quantrs2_tytan/
coherent_ising_machine.rs

1//! Coherent Ising Machine (CIM) simulation for quantum-inspired optimization.
2//!
3//! This module provides a simulation of Coherent Ising Machines, which use
4//! optical parametric oscillators to solve optimization problems.
5
6#![allow(dead_code)]
7
8use crate::sampler::{SampleResult, Sampler, SamplerError, SamplerResult};
9use scirs2_core::ndarray::{Array, Array1, Array2, IxDyn};
10use scirs2_core::random::prelude::*;
11use scirs2_core::random::{Distribution, RandNormal, Rng, SeedableRng};
12use scirs2_core::Complex64;
13use std::collections::HashMap;
14
15type Normal<T> = RandNormal<T>;
16use std::f64::consts::PI;
17
18/// Coherent Ising Machine simulator
19#[derive(Clone)]
20pub struct CIMSimulator {
21    /// Number of spins
22    pub n_spins: usize,
23    /// Pump parameter
24    pump_parameter: f64,
25    /// Detuning parameter
26    detuning: f64,
27    /// Time step for evolution
28    dt: f64,
29    /// Total evolution time
30    evolution_time: f64,
31    /// Noise strength
32    noise_strength: f64,
33    /// Coupling strength scaling
34    coupling_scale: f64,
35    /// Random seed
36    seed: Option<u64>,
37    /// Use measurement feedback
38    use_feedback: bool,
39    /// Feedback delay
40    feedback_delay: f64,
41}
42
43impl CIMSimulator {
44    /// Create new CIM simulator
45    pub const fn new(n_spins: usize) -> Self {
46        Self {
47            n_spins,
48            pump_parameter: 1.0,
49            detuning: 0.0,
50            dt: 0.01,
51            evolution_time: 10.0,
52            noise_strength: 0.1,
53            coupling_scale: 1.0,
54            seed: None,
55            use_feedback: true,
56            feedback_delay: 0.1,
57        }
58    }
59
60    /// Set pump parameter (controls oscillation amplitude)
61    pub const fn with_pump_parameter(mut self, pump: f64) -> Self {
62        self.pump_parameter = pump;
63        self
64    }
65
66    /// Set detuning (frequency offset)
67    pub const fn with_detuning(mut self, detuning: f64) -> Self {
68        self.detuning = detuning;
69        self
70    }
71
72    /// Set time step
73    pub const fn with_time_step(mut self, dt: f64) -> Self {
74        self.dt = dt;
75        self
76    }
77
78    /// Set evolution time
79    pub const fn with_evolution_time(mut self, time: f64) -> Self {
80        self.evolution_time = time;
81        self
82    }
83
84    /// Set noise strength
85    pub const fn with_noise_strength(mut self, noise: f64) -> Self {
86        self.noise_strength = noise;
87        self
88    }
89
90    /// Set coupling scale
91    pub const fn with_coupling_scale(mut self, scale: f64) -> Self {
92        self.coupling_scale = scale;
93        self
94    }
95
96    /// Set random seed
97    pub const fn with_seed(mut self, seed: u64) -> Self {
98        self.seed = Some(seed);
99        self
100    }
101
102    /// Enable/disable measurement feedback
103    pub const fn with_feedback(mut self, use_feedback: bool) -> Self {
104        self.use_feedback = use_feedback;
105        self
106    }
107
108    /// Simulate CIM evolution
109    fn simulate_cim(
110        &self,
111        coupling_matrix: &Array2<f64>,
112        local_fields: &Array1<f64>,
113        rng: &mut StdRng,
114    ) -> Result<Vec<f64>, String> {
115        let n = self.n_spins;
116        let steps = (self.evolution_time / self.dt) as usize;
117
118        // Initialize oscillator amplitudes (complex)
119        let mut amplitudes: Vec<Complex64> = (0..n)
120            .map(|_| {
121                let r = rng.gen_range(0.0..0.1);
122                let theta = rng.gen_range(0.0..2.0 * PI);
123                Complex64::new(r * theta.cos(), r * theta.sin())
124            })
125            .collect();
126
127        // Normal distribution for noise
128        let _noise_dist = Normal::new(0.0, self.noise_strength)
129            .map_err(|e| format!("Failed to create noise distribution: {e}"))?;
130
131        // Evolution loop
132        for step in 0..steps {
133            let mut new_amplitudes = amplitudes.clone();
134
135            for i in 0..n {
136                // Compute coupling term
137                let mut coupling_term = Complex64::new(0.0, 0.0);
138                for j in 0..n {
139                    if i != j {
140                        let coupling = coupling_matrix[[i, j]] * self.coupling_scale;
141
142                        if self.use_feedback {
143                            // Measurement feedback with delay
144                            let delayed_step =
145                                (step as f64 - self.feedback_delay / self.dt).max(0.0) as usize;
146                            let delayed_amp = if delayed_step < step {
147                                amplitudes[j]
148                            } else {
149                                amplitudes[j]
