_stub {
23    use scirs2_core::ndarray::Array2;
24
25    pub fn pauli_matrices() -> (Array2<f64>, Array2<f64>, Array2<f64>) {
26        // Placeholder implementation
27        use scirs2_core::ndarray::array;
28        let x = array![[0.0, 1.0], [1.0, 0.0]];
29        let y = array![[0.0, -1.0], [1.0, 0.0]]; // Simplified
30        let z = array![[1.0, 0.0], [0.0, -1.0]];
31        (x, y, z)
32    }
33
34    pub fn tensor_product(a: &Array2<f64>, b: &Array2<f64>) -> Array2<f64> {
35        // Placeholder implementation
36        a.clone()
37    }
38}
39
40#[cfg(feature = "scirs")]
41use quantum_stub::{pauli_matrices, tensor_product};
42
43/// Quantum annealing schedule types
44#[derive(Debug, Clone)]
45pub enum AnnealingSchedule {
46    /// Linear interpolation between initial and final Hamiltonians
47    Linear,
48    /// Quadratic schedule for slower transitions
49    Quadratic,
50    /// Exponential schedule for rapid quenching
51    Exponential,
52    /// Custom schedule with control points
53    Custom { times: Vec<f64>, values: Vec<f64> },
54}
55
56impl AnnealingSchedule {
57    /// Get the schedule parameter s(t) at time t ∈ [0, 1]
58    pub fn s(&self, t: f64) -> f64 {
59        match self {
60            Self::Linear => t,
61            Self::Quadratic => t * t,
62            Self::Exponential => t.exp_m1() / 1_f64.exp_m1(),
63            Self::Custom { times, values } => {
64                // Linear interpolation between control points
65                if t <= times[0] {
66                    values[0]
67                } else if t >= times[times.len() - 1] {
68                    values[values.len() - 1]
69                } else {
70                    for i in 1..times.len() {
71                        if t <= times[i] {
72                            let frac = (t - times[i - 1]) / (times[i] - times[i - 1]);
73                            return frac.mul_add(values[i] - values[i - 1], values[i - 1]);
74                        }
75                    }
76                    values[values.len() - 1]
77                }
78            }
79        }
80    }
81
82    /// Get the transverse field strength A(t)
83    pub fn transverse_field(&self, t: f64) -> f64 {
84        1.0 - self.s(t)
85    }
86
87    /// Get the problem Hamiltonian strength B(t)
88    pub fn problem_strength(&self, t: f64) -> f64 {
89        self.s(t)
90    }
91}
92
93/// Noise model for quantum annealing
94#[derive(Debug, Clone)]
95pub struct NoiseModel {
96    /// Temperature (in units of GHz)
97    pub temperature: f64,
98    /// Dephasing rate
99    pub dephasing_rate: f64,
100    /// Energy relaxation rate
101    pub relaxation_rate: f64,
102    /// Control noise amplitude
103    pub control_noise: f64,
104}
105
106impl Default for NoiseModel {
107    fn default() -> Self {
108        Self {
109            temperature: 0.015, // ~15 mK typical for D-Wave
110            dephasing_rate: 1e-6,
111            relaxation_rate: 1e-7,
112            control_noise: 0.01,
113        }
114    }
115}
116
117/// Configuration for simulated quantum annealing
118#[derive(Debug, Clone)]
119pub struct QuantumAnnealingConfig {
120    /// Total annealing time (in microseconds)
121    pub annealing_time: f64,
122    /// Number of time steps for simulation
123    pub num_steps: usize,
124    /// Annealing schedule
125    pub schedule: AnnealingSchedule,
126    /// Noise model (optional)
127    pub noise_model: Option<NoiseModel>,
128    /// Whether to use sparse matrix operations
129    pub use_sparse: bool,
130    /// Maximum number of excited states to track
131    pub max_excited_states: usize,
132    /// Whether to compute diabatic transitions
133    pub track_diabatic_transitions: bool,
134}
135
136impl Default for QuantumAnnealingConfig {
137    fn default() -> Self {
138        Self {
139            annealing_time: 20.0, // 20 μs
140            num_steps: 1000,
141            schedule: AnnealingSchedule::Linear,
142            noise_model: None,
143            use_sparse: true,
144            max_excited_states: 10,
145            track_diabatic_transitions: false,
146        }
147    }
148}
149
150/// Quantum state during annealing
151#[derive(Debug, Clone)]
152pub struct QuantumState {
153    /// State vector (amplitude for each computational basis state)
