quantrs2_tytan/
hybrid_algorithms.rs

1//! Hybrid quantum-classical algorithms for optimization.
2//!
3//! This module provides implementations of hybrid algorithms that combine
4//! quantum and classical computing approaches for solving optimization problems.
5
6#![allow(dead_code)]
7
8#[cfg(feature = "dwave")]
9use crate::compile::CompiledModel;
10use crate::sampler::{SampleResult, Sampler};
11use scirs2_core::ndarray::Array2;
12use scirs2_core::random::prelude::*;
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16#[cfg(feature = "scirs")]
17use crate::scirs_stub::{
18    scirs2_optimization::gradient::LBFGS,
19    scirs2_optimization::{Bounds, ObjectiveFunction, Optimizer},
20};
21
22/// Variational Quantum Eigensolver (VQE) interface
23pub struct VQE {
24    /// Number of qubits
25    n_qubits: usize,
26    /// Ansatz type
27    ansatz: AnsatzType,
28    /// Classical optimizer
29    optimizer: ClassicalOptimizer,
30    /// Number of optimization iterations
31    max_iterations: usize,
32    /// Convergence threshold
33    convergence_threshold: f64,
34}
35
36#[derive(Debug, Clone)]
37pub enum AnsatzType {
38    /// Hardware-efficient ansatz
39    HardwareEfficient {
40        depth: usize,
41        entangling_gate: String,
42    },
43    /// Unitary Coupled Cluster (UCC) ansatz
44    UCC { excitation_order: usize },
45    /// Problem-specific ansatz
46    Custom {
47        name: String,
48        parameters: HashMap<String, f64>,
49    },
50}
51
52#[derive(Debug, Clone)]
53pub enum ClassicalOptimizer {
54    /// COBYLA optimizer
55    COBYLA { rhobeg: f64, rhoend: f64 },
56    /// L-BFGS optimizer
57    LBFGS {
58        max_iterations: usize,
59        tolerance: f64,
60    },
61    /// SPSA optimizer
62    SPSA {
63        a: f64,
64        c: f64,
65        alpha: f64,
66        gamma: f64,
67    },
68    /// Gradient descent
69    GradientDescent { learning_rate: f64, momentum: f64 },
70}
71
72impl VQE {
73    /// Create new VQE solver
74    pub const fn new(n_qubits: usize, ansatz: AnsatzType, optimizer: ClassicalOptimizer) -> Self {
75        Self {
76            n_qubits,
77            ansatz,
78            optimizer,
79            max_iterations: 1000,
80            convergence_threshold: 1e-6,
81        }
82    }
83
84    /// Set maximum iterations
85    pub const fn with_max_iterations(mut self, iterations: usize) -> Self {
86        self.max_iterations = iterations;
87        self
88    }
89
90    /// Set convergence threshold
91    pub const fn with_convergence_threshold(mut self, threshold: f64) -> Self {
92        self.convergence_threshold = threshold;
93        self
94    }
95
96    /// Solve optimization problem
97    pub fn solve(&mut self, hamiltonian: &Hamiltonian) -> Result<VQEResult, String> {
98        // Initialize parameters
99        let num_params = self.get_num_parameters();
100        let mut params = self.initialize_parameters(num_params);
101
102        let mut energy_history = Vec::new();
103        let mut param_history = Vec::new();
104        let mut converged = false;
105
106        // Optimization loop
107        for iteration in 0..self.max_iterations {
108            // Evaluate energy
109            let energy = self.evaluate_energy(&params, hamiltonian)?;
110            energy_history.push(energy);
111            param_history.push(params.clone());
112
113            // Check convergence
114            if iteration > 0 {
115                let energy_change =
116                    (energy_history[iteration] - energy_history[iteration - 1]).abs();
117                if energy_change < self.convergence_threshold {
118                    converged = true;
119                    break;
120                }
121            }
122
123            // Update parameters
124            params = self.update_parameters(params, hamiltonian)?;
125        }
126
127        let iterations = energy_history.len();
128        let ground_state_energy = energy_history.last().copied().unwrap_or(0.0);
129
130        Ok(VQEResult {
131            optimal_parameters: params,
132            ground_state_energy,
133            energy_history,
134            parameter_history: param_history,