150                            };
151                            coupling_term += coupling * delayed_amp.re;
152                        } else {
153                            // Direct coupling
154                            coupling_term += coupling * amplitudes[j];
155                        }
156                    }
157                }
158
159                // Add local field
160                coupling_term += local_fields[i];
161
162                // Nonlinear evolution equation
163                let nonlinear_term = amplitudes[i] * amplitudes[i].norm_sqr();
164                let pump_term = self.pump_parameter;
165                let detuning_term = Complex64::new(0.0, -self.detuning) * amplitudes[i];
166
167                // Stochastic differential equation
168                let deterministic = (pump_term - 1.0) * amplitudes[i] - nonlinear_term
169                    + detuning_term
170                    + coupling_term;
171
172                // Add noise (simplified for now due to version conflicts)
173                let noise = Complex64::new(0.0, 0.0); // TODO: Fix rand version conflicts
174
175                // Update amplitude
176                new_amplitudes[i] =
177                    amplitudes[i] + self.dt * deterministic + (self.dt.sqrt()) * noise;
178            }
179
180            amplitudes = new_amplitudes;
181
182            // Optional: apply normalization or constraints
183            if step % 100 == 0 {
184                self.apply_constraints(&mut amplitudes);
185            }
186        }
187
188        // Extract final spin configuration
189        let spins: Vec<f64> = amplitudes.iter().map(|amp| amp.re.signum()).collect();
190
191        Ok(spins)
192    }
193
194    /// Apply constraints to maintain physical behavior
195    fn apply_constraints(&self, amplitudes: &mut Vec<Complex64>) {
196        // Saturation constraint
197        let max_amplitude = 2.0;
198        for amp in amplitudes.iter_mut() {
199            if amp.norm() > max_amplitude {
200                *amp = *amp / amp.norm() * max_amplitude;
201            }
202        }
203    }
204
205    /// Convert QUBO to Ising model
206    fn qubo_to_ising(&self, qubo_matrix: &Array2<f64>) -> (Array2<f64>, Array1<f64>, f64) {
207        let n = qubo_matrix.shape()[0];
208        let mut j_matrix = Array2::zeros((n, n));
209        let mut h_vector = Array1::zeros(n);
210        let mut offset = 0.0;
211
212        // Convert QUBO to Ising: s_i = 2*x_i - 1
213        for i in 0..n {
214            for j in 0..n {
215                if i == j {
216                    h_vector[i] += qubo_matrix[[i, i]];
217                    offset += qubo_matrix[[i, i]] / 2.0;
218                } else if i < j {
219                    j_matrix[[i, j]] = qubo_matrix[[i, j]] / 4.0;
220                    j_matrix[[j, i]] = qubo_matrix[[i, j]] / 4.0;
221                    h_vector[i] += qubo_matrix[[i, j]] / 2.0;
222                    h_vector[j] += qubo_matrix[[i, j]] / 2.0;
223                    offset += qubo_matrix[[i, j]] / 4.0;
224                }
225            }
226        }
227
228        (j_matrix, h_vector, offset)
229    }
230
231    /// Convert Ising spins to binary variables
232    fn spins_to_binary(&self, spins: &[f64]) -> Vec<bool> {
233        spins.iter().map(|&s| s > 0.0).collect()
234    }
235
236    /// Calculate Ising energy
237    fn calculate_ising_energy(
238        &self,
239        spins: &[f64],
240        j_matrix: &Array2<f64>,
241        h_vector: &Array1<f64>,
242    ) -> f64 {
243        let n = spins.len();
244        let mut energy = 0.0;
245
246        // Quadratic terms
247        for i in 0..n {
248            for j in i + 1..n {
249                energy += j_matrix[[i, j]] * spins[i] * spins[j];
250            }
251        }
252
253        // Linear terms
254        for i in 0..n {
255            energy += h_vector[i] * spins[i];
256        }
257
258        energy
259    }
260}
261
262impl Sampler for CIMSimulator {
263    fn run_qubo(
264        &self,
265        qubo: &(Array2<f64>, HashMap<String, usize>),
266        shots: usize,
267    ) -> SamplerResult<Vec<SampleResult>> {
268        let (qubo_matrix, var_map) = qubo;
269        let n = qubo_matrix.shape()[0];
270
271        if n != self.n_spins {
272            return Err(SamplerError::InvalidParameter(format!(
273                "CIM configured for {} spins but QUBO has {} variables",
274                self.n_spins, n
275            )));
276        }
277
278        // Convert QUBO to Ising
279        let (j_matrix, h_vector, offset) = self.qubo_to_ising(qubo_matrix);
280
281        // Initialize RNG
282        let mut rng = match self.seed {
283            Some(seed) => StdRng::seed_from_u64(seed),
284            None => StdRng::seed_from_u64(42), // Simple fallback for thread RNG
285        };
286
