quantrs2_tytan/
performance_optimization.rs

1//! Performance optimization module for critical paths.
2//!
3//! This module provides optimized implementations of performance-critical
4//! operations using SIMD, parallelization, and algorithmic improvements.
5
6#![allow(dead_code)]
7
8use quantrs2_core::platform::PlatformCapabilities;
9use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
10// NOTE: Parallel feature removed per SciRS2 POLICY - use scirs2_core::parallel_ops directly
11use scirs2_core::simd_ops;
12use std::sync::Arc;
13
14/// Optimized QUBO evaluation
15pub struct OptimizedQUBOEvaluator {
16    /// QUBO matrix (stored in optimal layout)
17    qubo: Arc<Array2<f64>>,
18    /// Cache for frequently accessed elements
19    cache: Vec<f64>,
20    /// Use SIMD operations
21    use_simd: bool,
22    /// Parallel threshold
23    parallel_threshold: usize,
24}
25
26impl OptimizedQUBOEvaluator {
27    /// Create new optimized evaluator
28    pub fn new(qubo: Array2<f64>) -> Self {
29        let n = qubo.shape()[0];
30
31        // Pre-compute diagonal elements for cache
32        let cache: Vec<f64> = (0..n).map(|i| qubo[[i, i]]).collect();
33
34        Self {
35            qubo: Arc::new(qubo),
36            cache,
37            use_simd: {
38                let platform = PlatformCapabilities::detect();
39                platform.cpu.simd.avx2 || platform.cpu.simd.avx512
40            },
41            parallel_threshold: 1000,
42        }
43    }
44
45    /// Evaluate QUBO energy for binary vector
46    pub fn evaluate(&self, x: &ArrayView1<u8>) -> f64 {
47        let n = x.len();
48
49        if n > self.parallel_threshold {
50            self.evaluate_parallel(x)
51        } else if self.use_simd && n >= 8 {
52            unsafe { self.evaluate_simd(x) }
53        } else {
54            self.evaluate_scalar(x)
55        }
56    }
57
58    /// Scalar evaluation
59    fn evaluate_scalar(&self, x: &ArrayView1<u8>) -> f64 {
60        let n = x.len();
61        let mut energy = 0.0;
62
63        // Linear terms (diagonal)
64        for i in 0..n {
65            if x[i] == 1 {
66                energy += self.cache[i];
67            }
68        }
69
70        // Quadratic terms
71        for i in 0..n {
72            if x[i] == 1 {
73                for j in i + 1..n {
74                    if x[j] == 1 {
75                        energy += 2.0 * self.qubo[[i, j]];
76                    }
77                }
78            }
79        }
80
81        energy
82    }
83
84    /// SIMD evaluation using scirs2_core
85    unsafe fn evaluate_simd(&self, x: &ArrayView1<u8>) -> f64 {
86        let n = x.len();
87        let mut energy = 0.0;
88
89        // Convert binary values to float for SIMD operations
90        let x_float: Vec<f64> = x.iter().map(|&v| v as f64).collect();
91        let x_view = ArrayView1::from(&x_float);
92        let cache_view = ArrayView1::from(&self.cache[..n]);
93
94        // Use SciRS2 SIMD operations for element-wise multiplication
95        let products = simd_ops::SimdUnifiedOps::simd_mul(&x_view, &cache_view);
96
97        // Sum the products using SIMD operations
98        energy = products.sum();
99
100        // Quadratic terms - also optimize with SIMD where possible
101        for i in 0..n {
102            if x[i] == 1 {
103                // Extract the row of quadratic coefficients
104                let row_start = i + 1;
105                if row_start < n {
106                    let row_len = n - row_start;
107                    let x_subset = ArrayView1::from(&x_float[row_start..n]);
108
109                    // Create a view of the quadratic coefficients for this row
110                    let mut qubo_row = vec![0.0; row_len];
111                    for (j, coeff) in qubo_row.iter_mut().enumerate() {
112                        *coeff = self.qubo[[i, row_start + j]];
113                    }
114                    let qubo_row_view = ArrayView1::from(&qubo_row);
115
116                    // Multiply and sum using SIMD
117                    let row_products =
118                        simd_ops::SimdUnifiedOps::simd_mul(&x_subset, &qubo_row_view);
119                    energy += 2.0 * row_products.sum();
120                }
121            }
122        }
123