135            converged,
136            iterations,
137        })
138    }
139
140    /// Get number of parameters for ansatz
141    fn get_num_parameters(&self) -> usize {
142        match &self.ansatz {
143            AnsatzType::HardwareEfficient { depth, .. } => {
144                // Single-qubit rotations + entangling gates
145                self.n_qubits * 3 * depth + (self.n_qubits - 1) * depth
146            }
147            AnsatzType::UCC { excitation_order } => {
148                // Simplified: depends on excitation order
149                self.n_qubits * excitation_order
150            }
151            AnsatzType::Custom { parameters, .. } => parameters.len(),
152        }
153    }
154
155    /// Initialize parameters
156    fn initialize_parameters(&self, num_params: usize) -> Vec<f64> {
157        use scirs2_core::random::prelude::*;
158        let mut rng = thread_rng();
159
160        (0..num_params).map(|_| rng.gen_range(-PI..PI)).collect()
161    }
162
163    /// Evaluate energy for given parameters
164    fn evaluate_energy(&self, params: &[f64], hamiltonian: &Hamiltonian) -> Result<f64, String> {
165        // This would involve:
166        // 1. Prepare quantum state with ansatz
167        // 2. Measure expectation value of Hamiltonian
168        // 3. Return energy
169
170        // Placeholder implementation
171        let energy = hamiltonian.evaluate_classical(params)?;
172        Ok(energy)
173    }
174
175    /// Update parameters using classical optimizer
176    fn update_parameters(
177        &self,
178        current_params: Vec<f64>,
179        hamiltonian: &Hamiltonian,
180    ) -> Result<Vec<f64>, String> {
181        match &self.optimizer {
182            ClassicalOptimizer::GradientDescent {
183                learning_rate,
184                momentum: _,
185            } => {
186                // Compute gradient
187                let gradient = self.compute_gradient(&current_params, hamiltonian)?;
188
189                // Update with momentum
190                let mut new_params = current_params;
191                for i in 0..new_params.len() {
192                    new_params[i] -= learning_rate * gradient[i];
193                }
194
195                Ok(new_params)
196            }
197            ClassicalOptimizer::SPSA { a, c, alpha, gamma } => {
198                // SPSA update
199                self.spsa_update(current_params, hamiltonian, *a, *c, *alpha, *gamma)
200            }
201            _ => {
202                // Other optimizers would be implemented similarly
203                Ok(current_params)
204            }
205        }
206    }
207
208    /// Compute gradient using parameter shift rule
209    fn compute_gradient(
210        &self,
211        params: &[f64],
212        hamiltonian: &Hamiltonian,
213    ) -> Result<Vec<f64>, String> {
214        let mut gradient = vec![0.0; params.len()];
215        let shift = PI / 2.0;
216
217        for i in 0..params.len() {
218            let mut params_plus = params.to_vec();
219            let mut params_minus = params.to_vec();
220
221            params_plus[i] += shift;
222            params_minus[i] -= shift;
223
224            let energy_plus = self.evaluate_energy(&params_plus, hamiltonian)?;
225            let energy_minus = self.evaluate_energy(&params_minus, hamiltonian)?;
226
227            gradient[i] = (energy_plus - energy_minus) / (2.0 * shift);
228        }
229
230        Ok(gradient)
231    }
232
233    /// SPSA parameter update
234    fn spsa_update(
235        &self,
236        params: Vec<f64>,
237        hamiltonian: &Hamiltonian,
238        a: f64,
239        c: f64,
240        _alpha: f64,
241        _gamma: f64,
242    ) -> Result<Vec<f64>, String> {
243        use scirs2_core::random::prelude::*;
244        let mut rng = thread_rng();
245
246        // Generate random perturbation
247        let delta: Vec<f64> = (0..params.len())
248            .map(|_| if rng.gen_bool(0.5) { 1.0 } else { -1.0 })
249            .collect();
250
251        // Evaluate at perturbed points
252        let mut params_plus = params.clone();
253        let mut params_minus = params.clone();
254
255        for i in 0..params.len() {
