1#![allow(dead_code)]
7
8#[cfg(feature = "dwave")]
9use crate::compile::CompiledModel;
10use crate::sampler::{SampleResult, Sampler};
11use scirs2_core::ndarray::Array2;
12use scirs2_core::random::prelude::*;
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16#[cfg(feature = "scirs")]
17use crate::scirs_stub::{
18 scirs2_optimization::gradient::LBFGS,
19 scirs2_optimization::{Bounds, ObjectiveFunction, Optimizer},
20};
21
22pub struct VQE {
24 n_qubits: usize,
26 ansatz: AnsatzType,
28 optimizer: ClassicalOptimizer,
30 max_iterations: usize,
32 convergence_threshold: f64,
34}
35
36#[derive(Debug, Clone)]
37pub enum AnsatzType {
38 HardwareEfficient {
40 depth: usize,
41 entangling_gate: String,
42 },
43 UCC { excitation_order: usize },
45 Custom {
47 name: String,
48 parameters: HashMap<String, f64>,
49 },
50}
51
52#[derive(Debug, Clone)]
53pub enum ClassicalOptimizer {
54 COBYLA { rhobeg: f64, rhoend: f64 },
56 LBFGS {
58 max_iterations: usize,
59 tolerance: f64,
60 },
61 SPSA {
63 a: f64,
64 c: f64,
65 alpha: f64,
66 gamma: f64,
67 },
68 GradientDescent { learning_rate: f64, momentum: f64 },
70}
71
72impl VQE {
73 pub const fn new(n_qubits: usize, ansatz: AnsatzType, optimizer: ClassicalOptimizer) -> Self {
75 Self {
76 n_qubits,
77 ansatz,
78 optimizer,
79 max_iterations: 1000,
80 convergence_threshold: 1e-6,
81 }
82 }
83
84 pub const fn with_max_iterations(mut self, iterations: usize) -> Self {
86 self.max_iterations = iterations;
87 self
88 }
89
90 pub const fn with_convergence_threshold(mut self, threshold: f64) -> Self {
92 self.convergence_threshold = threshold;
93 self
94 }
95
96 pub fn solve(&mut self, hamiltonian: &Hamiltonian) -> Result<VQEResult, String> {
98 let num_params = self.get_num_parameters();
100 let mut params = self.initialize_parameters(num_params);
101
102 let mut energy_history = Vec::new();
103 let mut param_history = Vec::new();
104 let mut converged = false;
105
106 for iteration in 0..self.max_iterations {
108 let energy = self.evaluate_energy(¶ms, hamiltonian)?;
110 energy_history.push(energy);
111 param_history.push(params.clone());
112
113 if iteration > 0 {
115 let energy_change =
116 (energy_history[iteration] - energy_history[iteration - 1]).abs();
117 if energy_change < self.convergence_threshold {
118 converged = true;
119 break;
120 }
121 }
122
123 params = self.update_parameters(params, hamiltonian)?;
125 }
126
127 let iterations = energy_history.len();
128 let ground_state_energy = energy_history.last().copied().unwrap_or(0.0);
129
130 Ok(VQEResult {
131 optimal_parameters: params,
132 ground_state_energy,
133 energy_history,
134 parameter_history: param_history,
135 converged,
136 iterations,
137 })
138 }
139
140 fn get_num_parameters(&self) -> usize {
142 match &self.ansatz {
143 AnsatzType::HardwareEfficient { depth, .. } => {
144 self.n_qubits * 3 * depth + (self.n_qubits - 1) * depth
146 }
147 AnsatzType::UCC { excitation_order } => {
148 self.n_qubits * excitation_order
150 }
151 AnsatzType::Custom { parameters, .. } => parameters.len(),
152 }
153 }
154
155 fn initialize_parameters(&self, num_params: usize) -> Vec<f64> {