124        energy
125    }
126
127    /// SIMD evaluation stub for non-x86_64
128    #[cfg(not(feature = "simd"))]
129    unsafe fn evaluate_simd_fallback(&self, x: &ArrayView1<u8>) -> f64 {
130        self.evaluate_scalar(x)
131    }
132
133    /// Parallel evaluation (parallel feature removed - using sequential with SciRS2 optimization)
134    fn evaluate_parallel(&self, x: &ArrayView1<u8>) -> f64 {
135        let n = x.len();
136
137        // Linear terms (sequential - parallel feature removed per SciRS2 POLICY)
138        let linear_energy: f64 = (0..n).filter(|&i| x[i] == 1).map(|i| self.cache[i]).sum();
139
140        // Quadratic terms (block-wise - parallel feature removed per SciRS2 POLICY)
141        let block_size = (n as f64).sqrt() as usize + 1;
142        let quadratic_energy: f64 = (0..n)
143            .step_by(block_size)
144            .map(|block_start| {
145                let block_end = (block_start + block_size).min(n);
146                let mut local_sum = 0.0;
147
148                for i in block_start..block_end {
149                    if x[i] == 1 {
150                        for j in i + 1..n {
151                            if x[j] == 1 {
152                                local_sum += self.qubo[[i, j]];
153                            }
154                        }
155                    }
156                }
157
158                local_sum
159            })
160            .sum();
161
162        2.0f64.mul_add(quadratic_energy, linear_energy)
163    }
164
165    /// Evaluate energy change for single bit flip
166    pub fn delta_energy(&self, x: &ArrayView1<u8>, bit: usize) -> f64 {
167        let n = x.len();
168        let current_val = x[bit];
169        let new_val = 1 - current_val;
170
171        let mut delta = 0.0;
172
173        // Diagonal term
174        delta += (new_val as f64 - current_val as f64) * self.cache[bit];
175
176        // Off-diagonal terms
177        for j in 0..n {
178            if j != bit && x[j] == 1 {
179                let coupling = if bit < j {
180                    self.qubo[[bit, j]]
181                } else {
182                    self.qubo[[j, bit]]
183                };
184                delta += 2.0 * (new_val as f64 - current_val as f64) * coupling;
185            }
186        }
187
188        delta
189    }
190}
191
192/// Optimized simulated annealing
193pub struct OptimizedSA {
194    /// QUBO evaluator
195    evaluator: OptimizedQUBOEvaluator,
196    /// Temperature schedule
197    schedule: AnnealingSchedule,
198    /// Parallel moves
199    parallel_moves: bool,
200}
201
202#[derive(Debug, Clone)]
203pub enum AnnealingSchedule {
204    /// Geometric cooling: T(k) = T0 * alpha^k
205    Geometric { t0: f64, alpha: f64 },
206    /// Linear cooling: T(k) = T0 * (1 - k/max_iter)
207    Linear { t0: f64, max_iter: usize },
208    /// Adaptive cooling based on acceptance rate
209    Adaptive { t0: f64, target_rate: f64 },
210    /// Custom schedule
211    Custom(Vec<f64>),
212}
213
214impl OptimizedSA {
215    /// Create new optimized SA
216    pub fn new(qubo: Array2<f64>) -> Self {
217        Self {
218            evaluator: OptimizedQUBOEvaluator::new(qubo),
219            schedule: AnnealingSchedule::Geometric {
220                t0: 1.0,
221                alpha: 0.99,
222            },
223            parallel_moves: false,
224        }
225    }
226
227    /// Set annealing schedule
228    pub fn with_schedule(mut self, schedule: AnnealingSchedule) -> Self {
229        self.schedule = schedule;
230        self
231    }
232
233    /// Enable parallel moves
234    pub const fn with_parallel_moves(mut self, parallel: bool) -> Self {
235        self.parallel_moves = parallel;
236        self
237    }
238
239    /// Run optimized annealing
240    pub fn anneal(
241        &self,
242        initial: Array1<u8>,
243        iterations: usize,
244        rng: &mut impl scirs2_core::random::Rng,
245    ) -> (Array1<u8>, f64) {
246        let n = initial.len();
247        let mut current = initial;
248        let mut current_energy = self.evaluator.evaluate(&current.view());
249
250        let mut best = current.clone();
251        let mut best_energy = current_energy;
252
253        // Temperature schedule
254        let temperatures = self.generate_schedule(iterations);
