1#![allow(dead_code)]
7
8use crate::sampler::{SampleResult, Sampler, SamplerError, SamplerResult};
9use scirs2_core::ndarray::{Array, ArrayD, Ix2, IxDyn};
10use scirs2_core::random::{thread_rng, Rng};
11use std::collections::HashMap;
12use std::sync::{Arc, Mutex};
13
14#[cfg(feature = "scirs")]
15use scirs2_core::gpu;
16
17#[cfg(feature = "scirs")]
19const fn get_device_count() -> usize {
20 1
22}
23
24#[cfg(feature = "scirs")]
25struct GpuContext;
26
27#[cfg(feature = "scirs")]
28struct DeviceInfo {
29 memory_mb: usize,
30 compute_units: usize,
31}
32
33#[cfg(feature = "scirs")]
34impl GpuContext {
35 fn new(_device_id: u32) -> Result<Self, Box<dyn std::error::Error>> {
36 Ok(Self)
37 }
38
39 const fn get_device_info(&self) -> DeviceInfo {
40 DeviceInfo {
41 memory_mb: 8192,
42 compute_units: 64,
43 }
44 }
45
46 fn allocate_memory_pool(&self, _size: usize) -> Result<(), Box<dyn std::error::Error>> {
47 Ok(())
48 }
49
50 fn allocate<T>(&self, _count: usize) -> Result<GpuBuffer<T>, Box<dyn std::error::Error>> {
51 Ok(GpuBuffer::new())
52 }
53
54 fn init_random_states(
55 &self,
56 _buffer: &GpuBuffer<u8>,
57 _seed: u64,
58 ) -> Result<(), Box<dyn std::error::Error>> {
59 Ok(())
60 }
61
62 fn launch_kernel(
63 &self,
64 _name: &str,
65 _grid: usize,
66 _block: usize,
67 _args: &[KernelArg],
68 ) -> Result<(), Box<dyn std::error::Error>> {
69 Ok(())
70 }
71
72 fn synchronize(&self) -> Result<(), Box<dyn std::error::Error>> {
73 Ok(())
74 }
75}
76
77#[cfg(feature = "scirs")]
78struct GpuMatrix;
79
80#[cfg(feature = "scirs")]
81struct GpuBuffer<T> {
82 _phantom: std::marker::PhantomData<T>,
83}
84
85#[cfg(feature = "scirs")]
86impl<T> GpuBuffer<T> {
87 const fn new() -> Self {
88 Self {
89 _phantom: std::marker::PhantomData,
90 }
91 }
92
93 fn copy_to_host(&self, _host_data: &mut [T]) -> Result<(), Box<dyn std::error::Error>> {
94 Ok(())
95 }
96
97 const fn as_kernel_arg(&self) -> KernelArg {
98 KernelArg::Buffer
99 }
100}
101
102#[cfg(feature = "scirs")]
103enum KernelArg {
104 Buffer,
105 Scalar(f32),
106 Integer(i32),
107}
108
109#[cfg(feature = "scirs")]
110impl GpuMatrix {
111 fn from_host_mixed(
112 _ctx: &GpuContext,
113 _matrix: &Array<f64, Ix2>,
114 ) -> Result<Self, Box<dyn std::error::Error>> {
115 Ok(Self)
116 }
117
118 fn from_host(
119 _ctx: &GpuContext,
120 _matrix: &Array<f64, Ix2>,
121 ) -> Result<Self, Box<dyn std::error::Error>> {
122 Ok(Self)
123 }
124
125 const fn as_kernel_arg(&self) -> KernelArg {
126 KernelArg::Buffer
127 }
128}
129
130pub struct EnhancedArminSampler {
132 seed: Option<u64>,
134 device_id: usize,
136 batch_size: usize,
138 initial_temp: f64,
140 final_temp: f64,
141 sweeps: usize,
143 multi_gpu: bool,
145 memory_pool_mb: usize,
147 async_mode: bool,
149 use_mixed_precision: bool,
151 verbose: bool,
153}
154
155impl EnhancedArminSampler {
156 pub const fn new(device_id: usize) -> Self {
158 Self {
159 seed: None,
160 device_id,
161 batch_size: 1024,
162 initial_temp: 10.0,
163 final_temp: 0.01,
164 sweeps: 1000,
165 multi_gpu: false,
166 memory_pool_mb: 1024,
167 async_mode: true,
168 use_mixed_precision: true,
169 verbose: false,
170 }
171 }
172
173 pub const fn with_multi_gpu(mut self, enable: bool) -> Self {
175 self.multi_gpu = enable;
176 self
177 }
178
179 pub const fn with_batch_size(mut self, size: usize) -> Self {
181 self.batch_size = size;
182 self
183 }
184
185 pub const fn with_temperature(mut self, initial: f64, final_: f64) -> Self {