154    pub amplitudes: Array1<Complex64>,
155    /// Current time
156    pub time: f64,
157    /// Energy expectation value
158    pub energy: f64,
159    /// Overlap with ground state
160    pub ground_state_overlap: f64,
161}
162
163/// Complex number type
164#[derive(Debug, Clone, Copy)]
165pub struct Complex64 {
166    pub re: f64,
167    pub im: f64,
168}
169
170impl Complex64 {
171    pub const fn new(re: f64, im: f64) -> Self {
172        Self { re, im }
173    }
174
175    pub fn norm_squared(&self) -> f64 {
176        self.re.mul_add(self.re, self.im * self.im)
177    }
178
179    pub fn conj(&self) -> Self {
180        Self::new(self.re, -self.im)
181    }
182}
183
184/// Simulated quantum annealing sampler
185pub struct QuantumAnnealingSampler {
186    config: QuantumAnnealingConfig,
187    rng: StdRng,
188}
189
190impl QuantumAnnealingSampler {
191    pub fn new(config: QuantumAnnealingConfig) -> Self {
192        Self {
193            config,
194            rng: StdRng::from_seed([42; 32]),
195        }
196    }
197
198    pub fn with_seed(mut self, seed: u64) -> Self {
199        self.rng = StdRng::seed_from_u64(seed);
200        self
201    }
202
203    /// Build the transverse field Hamiltonian
204    fn build_transverse_hamiltonian(&self, n: usize) -> Array2<f64> {
205        let mut h_transverse = Array2::zeros((1 << n, 1 << n));
206
207        // Apply Pauli-X to each qubit
208        for i in 0..n {
209            for state in 0..(1 << n) {
210                let flipped = state ^ (1 << i);
211                h_transverse[[state, flipped]] = -1.0;
212            }
213        }
214
215        h_transverse
216    }
217
218    /// Build the problem Hamiltonian from QUBO (legacy method - unused)
219    #[allow(dead_code)]
220    fn build_problem_hamiltonian(&self, qubo: &QuboModel) -> Array2<f64> {
221        // Convert QuboModel to matrix format and delegate
222        let n = qubo.num_variables;
223        let mut matrix = Array2::<f64>::zeros((n, n));
224
225        // Copy linear terms to diagonal
226        for (i, val) in qubo.linear_terms() {
227            matrix[[i, i]] = val;
228        }
229
230        // Copy quadratic terms
231        for (i, j, val) in qubo.quadratic_terms() {
232            matrix[[i, j]] = val;
233            if i != j {
234                matrix[[j, i]] = val; // Ensure symmetry
235            }
236        }
237
238        self.build_problem_hamiltonian_from_matrix(&matrix)
239    }
240
241    /// Build the problem Hamiltonian from matrix
242    fn build_problem_hamiltonian_from_matrix(
243        &self,
244        matrix: &Array<f64, scirs2_core::ndarray::Ix2>,
245    ) -> Array2<f64> {
246        let n = matrix.nrows();
247        let mut h_problem = Array2::zeros((1 << n, 1 << n));
248
249        // Diagonal elements (classical energies)
250        for state in 0..(1 << n) {
251            let mut energy = 0.0;
252
253            // Calculate energy for this binary state
254            for i in 0..n {
255                for j in 0..n {
256                    let bit_i = (state >> i) & 1;
257                    let bit_j = (state >> j) & 1;
258                    energy += matrix[[i, j]] * bit_i as f64 * bit_j as f64;
259                }
260            }
261
262            h_problem[[state, state]] = energy;
263        }
264
265        h_problem
266    }
267
268    /// Evolve the quantum state
269    fn evolve_state(
270        &self,
271        state: &mut QuantumState,
272        h_transverse: &Array2<f64>,
273        h_problem: &Array2<f64>,
274        dt: f64,
275        t: f64,
276    ) {
277        let _s = self.config.schedule.s(t);
278        let a = self.config.schedule.transverse_field(t);
279        let b = self.config.schedule.problem_strength(t);
280
281        // Total Hamiltonian H(t) = A(t) * H_transverse + B(t) * H_problem
282        let h_total = a * h_transverse + b * h_problem;
283
284        // Time evolution: |ψ(t+dt)⟩ = exp(-i H dt) |ψ(t)⟩
285        // For small dt, use first-order approximation
286        let n = state.amplitudes.len();
287        let mut new_amplitudes = Array1::from_elem(n, Complex64::new(0.0, 0.0));
288
289        for i in 0..n {
290            let mut amp = state.amplitudes[i];
291
292            // Diagonal term