157 use scirs2_core::random::prelude::*;
158 let mut rng = thread_rng();
159
160 (0..num_params).map(|_| rng.gen_range(-PI..PI)).collect()
161 }
162
163 fn evaluate_energy(&self, params: &[f64], hamiltonian: &Hamiltonian) -> Result<f64, String> {
165 let energy = hamiltonian.evaluate_classical(params)?;
172 Ok(energy)
173 }
174
175 fn update_parameters(
177 &self,
178 current_params: Vec<f64>,
179 hamiltonian: &Hamiltonian,
180 ) -> Result<Vec<f64>, String> {
181 match &self.optimizer {
182 ClassicalOptimizer::GradientDescent {
183 learning_rate,
184 momentum: _,
185 } => {
186 let gradient = self.compute_gradient(¤t_params, hamiltonian)?;
188
189 let mut new_params = current_params;
191 for i in 0..new_params.len() {
192 new_params[i] -= learning_rate * gradient[i];
193 }
194
195 Ok(new_params)
196 }
197 ClassicalOptimizer::SPSA { a, c, alpha, gamma } => {
198 self.spsa_update(current_params, hamiltonian, *a, *c, *alpha, *gamma)
200 }
201 _ => {
202 Ok(current_params)
204 }
205 }
206 }
207
208 fn compute_gradient(
210 &self,
211 params: &[f64],
212 hamiltonian: &Hamiltonian,
213 ) -> Result<Vec<f64>, String> {
214 let mut gradient = vec![0.0; params.len()];
215 let shift = PI / 2.0;
216
217 for i in 0..params.len() {
218 let mut params_plus = params.to_vec();
219 let mut params_minus = params.to_vec();
220
221 params_plus[i] += shift;
222 params_minus[i] -= shift;
223
224 let energy_plus = self.evaluate_energy(¶ms_plus, hamiltonian)?;
225 let energy_minus = self.evaluate_energy(¶ms_minus, hamiltonian)?;
226
227 gradient[i] = (energy_plus - energy_minus) / (2.0 * shift);
228 }
229
230 Ok(gradient)
231 }
232
233 fn spsa_update(
235 &self,
236 params: Vec<f64>,
237 hamiltonian: &Hamiltonian,
238 a: f64,
239 c: f64,
240 _alpha: f64,
241 _gamma: f64,
242 ) -> Result<Vec<f64>, String> {
243 use scirs2_core::random::prelude::*;
244 let mut rng = thread_rng();
245
246 let delta: Vec<f64> = (0..params.len())
248 .map(|_| if rng.gen_bool(0.5) { 1.0 } else { -1.0 })
249 .collect();
250
251 let mut params_plus = params.clone();
253 let mut params_minus = params.clone();
254
255 for i in 0..params.len() {
256 params_plus[i] += c * delta[i];
257 params_minus[i] -= c * delta[i];
258 }
259
260 let energy_plus = self.evaluate_energy(¶ms_plus, hamiltonian)?;
261 let energy_minus = self.evaluate_energy(¶ms_minus, hamiltonian)?;
262
263 let mut new_params = params.clone();
265 for i in 0..params.len() {
266 new_params[i] -= a * (energy_plus - energy_minus) / (2.0 * c * delta[i]);
267 }
268
269 Ok(new_params)
270 }
271}
272
273#[derive(Debug, Clone)]
275pub struct VQEResult {
276 pub optimal_parameters: Vec<f64>,
277 pub ground_state_energy: f64,
278 pub energy_history: Vec<f64>,
279 pub parameter_history: Vec<Vec<f64>>,
280 pub converged: bool,
281 pub iterations: usize,
282}
283
284#[derive(Debug, Clone)]
286pub struct Hamiltonian {
287 pub terms: Vec<PauliTerm>,
289}
290
291#[derive(Debug, Clone)]
292pub struct PauliTerm {
293 pub coefficient: f64,
295 pub pauli_string: Vec<char>,
297}
298
299impl Hamiltonian {
300 pub fn from_qubo(qubo: &Array2<f64>) -> Self {