187 self.initial_temp = initial;
188 self.final_temp = final_;
189 self
190 }
191
192 pub const fn with_sweeps(mut self, sweeps: usize) -> Self {
194 self.sweeps = sweeps;
195 self
196 }
197
198 pub const fn with_memory_pool(mut self, size_mb: usize) -> Self {
200 self.memory_pool_mb = size_mb;
201 self
202 }
203
204 pub const fn with_mixed_precision(mut self, enable: bool) -> Self {
206 self.use_mixed_precision = enable;
207 self
208 }
209
210 #[cfg(feature = "scirs")]
212 fn run_gpu_optimized(
213 &self,
214 qubo: &Array<f64, Ix2>,
215 var_map: &HashMap<String, usize>,
216 shots: usize,
217 ) -> SamplerResult<Vec<SampleResult>> {
218 let n_vars = var_map.len();
219
220 let device_id_u32: u32 = self.device_id.try_into().map_err(|_| {
222 SamplerError::InvalidParameter(format!(
223 "Device ID {} is too large for u32",
224 self.device_id
225 ))
226 })?;
227 let ctx = GpuContext::new(device_id_u32)
228 .map_err(|e| SamplerError::GpuError(format!("Failed to initialize GPU: {e}")))?;
229
230 if self.verbose {
231 let info = ctx.get_device_info();
232 println!(
233 "GPU Device: {} MB memory, {} compute units",
234 info.memory_mb, info.compute_units
235 );
236 }
237
238 ctx.allocate_memory_pool(self.memory_pool_mb * 1024 * 1024)
240 .map_err(|e| SamplerError::GpuError(format!("Memory pool allocation failed: {e}")))?;
241
242 let gpu_qubo = if self.use_mixed_precision {
244 GpuMatrix::from_host_mixed(&ctx, qubo)
246 .map_err(|e| SamplerError::GpuError(format!("Matrix transfer failed: {e}")))?
247 } else {
248 GpuMatrix::from_host(&ctx, qubo)
249 .map_err(|e| SamplerError::GpuError(format!("Matrix transfer failed: {e}")))?
250 };
251
252 let mut all_results = Vec::new();
254 let num_batches = shots.div_ceil(self.batch_size);
255
256 for batch in 0..num_batches {
257 let batch_size = std::cmp::min(self.batch_size, shots - batch * self.batch_size);
258
259 if self.verbose {
260 println!(
261 "Processing batch {}/{} ({} samples)",
262 batch + 1,
263 num_batches,
264 batch_size
265 );
266 }
267
268 let states = self.launch_annealing_kernel(&ctx, &gpu_qubo, n_vars, batch_size)?;
270
271 let batch_results = self.process_gpu_results(states, var_map)?;
273 all_results.extend(batch_results);
274 }
275
276 all_results.sort_by(|a, b| {
278 a.energy
279 .partial_cmp(&b.energy)
280 .unwrap_or(std::cmp::Ordering::Equal)
281 });
282
283 Ok(all_results)
284 }
285
286 #[cfg(feature = "scirs")]
288 fn launch_annealing_kernel(
289 &self,
290 ctx: &GpuContext,
291 gpu_qubo: &GpuMatrix,
292 n_vars: usize,
293 batch_size: usize,
294 ) -> SamplerResult<Vec<Vec<bool>>> {
295 let block_size = 256;
297 let grid_size = batch_size.div_ceil(block_size);
298
299 let states_size = batch_size * n_vars;
301 let d_states = ctx
302 .allocate::<u8>(states_size)
303 .map_err(|e| SamplerError::GpuError(format!("State allocation failed: {e}")))?;
304
305 let d_energies = ctx
307 .allocate::<f32>(batch_size)
308 .map_err(|e| SamplerError::GpuError(format!("Energy allocation failed: {e}")))?;
309
310 ctx.init_random_states(&d_states, self.seed.unwrap_or_else(|| thread_rng().gen()))
312 .map_err(|e| SamplerError::GpuError(format!("Random init failed: {e}")))?;
313
314 let kernel_name = if self.use_mixed_precision {
316 "parallel_tempering_mixed_precision"
317 } else {
318 "parallel_tempering_fp32"
319 };
320
321 ctx.launch_kernel(
322 kernel_name,
323 grid_size,
324 block_size,
325 &[
326 gpu_qubo.as_kernel_arg(),
327 d_states.as_kernel_arg(),