293            let energy = h_total[[i, i]];
294            let phase = Complex64::new((energy * dt).cos(), -(energy * dt).sin());
295            amp = Complex64::new(
296                amp.re.mul_add(phase.re, -(amp.im * phase.im)),
297                amp.re.mul_add(phase.im, amp.im * phase.re),
298            );
299
300            // Off-diagonal terms (simplified)
301            for j in 0..n {
302                if i != j && h_total[[i, j]].abs() > 1e-10 {
303                    let coupling = h_total[[i, j]] * dt;
304                    let other_amp = state.amplitudes[j];
305                    amp.re += -coupling * other_amp.im;
306                    amp.im += coupling * other_amp.re;
307                }
308            }
309
310            new_amplitudes[i] = amp;
311        }
312
313        // Normalize
314        let norm: f64 = new_amplitudes
315            .iter()
316            .map(|a| a.norm_squared())
317            .sum::<f64>()
318            .sqrt();
319
320        for amp in &mut new_amplitudes {
321            amp.re /= norm;
322            amp.im /= norm;
323        }
324
325        state.amplitudes = new_amplitudes;
326        state.time = t + dt;
327
328        // Update energy expectation
329        state.energy = self.compute_energy_expectation(&state.amplitudes, h_problem);
330    }
331
332    /// Add noise to the quantum state
333    fn apply_noise(&self, state: &mut QuantumState, dt: f64) {
334        if let Some(noise) = &self.config.noise_model {
335            let n = state.amplitudes.len();
336            let mut rng = StdRng::from_seed([42; 32]); // Create local RNG
337
338            // Dephasing noise
339            if noise.dephasing_rate > 0.0 {
340                for amp in &mut state.amplitudes {
341                    let phase_noise = rng.gen_range(-1.0..1.0) * (noise.dephasing_rate * dt).sqrt();
342                    let phase = Complex64::new(phase_noise.cos(), phase_noise.sin());
343                    let new_amp = Complex64::new(
344                        amp.re.mul_add(phase.re, -(amp.im * phase.im)),
345                        amp.re.mul_add(phase.im, amp.im * phase.re),
346                    );
347                    *amp = new_amp;
348                }
349            }
350
351            // Thermal excitations
352            if noise.temperature > 0.0 {
353                // Simplified thermal noise model
354                let thermal_prob = (noise.temperature * dt).min(0.1);
355                if rng.gen::<f64>() < thermal_prob {
356                    let i = rng.gen_range(0..n);
357                    let j = rng.gen_range(0..n);
358                    if i != j {
359                        // Mix states i and j
360                        let mix_angle: f64 = rng.gen_range(0.0..0.1);
361                        let cos_a = mix_angle.cos();
362                        let sin_a = mix_angle.sin();
363
364                        let amp_i = state.amplitudes[i];
365                        let amp_j = state.amplitudes[j];
366
367                        state.amplitudes[i] = Complex64::new(
368                            cos_a.mul_add(amp_i.re, sin_a * amp_j.re),
369                            cos_a.mul_add(amp_i.im, sin_a * amp_j.im),
370                        );
371                        state.amplitudes[j] = Complex64::new(
372                            (-sin_a).mul_add(amp_i.re, cos_a * amp_j.re),
373                            (-sin_a).mul_add(amp_i.im, cos_a * amp_j.im),
374                        );
375                    }
376                }
377            }
378        }
379    }
380
381    /// Compute energy expectation value
382    fn compute_energy_expectation(
383        &self,
384        amplitudes: &Array1<Complex64>,
385        h_problem: &Array2<f64>,
386    ) -> f64 {
387        let n = amplitudes.len();
388        let mut energy = 0.0;
389
390        for i in 0..n {
391            for j in 0..n {
392                let amp_i = amplitudes[i];
393                let amp_j = amplitudes[j];
394                let h_ij = h_problem[[i, j]];
395
396                // ⟨ψ|H|ψ⟩ = Σ_ij ψ*_i H_ij ψ_j
397                energy += amp_i
398                    .conj()
399                    .re
400                    .mul_add(amp_j.re, amp_i.conj().im * amp_j.im)