256            params_plus[i] += c * delta[i];
257            params_minus[i] -= c * delta[i];
258        }
259
260        let energy_plus = self.evaluate_energy(&params_plus, hamiltonian)?;
261        let energy_minus = self.evaluate_energy(&params_minus, hamiltonian)?;
262
263        // Update parameters
264        let mut new_params = params.clone();
265        for i in 0..params.len() {
266            new_params[i] -= a * (energy_plus - energy_minus) / (2.0 * c * delta[i]);
267        }
268
269        Ok(new_params)
270    }
271}
272
273/// VQE result
274#[derive(Debug, Clone)]
275pub struct VQEResult {
276    pub optimal_parameters: Vec<f64>,
277    pub ground_state_energy: f64,
278    pub energy_history: Vec<f64>,
279    pub parameter_history: Vec<Vec<f64>>,
280    pub converged: bool,
281    pub iterations: usize,
282}
283
284/// Hamiltonian representation
285#[derive(Debug, Clone)]
286pub struct Hamiltonian {
287    /// Pauli terms
288    pub terms: Vec<PauliTerm>,
289}
290
291#[derive(Debug, Clone)]
292pub struct PauliTerm {
293    /// Coefficient
294    pub coefficient: f64,
295    /// Pauli string (I, X, Y, Z for each qubit)
296    pub pauli_string: Vec<char>,
297}
298
299impl Hamiltonian {
300    /// Create from QUBO
301    pub fn from_qubo(qubo: &Array2<f64>) -> Self {
302        let n = qubo.shape()[0];
303        let mut terms = Vec::new();
304
305        // Convert QUBO to Ising model
306        // H = sum_i h_i Z_i + sum_{i<j} J_{ij} Z_i Z_j
307
308        for i in 0..n {
309            // Linear terms
310            let h_i = qubo[[i, i]];
311            if h_i.abs() > 1e-10 {
312                let mut pauli_string = vec!['I'; n];
313                pauli_string[i] = 'Z';
314                terms.push(PauliTerm {
315                    coefficient: h_i,
316                    pauli_string,
317                });
318            }
319
320            // Quadratic terms
321            for j in i + 1..n {
322                let j_ij = qubo[[i, j]];
323                if j_ij.abs() > 1e-10 {
324                    let mut pauli_string = vec!['I'; n];
325                    pauli_string[i] = 'Z';
326                    pauli_string[j] = 'Z';
327                    terms.push(PauliTerm {
328                        coefficient: j_ij,
329                        pauli_string,
330                    });
331                }
332            }
333        }
334
335        Self { terms }
336    }
337
338    /// Evaluate classically (placeholder)
339    fn evaluate_classical(&self, _params: &[f64]) -> Result<f64, String> {
340        // This would evaluate the Hamiltonian expectation value
341        // For now, return a simple function of parameters
342        Ok(_params.iter().map(|p| p.sin()).sum())
343    }
344}
345
346/// Quantum Approximate Optimization Algorithm (QAOA)
347pub struct QAOA {
348    /// Number of QAOA layers (p)
349    p: usize,
350    /// Classical optimizer
351    optimizer: ClassicalOptimizer,
352    /// Initial state preparation
353    initial_state: InitialState,
354}
355
356#[derive(Debug, Clone)]
357pub enum InitialState {
358    /// Equal superposition
359    EqualSuperposition,
360    /// Custom state
361    Custom(Vec<f64>),
362    /// Warm start from classical solution
363    WarmStart(Vec<bool>),
364}
365
366impl QAOA {
367    /// Create new QAOA solver
368    pub const fn new(p: usize, optimizer: ClassicalOptimizer) -> Self {
369        Self {
370            p,
371            optimizer,
372            initial_state: InitialState::EqualSuperposition,
373        }
374    }
375
376    /// Set initial state
377    pub fn with_initial_state(mut self, state: InitialState) -> Self {
378        self.initial_state = state;
379        self
380    }
381
382    /// Solve QUBO problem
383    pub fn solve_qubo(&mut self, qubo: &Array2<f64>) -> Result<QAOAResult, String> {
384        let hamiltonian = Hamiltonian::from_qubo(qubo);
385
386        // Initialize parameters (beta, gamma for each layer)
387        let mut betas = vec![0.0; self.p];
388        let mut gammas = vec![0.0; self.p];
389
390        // Optimization loop
391        let mut energy_history = Vec::new();