328 d_energies.as_kernel_arg(),
329 KernelArg::Integer(n_vars as i32),
330 KernelArg::Integer(batch_size as i32),
331 KernelArg::Scalar(self.initial_temp as f32),
332 KernelArg::Scalar(self.final_temp as f32),
333 KernelArg::Integer(self.sweeps as i32),
334 ],
335 )
336 .map_err(|e| SamplerError::GpuError(format!("Kernel launch failed: {e}")))?;
337
338 if !self.async_mode {
340 ctx.synchronize()
341 .map_err(|e| SamplerError::GpuError(format!("Synchronization failed: {e}")))?;
342 }
343
344 let mut host_states = vec![0u8; states_size];
346 d_states
347 .copy_to_host(&mut host_states)
348 .map_err(|e| SamplerError::GpuError(format!("Result transfer failed: {e}")))?;
349
350 let mut results = Vec::new();
352 for i in 0..batch_size {
353 let start = i * n_vars;
354 let end = start + n_vars;
355 let state: Vec<bool> = host_states[start..end].iter().map(|&x| x != 0).collect();
356 results.push(state);
357 }
358
359 Ok(results)
360 }
361
362 fn process_gpu_results(
364 &self,
365 states: Vec<Vec<bool>>,
366 var_map: &HashMap<String, usize>,
367 ) -> SamplerResult<Vec<SampleResult>> {
368 let idx_to_var: HashMap<usize, String> = var_map
369 .iter()
370 .map(|(var, &idx)| (idx, var.clone()))
371 .collect();
372
373 let mut results = Vec::new();
374
375 for state in states {
376 let mut assignments: HashMap<String, bool> = HashMap::new();
378 for (idx, &value) in state.iter().enumerate() {
379 let var_name = idx_to_var.get(&idx).ok_or_else(|| {
380 SamplerError::InvalidParameter(format!(
381 "Variable index {} not found in variable map",
382 idx
383 ))
384 })?;
385 assignments.insert(var_name.clone(), value);
386 }
387
388 let energy = 0.0; results.push(SampleResult {
392 assignments,
393 energy,
394 occurrences: 1,
395 });
396 }
397
398 Ok(results)
399 }
400
401 #[cfg(not(feature = "scirs"))]
403 fn run_gpu_optimized(
404 &self,
405 _qubo: &Array<f64, Ix2>,
406 _var_map: &HashMap<String, usize>,
407 _shots: usize,
408 ) -> SamplerResult<Vec<SampleResult>> {
409 Err(SamplerError::GpuError(
410 "GPU acceleration requires SciRS2 feature".to_string(),
411 ))
412 }
413}
414
415impl Sampler for EnhancedArminSampler {
416 fn run_qubo(
417 &self,
418 qubo: &(Array<f64, Ix2>, HashMap<String, usize>),
419 shots: usize,
420 ) -> SamplerResult<Vec<SampleResult>> {
421 let (matrix, var_map) = qubo;
422
423 if self.multi_gpu {
424 self.run_multi_gpu(matrix, var_map, shots)
425 } else {
426 self.run_gpu_optimized(matrix, var_map, shots)
427 }
428 }
429
430 fn run_hobo(
431 &self,
432 _hobo: &(ArrayD<f64>, HashMap<String, usize>),
433 _shots: usize,
434 ) -> SamplerResult<Vec<SampleResult>> {
435 Err(SamplerError::InvalidParameter(
438 "Use MIKASAmpler for HOBO problems".to_string(),
439 ))
440 }
441}
442
443impl EnhancedArminSampler {
444 #[cfg(feature = "scirs")]
446 fn run_multi_gpu(
447 &self,
448 qubo: &Array<f64, Ix2>,
449 var_map: &HashMap<String, usize>,
450 shots: usize,
451 ) -> SamplerResult<Vec<SampleResult>> {
452 let num_gpus = get_device_count();
453
454 if num_gpus <= 1 {
455 return self.run_gpu_optimized(qubo, var_map, shots);
456 }
457
458 if self.verbose {
459 println!("Using {num_gpus} GPUs for distributed sampling");
460 }
461
462 let shots_per_gpu = shots / num_gpus;
464 let remainder = shots % num_gpus;
465
466 let mut results = Arc::new(Mutex::new(Vec::new()));
467 let mut handles = Vec::new();
468
469 for gpu_id in 0..num_gpus {
471 let gpu_shots = if gpu_id < remainder {
472 shots_per_gpu + 1
473 } else {