401                    * h_ij;
402            }
403        }
404
405        energy
406    }
407
408    /// Perform measurement on quantum state
409    fn measure_state(&self, state: &QuantumState) -> Vec<bool> {
410        let n = (state.amplitudes.len() as f64).log2() as usize;
411        let mut probabilities = Vec::new();
412        let mut cumulative = 0.0;
413
414        // Compute probabilities
415        for amp in &state.amplitudes {
416            cumulative += amp.norm_squared();
417            probabilities.push(cumulative);
418        }
419
420        // Sample according to probability distribution
421        let mut rng = StdRng::from_seed([42; 32]); // Create local RNG
422        let r = rng.gen::<f64>();
423        let mut measured_state = 0;
424
425        for (i, &prob) in probabilities.iter().enumerate() {
426            if r <= prob {
427                measured_state = i;
428                break;
429            }
430        }
431
432        // Convert to binary representation
433        (0..n).map(|i| (measured_state >> i) & 1 == 1).collect()
434    }
435}
436
437impl Sampler for QuantumAnnealingSampler {
438    fn run_qubo(
439        &self,
440        qubo: &(
441            Array<f64, scirs2_core::ndarray::Ix2>,
442            HashMap<String, usize>,
443        ),
444        num_reads: usize,
445    ) -> SamplerResult<Vec<SampleResult>> {
446        let (matrix, var_map) = qubo;
447        let n = matrix.nrows();
448        if n > 20 {
449            return Err(SamplerError::InvalidParameter(
450                "Quantum simulation limited to 20 qubits".into(),
451            ));
452        }
453
454        // Build Hamiltonians
455        let h_transverse = self.build_transverse_hamiltonian(n);
456        let h_problem = self.build_problem_hamiltonian_from_matrix(matrix);
457
458        let mut results = Vec::new();
459
460        for _read in 0..num_reads {
461            // Initialize in ground state of transverse field (uniform superposition)
462            let mut state = QuantumState {
463                amplitudes: Array1::from_elem(1 << n, Complex64::new(1.0 / (1 << n) as f64, 0.0)),
464                time: 0.0,
465                energy: 0.0,
466                ground_state_overlap: 1.0,
467            };
468
469            // Time evolution
470            let dt = self.config.annealing_time / self.config.num_steps as f64;
471
472            for step in 0..self.config.num_steps {
473                let t = step as f64 / self.config.num_steps as f64;
474
475                // Evolve under Hamiltonian
476                self.evolve_state(&mut state, &h_transverse, &h_problem, dt, t);
477
478                // Apply noise if configured
479                self.apply_noise(&mut state, dt);
480            }
481
482            // Measure final state
483            let measured = self.measure_state(&state);
484
485            // Convert to assignments using variable map
486            let mut assignments = HashMap::new();
487            for (var_name, &idx) in var_map {
488                assignments.insert(var_name.clone(), measured[idx]);
489            }
490
491            // Calculate classical energy from matrix
492            let mut energy = 0.0;
493            for i in 0..n {
494                for j in 0..n {
495                    if measured[i] && measured[j] {
496                        energy += matrix[[i, j]];
497                    }
498                }
499            }
500
501            results.push(SampleResult {
502                assignments,
503                energy,
504                occurrences: 1,
505            });
506        }
507
508        Ok(results)
509    }
510
511    fn run_hobo(
512        &self,
513        hobo: &(
514            Array<f64, scirs2_core::ndarray::IxDyn>,
515            HashMap<String, usize>,
516        ),
517        shots: usize,
518    ) -> SamplerResult<Vec<SampleResult>> {
519        let (matrix_dyn, var_map) = hobo;
520
521        if matrix_dyn.ndim() != 2 {
522            return Err(SamplerError::InvalidParameter(
523                "HOBO matrix must be 2D for quantum annealing".into(),
524            ));
525        }
526
527        let matrix_2d = matrix_dyn
528            .clone()