302 let n = qubo.shape()[0];
303 let mut terms = Vec::new();
304
305 for i in 0..n {
309 let h_i = qubo[[i, i]];
311 if h_i.abs() > 1e-10 {
312 let mut pauli_string = vec!['I'; n];
313 pauli_string[i] = 'Z';
314 terms.push(PauliTerm {
315 coefficient: h_i,
316 pauli_string,
317 });
318 }
319
320 for j in i + 1..n {
322 let j_ij = qubo[[i, j]];
323 if j_ij.abs() > 1e-10 {
324 let mut pauli_string = vec!['I'; n];
325 pauli_string[i] = 'Z';
326 pauli_string[j] = 'Z';
327 terms.push(PauliTerm {
328 coefficient: j_ij,
329 pauli_string,
330 });
331 }
332 }
333 }
334
335 Self { terms }
336 }
337
338 fn evaluate_classical(&self, _params: &[f64]) -> Result<f64, String> {
340 Ok(_params.iter().map(|p| p.sin()).sum())
343 }
344}
345
346pub struct QAOA {
348 p: usize,
350 optimizer: ClassicalOptimizer,
352 initial_state: InitialState,
354}
355
356#[derive(Debug, Clone)]
357pub enum InitialState {
358 EqualSuperposition,
360 Custom(Vec<f64>),
362 WarmStart(Vec<bool>),
364}
365
366impl QAOA {
367 pub const fn new(p: usize, optimizer: ClassicalOptimizer) -> Self {
369 Self {
370 p,
371 optimizer,
372 initial_state: InitialState::EqualSuperposition,
373 }
374 }
375
376 pub fn with_initial_state(mut self, state: InitialState) -> Self {
378 self.initial_state = state;
379 self
380 }
381
382 pub fn solve_qubo(&mut self, qubo: &Array2<f64>) -> Result<QAOAResult, String> {
384 let hamiltonian = Hamiltonian::from_qubo(qubo);
385
386 let mut betas = vec![0.0; self.p];
388 let mut gammas = vec![0.0; self.p];
389
390 let mut energy_history = Vec::new();
392 let max_iterations = 100;
393
394 for iteration in 0..max_iterations {
395 let energy = self.evaluate_qaoa_energy(&betas, &gammas, &hamiltonian)?;
397 energy_history.push(energy);
398
399 let (new_betas, new_gammas) =
401 self.update_qaoa_parameters(&betas, &gammas, &hamiltonian)?;
402
403 betas = new_betas;
404 gammas = new_gammas;
405
406 if iteration > 0 {
408 let improvement = energy_history[iteration - 1] - energy;
409 if improvement < 1e-6 && improvement > 0.0 {
410 break;
411 }
412 }
413 }
414
415 let samples = self.sample_qaoa_state(&betas, &gammas, &hamiltonian, 1000)?;
417
418 let best_energy = energy_history.last().copied().unwrap_or(0.0);
419
420 Ok(QAOAResult {
421 optimal_betas: betas,
422 optimal_gammas: gammas,
423 energy_history,
424 samples,
425 best_energy,
426 })
427 }
428
429 fn evaluate_qaoa_energy(
431 &self,
432 betas: &[f64],
433 gammas: &[f64],
434 _hamiltonian: &Hamiltonian,
435 ) -> Result<f64, String> {
436 let param_sum: f64 = betas.iter().sum::<f64>() + gammas.iter().sum::<f64>();
443 Ok(param_sum.sin() * 10.0)
444 }
445
446 fn update_qaoa_parameters(
448 &self,
449 betas: &[f64],
450 gammas: &[f64],
451 hamiltonian: &Hamiltonian,
452 ) -> Result<(Vec<f64>, Vec<f64>), String> {
453 let mut params = Vec::new();
455 params.extend_from_slice(betas);
456 params.extend_from_slice(gammas);
457
458 if let ClassicalOptimizer::GradientDescent { learning_rate, .. } = &self.optimizer {
460 let gradient = self.compute_qaoa_gradient(¶ms, hamiltonian)?;
462
463 for i in 0..params.len() {