392        let max_iterations = 100;
393
394        for iteration in 0..max_iterations {
395            // Evaluate energy
396            let energy = self.evaluate_qaoa_energy(&betas, &gammas, &hamiltonian)?;
397            energy_history.push(energy);
398
399            // Update parameters
400            let (new_betas, new_gammas) =
401                self.update_qaoa_parameters(&betas, &gammas, &hamiltonian)?;
402
403            betas = new_betas;
404            gammas = new_gammas;
405
406            // Check convergence
407            if iteration > 0 {
408                let improvement = energy_history[iteration - 1] - energy;
409                if improvement < 1e-6 && improvement > 0.0 {
410                    break;
411                }
412            }
413        }
414
415        // Sample final state
416        let samples = self.sample_qaoa_state(&betas, &gammas, &hamiltonian, 1000)?;
417
418        let best_energy = energy_history.last().copied().unwrap_or(0.0);
419
420        Ok(QAOAResult {
421            optimal_betas: betas,
422            optimal_gammas: gammas,
423            energy_history,
424            samples,
425            best_energy,
426        })
427    }
428
429    /// Evaluate QAOA energy
430    fn evaluate_qaoa_energy(
431        &self,
432        betas: &[f64],
433        gammas: &[f64],
434        _hamiltonian: &Hamiltonian,
435    ) -> Result<f64, String> {
436        // This would:
437        // 1. Prepare initial state
438        // 2. Apply QAOA circuit with given parameters
439        // 3. Measure expectation value
440
441        // Placeholder
442        let param_sum: f64 = betas.iter().sum::<f64>() + gammas.iter().sum::<f64>();
443        Ok(param_sum.sin() * 10.0)
444    }
445
446    /// Update QAOA parameters
447    fn update_qaoa_parameters(
448        &self,
449        betas: &[f64],
450        gammas: &[f64],
451        hamiltonian: &Hamiltonian,
452    ) -> Result<(Vec<f64>, Vec<f64>), String> {
453        // Combine into single parameter vector
454        let mut params = Vec::new();
455        params.extend_from_slice(betas);
456        params.extend_from_slice(gammas);
457
458        // Update using optimizer
459        if let ClassicalOptimizer::GradientDescent { learning_rate, .. } = &self.optimizer {
460            // Compute gradients
461            let gradient = self.compute_qaoa_gradient(&params, hamiltonian)?;
462
463            // Update
464            for i in 0..params.len() {
465                params[i] -= learning_rate * gradient[i];
466            }
467        } else {
468            // Other optimizers
469        }
470
471        // Split back into betas and gammas
472        let new_betas = params[..self.p].to_vec();
473        let new_gammas = params[self.p..].to_vec();
474
475        Ok((new_betas, new_gammas))
476    }
477
478    /// Compute QAOA gradient
479    fn compute_qaoa_gradient(
480        &self,
481        params: &[f64],
482        _hamiltonian: &Hamiltonian,
483    ) -> Result<Vec<f64>, String> {
484        // Parameter shift rule for QAOA
485        let mut gradient = vec![0.0; params.len()];
486
487        // Placeholder gradient
488        for i in 0..params.len() {
489            gradient[i] = -params[i].cos();
490        }
491
492        Ok(gradient)
493    }
494
495    /// Sample from QAOA state
496    fn sample_qaoa_state(
497        &self,
498        _betas: &[f64],
499        _gammas: &[f64],
500        _hamiltonian: &Hamiltonian,
501        num_samples: usize,
502    ) -> Result<Vec<Vec<bool>>, String> {
503        // This would sample from the prepared quantum state
504        // Placeholder: return random samples
505        use scirs2_core::random::prelude::*;
506        let mut rng = thread_rng();
507        let n_qubits = 10; // Would get from hamiltonian
508
509        let samples = (0..num_samples)
510            .map(|_| (0..n_qubits).map(|_| rng.gen_bool(0.5)).collect())
511            .collect();
512
513        Ok(samples)
514    }
515}
516
517/// QAOA result
518#[derive(Debug, Clone)]
519pub struct QAOAResult {
520    pub optimal_betas: Vec<f64>,
521    pub optimal_gammas: Vec<f64>,
522    pub energy_history: Vec<f64>,