255
256        for &temp in &temperatures {
257            if self.parallel_moves && n > 100 {
258                // Parallel neighborhood evaluation
259                self.parallel_step(
260                    &mut current,
261                    &mut current_energy,
262                    &mut best,
263                    &mut best_energy,
264                    temp,
265                    rng,
266                );
267            } else {
268                // Sequential moves
269                for _ in 0..n {
270                    let bit = rng.gen_range(0..n);
271                    let delta = self.evaluator.delta_energy(&current.view(), bit);
272
273                    if delta < 0.0 || rng.gen::<f64>() < (-delta / temp).exp() {
274                        current[bit] = 1 - current[bit];
275                        current_energy += delta;
276
277                        if current_energy < best_energy {
278                            best = current.clone();
279                            best_energy = current_energy;
280                        }
281                    }
282                }
283            }
284        }
285
286        (best, best_energy)
287    }
288
289    /// Generate temperature schedule
290    fn generate_schedule(&self, iterations: usize) -> Vec<f64> {
291        match &self.schedule {
292            AnnealingSchedule::Geometric { t0, alpha } => {
293                (0..iterations).map(|k| t0 * alpha.powi(k as i32)).collect()
294            }
295            AnnealingSchedule::Linear { t0, max_iter } => (0..iterations)
296                .map(|k| t0 * (1.0 - k as f64 / *max_iter as f64).max(0.0))
297                .collect(),
298            AnnealingSchedule::Adaptive { t0, .. } => {
299                // Simplified - would track acceptance rate in real implementation
300                vec![*t0; iterations]
301            }
302            AnnealingSchedule::Custom(schedule) => schedule.clone(),
303        }
304    }
305
306    /// Parallel neighborhood evaluation (parallel feature removed - using sequential)
307    fn parallel_step(
308        &self,
309        current: &mut Array1<u8>,
310        current_energy: &mut f64,
311        best: &mut Array1<u8>,
312        best_energy: &mut f64,
313        temp: f64,
314        rng: &mut impl scirs2_core::random::Rng,
315    ) {
316        let n = current.len();
317
318        // Evaluate all possible moves (sequential - parallel feature removed per SciRS2 POLICY)
319        let deltas: Vec<_> = (0..n)
320            .map(|bit| {
321                let delta = self.evaluator.delta_energy(&current.view(), bit);
322                (bit, delta)
323            })
324            .collect();
325
326        // Select moves to accept
327        let mut accepted = Vec::new();
328        for (bit, delta) in deltas {
329            if delta < 0.0 || rng.gen::<f64>() < (-delta / temp).exp() {
330                accepted.push((bit, delta));
331            }
332        }
333
334        // Apply non-conflicting moves
335        let mut applied_energy = 0.0;
336        for (bit, delta) in accepted {
337            // Simple conflict resolution - skip if would increase energy too much
338            if applied_energy + delta < temp {
339                current[bit] = 1 - current[bit];
340                applied_energy += delta;
341            }
342        }
343
344        *current_energy += applied_energy;
345
346        if *current_energy < *best_energy {
347            *best = current.clone();
348            *best_energy = *current_energy;
349        }
350    }
351}
352
353/// Optimized matrix operations for QUBO
354pub mod matrix_ops {
355    use super::*;
356
357    /// Fast matrix-vector multiplication for sparse QUBO
358    pub fn sparse_qubo_multiply(
359        qubo: &Array2<f64>,
360        x: &ArrayView1<u8>,
361        _threshold: f64,
362    ) -> Array1<f64> {
363        let n = x.len();
364        let mut result = Array1::zeros(n);
365
366        // Identify non-zero entries
367        let active: Vec<usize> = (0..n).filter(|&i| x[i] == 1).collect();
368
369        if active.len() < n / 4 {
370            // Sparse computation
371            for &i in &active {
372                result[i] += qubo[[i, i]];