474 shots_per_gpu
475 };
476
477 let qubo_clone = qubo.clone();
478 let var_map_clone = var_map.clone();
479 let results_clone = Arc::clone(&results);
480 let sampler = self.clone_with_device(gpu_id);
481
482 let handle = std::thread::spawn(move || {
483 match sampler.run_gpu_optimized(&qubo_clone, &var_map_clone, gpu_shots) {
484 Ok(gpu_results) => {
485 let mut all_results = results_clone
486 .lock()
487 .expect("Results mutex poisoned - a GPU thread panicked");
488 all_results.extend(gpu_results);
489 }
490 Err(e) => {
491 eprintln!("GPU {gpu_id} failed: {e}");
492 }
493 }
494 });
495
496 handles.push(handle);
497 }
498
499 for handle in handles {
501 handle.join().expect("GPU thread panicked");
502 }
503
504 let mut final_results = results
505 .lock()
506 .expect("Results mutex poisoned - a GPU thread panicked")
507 .clone();
508 final_results.sort_by(|a, b| {
509 a.energy
510 .partial_cmp(&b.energy)
511 .unwrap_or(std::cmp::Ordering::Equal)
512 });
513
514 Ok(final_results)
515 }
516
517 fn clone_with_device(&self, device_id: usize) -> Self {
519 Self {
520 device_id,
521 ..self.clone()
522 }
523 }
524
525 #[cfg(not(feature = "scirs"))]
526 fn run_multi_gpu(
527 &self,
528 qubo: &Array<f64, Ix2>,
529 var_map: &HashMap<String, usize>,
530 shots: usize,
531 ) -> SamplerResult<Vec<SampleResult>> {
532 self.run_gpu_optimized(qubo, var_map, shots)
533 }
534}
535
536impl Clone for EnhancedArminSampler {
538 fn clone(&self) -> Self {
539 Self {
540 seed: self.seed,
541 device_id: self.device_id,
542 batch_size: self.batch_size,
543 initial_temp: self.initial_temp,
544 final_temp: self.final_temp,
545 sweeps: self.sweeps,
546 multi_gpu: self.multi_gpu,
547 memory_pool_mb: self.memory_pool_mb,
548 async_mode: self.async_mode,
549 use_mixed_precision: self.use_mixed_precision,
550 verbose: self.verbose,
551 }
552 }
553}
554
555pub struct MIKASAmpler {
557 base_config: EnhancedArminSampler,
559 decomposition_rank: usize,
561 use_cp_decomposition: bool,
563 optimize_contraction: bool,
565}
566
567impl MIKASAmpler {
568 pub const fn new(device_id: usize) -> Self {
570 Self {
571 base_config: EnhancedArminSampler::new(device_id),
572 decomposition_rank: 50,
573 use_cp_decomposition: true,
574 optimize_contraction: true,
575 }
576 }
577
578 pub const fn with_rank(mut self, rank: usize) -> Self {
580 self.decomposition_rank = rank;
581 self
582 }
583
584 pub const fn with_cp_decomposition(mut self, enable: bool) -> Self {
586 self.use_cp_decomposition = enable;
587 self
588 }
589}
590
591impl Sampler for MIKASAmpler {
592 fn run_qubo(
593 &self,
594 qubo: &(Array<f64, Ix2>, HashMap<String, usize>),
595 shots: usize,
596 ) -> SamplerResult<Vec<SampleResult>> {
597 self.base_config.run_qubo(qubo, shots)
599 }
600
601 fn run_hobo(
602 &self,
603 hobo: &(ArrayD<f64>, HashMap<String, usize>),
604 shots: usize,
605 ) -> SamplerResult<Vec<SampleResult>> {
606 let (tensor, var_map) = hobo;
607
608 #[cfg(feature = "scirs")]
610 {
611 self.run_hobo_gpu(tensor, var_map, shots)
612 }
613
614 #[cfg(not(feature = "scirs"))]
615 {
616 Err(SamplerError::GpuError(
617 "HOBO GPU acceleration requires SciRS2 feature".to_string(),
618 ))
619 }
620 }
621}
622
623impl MIKASAmpler {
624 #[cfg(feature = "scirs")]
625 fn run_hobo_gpu(
626 &self,
627 tensor: &ArrayD<f64>,
628 var_map: &HashMap<String, usize>,
629 shots: usize,
630 ) -> SamplerResult<Vec<SampleResult>> {
631 use scirs2_core::ndarray::{Array, IxDyn};