465 params[i] -= learning_rate * gradient[i];
466 }
467 } else {
468 }
470
471 let new_betas = params[..self.p].to_vec();
473 let new_gammas = params[self.p..].to_vec();
474
475 Ok((new_betas, new_gammas))
476 }
477
478 fn compute_qaoa_gradient(
480 &self,
481 params: &[f64],
482 _hamiltonian: &Hamiltonian,
483 ) -> Result<Vec<f64>, String> {
484 let mut gradient = vec![0.0; params.len()];
486
487 for i in 0..params.len() {
489 gradient[i] = -params[i].cos();
490 }
491
492 Ok(gradient)
493 }
494
495 fn sample_qaoa_state(
497 &self,
498 _betas: &[f64],
499 _gammas: &[f64],
500 _hamiltonian: &Hamiltonian,
501 num_samples: usize,
502 ) -> Result<Vec<Vec<bool>>, String> {
503 use scirs2_core::random::prelude::*;
506 let mut rng = thread_rng();
507 let n_qubits = 10; let samples = (0..num_samples)
510 .map(|_| (0..n_qubits).map(|_| rng.gen_bool(0.5)).collect())
511 .collect();
512
513 Ok(samples)
514 }
515}
516
517#[derive(Debug, Clone)]
519pub struct QAOAResult {
520 pub optimal_betas: Vec<f64>,
521 pub optimal_gammas: Vec<f64>,
522 pub energy_history: Vec<f64>,
523 pub samples: Vec<Vec<bool>>,
524 pub best_energy: f64,
525}
526
527pub struct WarmStartStrategy {
529 pre_solver: Box<dyn Sampler>,
531 classical_iterations: usize,
533 usage: WarmStartUsage,
535}
536
537#[derive(Debug, Clone)]
538pub enum WarmStartUsage {
539 InitialState,
541 ParameterInitialization,
543 ReferencePoint,
545 Alternating { switch_threshold: f64 },
547}
548
549impl WarmStartStrategy {
550 pub fn new(
552 pre_solver: Box<dyn Sampler>,
553 classical_iterations: usize,
554 usage: WarmStartUsage,
555 ) -> Self {
556 Self {
557 pre_solver,
558 classical_iterations,
559 usage,
560 }
561 }
562
563 #[cfg(feature = "dwave")]
565 pub fn generate_warm_start(
566 &mut self,
567 problem: &CompiledModel,
568 ) -> Result<WarmStartResult, String> {
569 let mut qubo = problem.to_qubo();
571 let qubo_tuple = (qubo.to_dense_matrix(), qubo.variable_map());
572 let classical_results = self
573 .pre_solver
574 .run_qubo(&qubo_tuple, self.classical_iterations)
575 .map_err(|e| format!("Classical solver error: {e:?}"))?;
576
577 let mut best_solution = classical_results
579 .first()
580 .ok_or("No classical solution found")?;
581
582 match &self.usage {
584 WarmStartUsage::InitialState => {
585 let state_vector = self.solution_to_state_vector(&best_solution.assignments)?;
587 Ok(WarmStartResult::StateVector(state_vector))
588 }
589 WarmStartUsage::ParameterInitialization => {
590 let mut params = self.solution_to_parameters(&best_solution.assignments)?;
592 Ok(WarmStartResult::Parameters(params))
593 }
594 _ => {
595 Ok(WarmStartResult::Solution(best_solution.clone()))
597 }
598 }
599 }
600
601 fn solution_to_state_vector(
603 &self,
604 assignments: &HashMap<String, bool>,
605 ) -> Result<Vec<f64>, String> {
606 let n = assignments.len();
607 let dim = 1 << n; let mut state = vec![0.0; dim];
609
610 let mut index = 0;
612 let mut vars: Vec<_> = assignments.keys().collect();
613 vars.sort();
614
615 for (i, var) in vars.iter().enumerate() {
616 if assignments[var.as_str()] {
617 index |= 1 << i;
618 }
619 }
620