529            .into_dimensionality::<scirs2_core::ndarray::Ix2>()
530            .map_err(|_| SamplerError::InvalidParameter("Failed to convert matrix to 2D".into()))?;
531
532        self.run_qubo(&(matrix_2d, var_map.clone()), shots)
533    }
534}
535
536/// Advanced quantum annealing features
537pub mod advanced {
538    use super::*;
539
540    /// Reverse annealing configuration
541    #[derive(Debug, Clone)]
542    pub struct ReverseAnnealingConfig {
543        /// Initial classical state
544        pub initial_state: Vec<bool>,
545        /// Reverse annealing fraction (how far to go back)
546        pub reverse_fraction: f64,
547        /// Hold time at reversal point
548        pub hold_time: f64,
549    }
550
551    /// Quantum annealing with pause
552    #[derive(Debug, Clone)]
553    pub struct PauseConfig {
554        /// Pause points (s values)
555        pub pause_points: Vec<f64>,
556        /// Pause durations
557        pub pause_durations: Vec<f64>,
558    }
559
560    /// Diabatic transition analyzer
561    pub struct DiabaticAnalyzer {
562        /// Minimum gap encountered
563        pub min_gap: f64,
564        /// Gap history
565        pub gap_history: Vec<(f64, f64)>, // (time, gap)
566        /// Diabatic transition probability
567        pub transition_probability: f64,
568    }
569
570    impl Default for DiabaticAnalyzer {
571        fn default() -> Self {
572            Self::new()
573        }
574    }
575
576    impl DiabaticAnalyzer {
577        pub const fn new() -> Self {
578            Self {
579                min_gap: f64::INFINITY,
580                gap_history: Vec::new(),
581                transition_probability: 0.0,
582            }
583        }
584
585        /// Update with current gap
586        pub fn update(&mut self, time: f64, gap: f64, velocity: f64) {
587            self.min_gap = self.min_gap.min(gap);
588            self.gap_history.push((time, gap));
589
590            // Landau-Zener formula for diabatic transitions
591            if gap > 0.0 && velocity > 0.0 {
592                let lz_prob = (-2.0 * PI * gap * gap / velocity).exp();
593                self.transition_probability = self.transition_probability.max(lz_prob);
594            }
595        }
596
597        /// Get adiabatic condition recommendation
598        pub fn recommend_annealing_time(&self) -> f64 {
599            // Based on minimum gap and desired success probability
600            let target_success = 0.99;
601            let required_time =
602                2.0 * PI / (self.min_gap * self.min_gap * (1.0_f64 - target_success).ln().abs());
603            required_time.max(1.0) // At least 1 microsecond
604        }
605    }
606}
607
608#[cfg(test)]
609mod tests {
610    use super::*;
611    use scirs2_core::ndarray::Array;
612    use std::collections::HashMap;
613
614    #[test]
615    fn test_annealing_schedule() {
616        let schedule = AnnealingSchedule::Linear;
617        assert_eq!(schedule.s(0.0), 0.0);
618        assert_eq!(schedule.s(0.5), 0.5);
619        assert_eq!(schedule.s(1.0), 1.0);
620
621        let schedule = AnnealingSchedule::Quadratic;
622        assert_eq!(schedule.s(0.5), 0.25);
623    }
624
625    #[test]
626    fn test_small_quantum_annealing() {
627        // Create small QUBO problem as matrix
628        let mut matrix = Array::zeros((2, 2));
629        matrix[[0, 0]] = -1.0; // Linear term for x0
630        matrix[[1, 1]] = -1.0; // Linear term for x1
631        matrix[[0, 1]] = 2.0; // Quadratic term for x0*x1
632        matrix[[1, 0]] = 2.0; // Symmetric
633
634        let mut var_map = HashMap::new();
635        var_map.insert("x0".to_string(), 0);
636        var_map.insert("x1".to_string(), 1);
637
638        let mut config = QuantumAnnealingConfig {
639            annealing_time: 1.0,
640            num_steps: 100,
641            ..Default::default()
642        };
643
644        let sampler = QuantumAnnealingSampler::new(config);
645        let results = sampler
646            .run_qubo(&(matrix, var_map), 10)
647            .expect("Failed to run QUBO sampling");
648
649        assert_eq!(results.len(), 10);
650
651        // Check that we get valid solutions
652        for result in results {
653            assert!(result.energy.is_finite());
654        }
655    }
656}