523    pub samples: Vec<Vec<bool>>,
524    pub best_energy: f64,
525}
526
527/// Warm start strategies for hybrid algorithms
528pub struct WarmStartStrategy {
529    /// Classical pre-solver
530    pre_solver: Box<dyn Sampler>,
531    /// Number of classical iterations
532    classical_iterations: usize,
533    /// How to use classical solution
534    usage: WarmStartUsage,
535}
536
537#[derive(Debug, Clone)]
538pub enum WarmStartUsage {
539    /// Use as initial state
540    InitialState,
541    /// Use to initialize parameters
542    ParameterInitialization,
543    /// Use as reference for relative optimization
544    ReferencePoint,
545    /// Hybrid: alternate between quantum and classical
546    Alternating { switch_threshold: f64 },
547}
548
549impl WarmStartStrategy {
550    /// Create new warm start strategy
551    pub fn new(
552        pre_solver: Box<dyn Sampler>,
553        classical_iterations: usize,
554        usage: WarmStartUsage,
555    ) -> Self {
556        Self {
557            pre_solver,
558            classical_iterations,
559            usage,
560        }
561    }
562
563    /// Generate warm start
564    #[cfg(feature = "dwave")]
565    pub fn generate_warm_start(
566        &mut self,
567        problem: &CompiledModel,
568    ) -> Result<WarmStartResult, String> {
569        // Run classical pre-solver
570        let mut qubo = problem.to_qubo();
571        let qubo_tuple = (qubo.to_dense_matrix(), qubo.variable_map());
572        let classical_results = self
573            .pre_solver
574            .run_qubo(&qubo_tuple, self.classical_iterations)
575            .map_err(|e| format!("Classical solver error: {e:?}"))?;
576
577        // Extract best solution
578        let mut best_solution = classical_results
579            .first()
580            .ok_or("No classical solution found")?;
581
582        // Convert to initial state or parameters based on usage
583        match &self.usage {
584            WarmStartUsage::InitialState => {
585                // Convert solution to quantum state
586                let state_vector = self.solution_to_state_vector(&best_solution.assignments)?;
587                Ok(WarmStartResult::StateVector(state_vector))
588            }
589            WarmStartUsage::ParameterInitialization => {
590                // Use solution to initialize variational parameters
591                let mut params = self.solution_to_parameters(&best_solution.assignments)?;
592                Ok(WarmStartResult::Parameters(params))
593            }
594            _ => {
595                // Other strategies
596                Ok(WarmStartResult::Solution(best_solution.clone()))
597            }
598        }
599    }
600
601    /// Convert solution to state vector
602    fn solution_to_state_vector(
603        &self,
604        assignments: &HashMap<String, bool>,
605    ) -> Result<Vec<f64>, String> {
606        let n = assignments.len();
607        let dim = 1 << n; // 2^n
608        let mut state = vec![0.0; dim];
609
610        // Convert assignments to binary index
611        let mut index = 0;
612        let mut vars: Vec<_> = assignments.keys().collect();
613        vars.sort();
614
615        for (i, var) in vars.iter().enumerate() {
616            if assignments[var.as_str()] {
617                index |= 1 << i;
618            }
619        }
620
621        state[index] = 1.0;
622        Ok(state)
623    }
624
625    /// Convert solution to variational parameters
626    fn solution_to_parameters(
627        &self,
628        assignments: &HashMap<String, bool>,
629    ) -> Result<Vec<f64>, String> {
630        // Heuristic: use solution to bias parameters
631        let params: Vec<f64> = assignments
632            .values()
633            .map(|&b| if b { PI / 4.0 } else { -PI / 4.0 })
634            .collect();
635
636        Ok(params)
637    }
638}
639
640#[derive(Debug, Clone)]
641pub enum WarmStartResult {
642    StateVector(Vec<f64>),
643    Parameters(Vec<f64>),
644    Solution(SampleResult),
645}
646
647/// Iterative refinement for hybrid algorithms
648pub struct IterativeRefinement {
649    /// Quantum solver
650    quantum_solver: Box<dyn Sampler>,
651    /// Classical post-processor