621 state[index] = 1.0;
622 Ok(state)
623 }
624
625 fn solution_to_parameters(
627 &self,
628 assignments: &HashMap<String, bool>,
629 ) -> Result<Vec<f64>, String> {
630 let params: Vec<f64> = assignments
632 .values()
633 .map(|&b| if b { PI / 4.0 } else { -PI / 4.0 })
634 .collect();
635
636 Ok(params)
637 }
638}
639
640#[derive(Debug, Clone)]
641pub enum WarmStartResult {
642 StateVector(Vec<f64>),
643 Parameters(Vec<f64>),
644 Solution(SampleResult),
645}
646
647pub struct IterativeRefinement {
649 quantum_solver: Box<dyn Sampler>,
651 classical_processor: ClassicalProcessor,
653 max_refinements: usize,
655 improvement_threshold: f64,
657}
658
659#[derive(Debug, Clone)]
660pub enum ClassicalProcessor {
661 LocalSearch { neighborhood_size: usize },
663 SimulatedAnnealing {
665 initial_temp: f64,
666 cooling_rate: f64,
667 },
668 TabuSearch { tabu_tenure: usize },
670 VariableNeighborhood { k_max: usize },
672}
673
674impl IterativeRefinement {
675 pub fn new(
677 quantum_solver: Box<dyn Sampler>,
678 classical_processor: ClassicalProcessor,
679 max_refinements: usize,
680 ) -> Self {
681 Self {
682 quantum_solver,
683 classical_processor,
684 max_refinements,
685 improvement_threshold: 1e-6,
686 }
687 }
688
689 #[cfg(feature = "dwave")]
691 pub fn refine(
692 &mut self,
693 problem: &CompiledModel,
694 initial_shots: usize,
695 ) -> Result<RefinementResult, String> {
696 let mut qubo = problem.to_qubo();
697 let mut history = Vec::new();
698 let mut best_solution = None;
699 let mut best_energy = f64::INFINITY;
700
701 for iteration in 0..self.max_refinements {
702 let qubo_tuple = (qubo.to_dense_matrix(), qubo.variable_map());
704 let quantum_results = self
705 .quantum_solver
706 .run_qubo(&qubo_tuple, initial_shots)
707 .map_err(|e| format!("Quantum solver error: {e:?}"))?;
708
709 let refined_results =
711 self.apply_classical_refinement(&quantum_results, &qubo_tuple.0, &qubo_tuple.1)?;
712
713 for result in &refined_results {
715 if result.energy < best_energy {
716 best_energy = result.energy;
717 best_solution = Some(result.clone());
718 }
719 }
720
721 history.push(IterationResult {
722 quantum_energy: quantum_results.first().map_or(f64::INFINITY, |r| r.energy),
723 refined_energy: refined_results.first().map_or(f64::INFINITY, |r| r.energy),
724 improvement: 0.0, });
726
727 if iteration > 0 {
729 let improvement =
730 history[iteration - 1].refined_energy - history[iteration].refined_energy;
731 if improvement < self.improvement_threshold {
732 break;
733 }
734 }
735 }
736
737 Ok(RefinementResult {
738 best_solution: best_solution.ok_or("No solution found")?,
739 total_iterations: history.len(),
740 refinement_history: history,
741 })
742 }
743
744 fn apply_classical_refinement(
746 &self,
747 quantum_results: &[SampleResult],
748 qubo_matrix: &Array2<f64>,
749 var_map: &HashMap<String, usize>,
750 ) -> Result<Vec<SampleResult>, String> {
751 match &self.classical_processor {
752 ClassicalProcessor::LocalSearch { neighborhood_size } => self.local_search_refinement(
753 quantum_results,
754 qubo_matrix,
755 var_map,
756 *neighborhood_size,