373                for &j in &active {
374                    if i != j {
375                        result[i] += qubo[[i, j]];
376                    }
377                }
378            }
379        } else {
380            // Dense computation
381            for i in 0..n {
382                if x[i] == 1 {
383                    for j in 0..n {
384                        if x[j] == 1 {
385                            result[i] += qubo[[i, j]];
386                        }
387                    }
388                }
389            }
390        }
391
392        result
393    }
394
395    /// Block-wise QUBO evaluation for cache efficiency
396    pub fn block_qubo_eval(qubo: &Array2<f64>, x: &ArrayView1<u8>, block_size: usize) -> f64 {
397        let n = x.len();
398        let num_blocks = n.div_ceil(block_size);
399
400        let mut energy = 0.0;
401
402        // Process blocks
403        for bi in 0..num_blocks {
404            for bj in bi..num_blocks {
405                let i_start = bi * block_size;
406                let i_end = ((bi + 1) * block_size).min(n);
407                let j_start = bj * block_size;
408                let j_end = ((bj + 1) * block_size).min(n);
409
410                // Process block
411                for i in i_start..i_end {
412                    if x[i] == 1 {
413                        let j_begin = if bi == bj { i } else { j_start };
414                        for j in j_begin..j_end {
415                            if x[j] == 1 {
416                                let factor = if i == j { 1.0 } else { 2.0 };
417                                energy += factor * qubo[[i, j]];
418                            }
419                        }
420                    }
421                }
422            }
423        }
424
425        energy
426    }
427}
428
429/// Memory pool for efficient allocation
430pub struct MemoryPool<T> {
431    /// Available buffers
432    buffers: Vec<Vec<T>>,
433    /// Buffer size
434    size: usize,
435}
436
437impl<T: Clone + Default> MemoryPool<T> {
438    /// Create new memory pool
439    pub fn new(size: usize, capacity: usize) -> Self {
440        let buffers = (0..capacity).map(|_| vec![T::default(); size]).collect();
441
442        Self { buffers, size }
443    }
444
445    /// Get buffer from pool
446    pub fn get(&mut self) -> Option<Vec<T>> {
447        self.buffers.pop()
448    }
449
450    /// Return buffer to pool
451    pub fn put(&mut self, mut buffer: Vec<T>) {
452        if buffer.len() == self.size {
453            // Clear buffer for reuse
454            for item in &mut buffer {
455                *item = T::default();
456            }
457            self.buffers.push(buffer);
458        }
459    }
460}
461
462#[cfg(test)]
463mod tests {
464    use super::*;
465    use scirs2_core::ndarray::array;
466    use scirs2_core::random::prelude::*;
467
468    #[test]
469    #[ignore]
470    fn test_optimized_evaluator() {
471        let mut qubo = array![[1.0, -2.0, 0.0], [-2.0, 3.0, -1.0], [0.0, -1.0, 2.0]];
472
473        let evaluator = OptimizedQUBOEvaluator::new(qubo);
474
475        let mut x = array![1, 0, 1];
476        let mut energy = evaluator.evaluate(&x.view());
477
478        // Manual calculation: 1*1 + 2*1 + 2*(-1)*1*1 = 1 + 2 - 2 = 1
479        assert!((energy - 1.0).abs() < 1e-6);
480
481        // Test delta energy
482        let delta = evaluator.delta_energy(&x.view(), 1);
483        assert!((delta - 2.0).abs() < 1e-6); // Flipping bit 1 from 0 to 1
484    }
485
486    #[test]
487    fn test_optimized_sa() {
488        let mut qubo = array![[0.0, -1.0], [-1.0, 0.0]];
489
490        let sa = OptimizedSA::new(qubo).with_schedule(AnnealingSchedule::Geometric {
491            t0: 1.0,
492            alpha: 0.95,
493        });
494
495        let initial = array![0, 0];
496        let mut rng = thread_rng();
497
498        let (solution, energy) = sa.anneal(initial, 100, &mut rng);
499
500        // Should find one of the optimal solutions
501        assert!(
502            (solution == array![0, 1] && (energy - 0.0).abs() < 1e-6)
503                || (solution == array![1, 0] && (energy - 0.0).abs() < 1e-6)
504                || (solution == array![1, 1] && (energy - (-2.0)).abs() < 1e-6)
505        );
506    }
507}