652    classical_processor: ClassicalProcessor,
653    /// Number of refinement iterations
654    max_refinements: usize,
655    /// Refinement threshold
656    improvement_threshold: f64,
657}
658
659#[derive(Debug, Clone)]
660pub enum ClassicalProcessor {
661    /// Local search around quantum solution
662    LocalSearch { neighborhood_size: usize },
663    /// Simulated annealing refinement
664    SimulatedAnnealing {
665        initial_temp: f64,
666        cooling_rate: f64,
667    },
668    /// Tabu search
669    TabuSearch { tabu_tenure: usize },
670    /// Variable neighborhood search
671    VariableNeighborhood { k_max: usize },
672}
673
674impl IterativeRefinement {
675    /// Create new iterative refinement
676    pub fn new(
677        quantum_solver: Box<dyn Sampler>,
678        classical_processor: ClassicalProcessor,
679        max_refinements: usize,
680    ) -> Self {
681        Self {
682            quantum_solver,
683            classical_processor,
684            max_refinements,
685            improvement_threshold: 1e-6,
686        }
687    }
688
689    /// Refine solution iteratively
690    #[cfg(feature = "dwave")]
691    pub fn refine(
692        &mut self,
693        problem: &CompiledModel,
694        initial_shots: usize,
695    ) -> Result<RefinementResult, String> {
696        let mut qubo = problem.to_qubo();
697        let mut history = Vec::new();
698        let mut best_solution = None;
699        let mut best_energy = f64::INFINITY;
700
701        for iteration in 0..self.max_refinements {
702            // Run quantum solver
703            let qubo_tuple = (qubo.to_dense_matrix(), qubo.variable_map());
704            let quantum_results = self
705                .quantum_solver
706                .run_qubo(&qubo_tuple, initial_shots)
707                .map_err(|e| format!("Quantum solver error: {e:?}"))?;
708
709            // Apply classical refinement
710            let refined_results =
711                self.apply_classical_refinement(&quantum_results, &qubo_tuple.0, &qubo_tuple.1)?;
712
713            // Track best solution
714            for result in &refined_results {
715                if result.energy < best_energy {
716                    best_energy = result.energy;
717                    best_solution = Some(result.clone());
718                }
719            }
720
721            history.push(IterationResult {
722                quantum_energy: quantum_results.first().map_or(f64::INFINITY, |r| r.energy),
723                refined_energy: refined_results.first().map_or(f64::INFINITY, |r| r.energy),
724                improvement: 0.0, // Calculate actual improvement
725            });
726
727            // Check convergence
728            if iteration > 0 {
729                let improvement =
730                    history[iteration - 1].refined_energy - history[iteration].refined_energy;
731                if improvement < self.improvement_threshold {
732                    break;
733                }
734            }
735        }
736
737        Ok(RefinementResult {
738            best_solution: best_solution.ok_or("No solution found")?,
739            total_iterations: history.len(),
740            refinement_history: history,
741        })
742    }
743
744    /// Apply classical refinement
745    fn apply_classical_refinement(
746        &self,
747        quantum_results: &[SampleResult],
748        qubo_matrix: &Array2<f64>,
749        var_map: &HashMap<String, usize>,
750    ) -> Result<Vec<SampleResult>, String> {
751        match &self.classical_processor {
752            ClassicalProcessor::LocalSearch { neighborhood_size } => self.local_search_refinement(
753                quantum_results,
754                qubo_matrix,
755                var_map,
756                *neighborhood_size,
757            ),
758            _ => {
759                // Other processors would be implemented
760                Ok(quantum_results.to_vec())
761            }
762        }
763    }
764
765    /// Local search refinement
766    fn local_search_refinement(
767        &self,
768        results: &[SampleResult],
769        qubo_matrix: &Array2<f64>,