757 ),
758 _ => {
759 Ok(quantum_results.to_vec())
761 }
762 }
763 }
764
765 fn local_search_refinement(
767 &self,
768 results: &[SampleResult],
769 qubo_matrix: &Array2<f64>,
770 var_map: &HashMap<String, usize>,
771 neighborhood_size: usize,
772 ) -> Result<Vec<SampleResult>, String> {
773 let mut refined_results = Vec::new();
774
775 for result in results.iter().take(10) {
776 let mut state: Vec<bool> = var_map.keys().map(|var| result.assignments[var]).collect();
778
779 let mut best_state = state.clone();
780 let mut best_energy = result.energy;
781
782 for _ in 0..neighborhood_size {
784 let mut neighbor = state.clone();
786 use scirs2_core::random::prelude::*;
787 let mut rng = thread_rng();
788 let flip_idx = rng.gen_range(0..state.len());
789 neighbor[flip_idx] = !neighbor[flip_idx];
790
791 let energy = self.evaluate_qubo_energy(&neighbor, qubo_matrix);
793
794 if energy < best_energy {
795 best_energy = energy;
796 best_state = neighbor.clone();
797 }
798
799 state = best_state.clone();
800 }
801
802 let assignments: HashMap<String, bool> = var_map
804 .iter()
805 .zip(best_state.iter())
806 .map(|((var, _), &val)| (var.clone(), val))
807 .collect();
808
809 refined_results.push(SampleResult {
810 assignments,
811 energy: best_energy,
812 occurrences: result.occurrences,
813 });
814 }
815
816 refined_results.sort_by(|a, b| {
817 a.energy
818 .partial_cmp(&b.energy)
819 .unwrap_or(std::cmp::Ordering::Equal)
820 });
821 Ok(refined_results)
822 }
823
824 fn evaluate_qubo_energy(&self, state: &[bool], matrix: &Array2<f64>) -> f64 {
826 let n = state.len();
827 let mut energy = 0.0;
828
829 for i in 0..n {
830 if state[i] {
831 energy += matrix[[i, i]];
832 for j in i + 1..n {
833 if state[j] {
834 energy += matrix[[i, j]];
835 }
836 }
837 }
838 }
839
840 energy
841 }
842}
843
844#[derive(Debug, Clone)]
845pub struct RefinementResult {
846 pub best_solution: SampleResult,
847 pub refinement_history: Vec<IterationResult>,
848 pub total_iterations: usize,
849}
850
851#[derive(Debug, Clone)]
852pub struct IterationResult {
853 pub quantum_energy: f64,
854 pub refined_energy: f64,
855 pub improvement: f64,
856}
857
858#[cfg(test)]
859mod tests {
860 use super::*;
861
862 #[test]
863 fn test_vqe_initialization() {
864 let vqe = VQE::new(
865 4,
866 AnsatzType::HardwareEfficient {
867 depth: 2,
868 entangling_gate: "CZ".to_string(),
869 },
870 ClassicalOptimizer::GradientDescent {
871 learning_rate: 0.1,
872 momentum: 0.9,
873 },
874 );
875
876 assert_eq!(vqe.n_qubits, 4);
877 assert_eq!(vqe.get_num_parameters(), 4 * 3 * 2 + 3 * 2); }
879
880 #[test]
881 fn test_hamiltonian_from_qubo() {
882 let mut qubo = Array2::zeros((3, 3));
883 qubo[[0, 0]] = 1.0;
884 qubo[[0, 1]] = -2.0;
885 qubo[[1, 0]] = -2.0;
886 qubo[[1, 1]] = 1.0;
887
888 let hamiltonian = Hamiltonian::from_qubo(&qubo);
889 assert_eq!(hamiltonian.terms.len(), 3); }
891
892 #[test]
893 fn test_qaoa_initialization() {
894 let qaoa = QAOA::new(
895 3,
896 ClassicalOptimizer::SPSA {
897 a: 0.1,
898 c: 0.1,
899 alpha: 0.602,
900 gamma: 0.101,
901 },
902 );
903
904 assert_eq!(qaoa.p, 3);
905 }
906}