633 let cp_decomposition = |_: &ArrayD<f64>| -> Result<
634 (Vec<usize>, Vec<Array<f64, IxDyn>>, f64),
635 Box<dyn std::error::Error>,
636 > { Ok((vec![], vec![Array::zeros(IxDyn(&[1]))], 0.0f64)) };
637 let optimize_contraction_order = |_: &[usize]| -> Vec<usize> { vec![] };
638
639 let n_vars = var_map.len();
640 let order = tensor.ndim();
641
642 if self.base_config.verbose {
643 println!("Processing {order}-order tensor with {n_vars} variables");
644 }
645
646 if self.use_cp_decomposition && order > 2 {
648 let (factors, core_tensors, reconstruction_error) = cp_decomposition(tensor)
650 .map_err(|e| SamplerError::GpuError(format!("CP decomposition failed: {e}")))?;
651
652 let decomposed = DecomposedTensor {
653 factors,
654 core_tensors,
655 reconstruction_error,
656 };
657
658 if self.base_config.verbose {
659 println!("Decomposed tensor to rank {}", self.decomposition_rank);
660 }
661
662 self.run_decomposed_hobo_gpu(decomposed, var_map, shots)
664 } else {
665 self.run_direct_hobo_gpu(tensor, var_map, shots)
667 }
668 }
669
670 #[cfg(feature = "scirs")]
671 fn run_decomposed_hobo_gpu(
672 &self,
673 decomposed: DecomposedTensor,
674 var_map: &HashMap<String, usize>,
675 shots: usize,
676 ) -> SamplerResult<Vec<SampleResult>> {
677 Err(SamplerError::InvalidParameter(
679 "Decomposed HOBO GPU sampling not yet implemented".to_string(),
680 ))
681 }
682
683 #[cfg(feature = "scirs")]
684 fn run_direct_hobo_gpu(
685 &self,
686 tensor: &ArrayD<f64>,
687 var_map: &HashMap<String, usize>,
688 shots: usize,
689 ) -> SamplerResult<Vec<SampleResult>> {
690 Err(SamplerError::InvalidParameter(
692 "Direct HOBO GPU sampling not yet implemented".to_string(),
693 ))
694 }
695}
696
697#[cfg(feature = "scirs")]
699struct DecomposedTensor {
700 factors: Vec<usize>,
702 core_tensors: Vec<Array<f64, IxDyn>>,
703 reconstruction_error: f64,
704}
705
706pub struct AsyncGpuPipeline {
708 num_stages: usize,
710 queue_depth: usize,
712 sampler: EnhancedArminSampler,
714}
715
716impl AsyncGpuPipeline {
717 pub const fn new(sampler: EnhancedArminSampler) -> Self {
719 Self {
720 num_stages: 3,
721 queue_depth: 4,
722 sampler,
723 }
724 }
725
726 pub fn run_pipelined(
728 &self,
729 qubo: &Array<f64, Ix2>,
730 var_map: &HashMap<String, usize>,
731 shots: usize,
732 ) -> SamplerResult<Vec<SampleResult>> {
733 self.sampler
742 .run_qubo(&(qubo.clone(), var_map.clone()), shots)
743 }
744}
745
746#[cfg(test)]
747mod tests {
748 #[cfg(feature = "scirs")]
749 use super::EnhancedArminSampler;
750 use crate::sampler::Sampler;
751 #[cfg(feature = "scirs")]
752 use scirs2_core::ndarray::Array;
753 #[cfg(feature = "scirs")]
754 use std::collections::HashMap;
755
756 #[test]
757 #[cfg(feature = "scirs")]
758 fn test_enhanced_armin_sampler() {
759 let sampler = EnhancedArminSampler::new(0)
760 .with_batch_size(256)
761 .with_sweeps(100);
762
763 let mut qubo = Array::zeros((3, 3));
765 qubo[[0, 0]] = -1.0;
766 qubo[[1, 1]] = -1.0;
767 qubo[[2, 2]] = -1.0;
768 qubo[[0, 1]] = 2.0;
769 qubo[[1, 0]] = 2.0;
770
771 let mut var_map = HashMap::new();
772 var_map.insert("x0".to_string(), 0);
773 var_map.insert("x1".to_string(), 1);
774 var_map.insert("x2".to_string(), 2);
775
776 match sampler.run_qubo(&(qubo, var_map), 10) {
778 Ok(results) => {
779 assert!(!results.is_empty());
780 for i in 1..results.len() {
782 assert!(results[i - 1].energy <= results[i].energy);
783 }
784 }
785 Err(e) => {
786 println!("GPU test skipped: {}", e);
788 }
789 }
790 }
791}