770        var_map: &HashMap<String, usize>,
771        neighborhood_size: usize,
772    ) -> Result<Vec<SampleResult>, String> {
773        let mut refined_results = Vec::new();
774
775        for result in results.iter().take(10) {
776            // Convert to binary vector
777            let mut state: Vec<bool> = var_map.keys().map(|var| result.assignments[var]).collect();
778
779            let mut best_state = state.clone();
780            let mut best_energy = result.energy;
781
782            // Search neighborhood
783            for _ in 0..neighborhood_size {
784                // Flip random bits
785                let mut neighbor = state.clone();
786                use scirs2_core::random::prelude::*;
787                let mut rng = thread_rng();
788                let flip_idx = rng.gen_range(0..state.len());
789                neighbor[flip_idx] = !neighbor[flip_idx];
790
791                // Evaluate energy
792                let energy = self.evaluate_qubo_energy(&neighbor, qubo_matrix);
793
794                if energy < best_energy {
795                    best_energy = energy;
796                    best_state = neighbor.clone();
797                }
798
799                state = best_state.clone();
800            }
801
802            // Convert back to assignments
803            let assignments: HashMap<String, bool> = var_map
804                .iter()
805                .zip(best_state.iter())
806                .map(|((var, _), &val)| (var.clone(), val))
807                .collect();
808
809            refined_results.push(SampleResult {
810                assignments,
811                energy: best_energy,
812                occurrences: result.occurrences,
813            });
814        }
815
816        refined_results.sort_by(|a, b| {
817            a.energy
818                .partial_cmp(&b.energy)
819                .unwrap_or(std::cmp::Ordering::Equal)
820        });
821        Ok(refined_results)
822    }
823
824    /// Evaluate QUBO energy
825    fn evaluate_qubo_energy(&self, state: &[bool], matrix: &Array2<f64>) -> f64 {
826        let n = state.len();
827        let mut energy = 0.0;
828
829        for i in 0..n {
830            if state[i] {
831                energy += matrix[[i, i]];
832                for j in i + 1..n {
833                    if state[j] {
834                        energy += matrix[[i, j]];
835                    }
836                }
837            }
838        }
839
840        energy
841    }
842}
843
844#[derive(Debug, Clone)]
845pub struct RefinementResult {
846    pub best_solution: SampleResult,
847    pub refinement_history: Vec<IterationResult>,
848    pub total_iterations: usize,
849}
850
851#[derive(Debug, Clone)]
852pub struct IterationResult {
853    pub quantum_energy: f64,
854    pub refined_energy: f64,
855    pub improvement: f64,
856}
857
858#[cfg(test)]
859mod tests {
860    use super::*;
861
862    #[test]
863    fn test_vqe_initialization() {
864        let vqe = VQE::new(
865            4,
866            AnsatzType::HardwareEfficient {
867                depth: 2,
868                entangling_gate: "CZ".to_string(),
869            },
870            ClassicalOptimizer::GradientDescent {
871                learning_rate: 0.1,
872                momentum: 0.9,
873            },
874        );
875
876        assert_eq!(vqe.n_qubits, 4);
877        assert_eq!(vqe.get_num_parameters(), 4 * 3 * 2 + 3 * 2); // 30 parameters
878    }
879
880    #[test]
881    fn test_hamiltonian_from_qubo() {
882        let mut qubo = Array2::zeros((3, 3));
883        qubo[[0, 0]] = 1.0;
884        qubo[[0, 1]] = -2.0;
885        qubo[[1, 0]] = -2.0;
886        qubo[[1, 1]] = 1.0;
887
888        let hamiltonian = Hamiltonian::from_qubo(&qubo);
889        assert_eq!(hamiltonian.terms.len(), 3); // 2 linear + 1 quadratic
890    }
891
892    #[test]
893    fn test_qaoa_initialization() {
894        let qaoa = QAOA::new(
895            3,
896            ClassicalOptimizer::SPSA {
897                a: 0.1,
898                c: 0.1,
899                alpha: 0.602,
900                gamma: 0.101,
901            },
902        );
903
904        assert_eq!(qaoa.p, 3);
905    }
906}