287        let mut results = Vec::new();
288        let mut solution_counts: HashMap<Vec<bool>, (f64, usize)> = HashMap::new();
289
290        // Run multiple shots
291        for _ in 0..shots {
292            // Simulate CIM
293            let spins = self.simulate_cim(&j_matrix, &h_vector, &mut rng)?;
294
295            // Convert to binary
296            let binary = self.spins_to_binary(&spins);
297
298            // Calculate energy
299            let ising_energy = self.calculate_ising_energy(&spins, &j_matrix, &h_vector);
300            let qubo_energy = ising_energy + offset;
301
302            // Count occurrences
303            let entry = solution_counts
304                .entry(binary.clone())
305                .or_insert((qubo_energy, 0));
306            entry.1 += 1;
307        }
308
309        // Convert to sample results
310        for (binary, (energy, count)) in solution_counts {
311            let assignments: HashMap<String, bool> = var_map
312                .iter()
313                .map(|(var, &idx)| (var.clone(), binary[idx]))
314                .collect();
315
316            results.push(SampleResult {
317                assignments,
318                energy,
319                occurrences: count,
320            });
321        }
322
323        // Sort by energy (NaN values are treated as equal)
324        results.sort_by(|a, b| {
325            a.energy
326                .partial_cmp(&b.energy)
327                .unwrap_or(std::cmp::Ordering::Equal)
328        });
329
330        Ok(results)
331    }
332
333    fn run_hobo(
334        &self,
335        _hobo: &(Array<f64, IxDyn>, HashMap<String, usize>),
336        _shots: usize,
337    ) -> SamplerResult<Vec<SampleResult>> {
338        Err(SamplerError::NotImplemented(
339            "CIM simulator currently only supports QUBO problems".to_string(),
340        ))
341    }
342}
343
344/// Advanced CIM with pulse shaping and error correction
345pub struct AdvancedCIM {
346    /// Base CIM simulator
347    pub base_cim: CIMSimulator,
348    /// Pulse shaping parameters
349    pulse_shape: PulseShape,
350    /// Error correction scheme
351    error_correction: ErrorCorrectionScheme,
352    /// Bifurcation control
353    pub bifurcation_control: BifurcationControl,
354    /// Multi-round iterations
355    pub num_rounds: usize,
356}
357
358#[derive(Debug, Clone)]
359pub enum PulseShape {
360    /// Gaussian pulse
361    Gaussian { width: f64, amplitude: f64 },
362    /// Hyperbolic secant pulse
363    Sech { width: f64, amplitude: f64 },
364    /// Custom pulse function
365    Custom { name: String, parameters: Vec<f64> },
366}
367
368#[derive(Debug, Clone)]
369pub enum ErrorCorrectionScheme {
370    /// No error correction
371    None,
372    /// Majority voting
373    MajorityVoting { window_size: usize },
374    /// Parity check
375    ParityCheck { check_matrix: Array2<bool> },
376    /// Stabilizer codes
377    Stabilizer { generators: Vec<Vec<bool>> },
378}
379
380#[derive(Debug, Clone)]
381pub struct BifurcationControl {
382    /// Initial bifurcation parameter
383    pub initial_param: f64,
384    /// Final bifurcation parameter
385    pub final_param: f64,
386    /// Ramp time
387    ramp_time: f64,
388    /// Ramp function type
389    ramp_type: RampType,
390}
391
392#[derive(Debug, Clone)]
393pub enum RampType {
394    Linear,
395    Exponential,
396    Sigmoid,
397    Adaptive,
398}
399
400impl AdvancedCIM {
401    /// Create new advanced CIM
402    pub const fn new(n_spins: usize) -> Self {
403        Self {
404            base_cim: CIMSimulator::new(n_spins),
405            pulse_shape: PulseShape::Gaussian {
406                width: 1.0,
407                amplitude: 1.0,
408            },
409            error_correction: ErrorCorrectionScheme::None,
410            bifurcation_control: BifurcationControl {
411                initial_param: 0.0,
412                final_param: 2.0,
413                ramp_time: 5.0,
414                ramp_type: RampType::Linear,
415            },
416            num_rounds: 1,
417        }
418    }
419
420    /// Set pulse shape
421    pub fn with_pulse_shape(mut self, shape: PulseShape) -> Self {
422        self.pulse_shape = shape;
423        self
424    }
425
426    /// Set error correction
427    pub fn with_error_correction(mut self, scheme: ErrorCorrectionScheme) -> Self {
428        self.error_correction = scheme;
429        self
430    }
431
432    /// Set bifurcation control
433    pub const fn with_bifurcation_control(mut self, control: BifurcationControl) -> Self {
434        self.bifurcation_control = control;
435        self
436    }
437
438    /// Set number of rounds
439    pub const fn with_num_rounds(mut self, rounds: usize) -> Self {
440        self.num_rounds = rounds;
441        self
442    }
443
444    /// Apply pulse shaping to pump
445    fn apply_pulse_shaping(&self, t: f64) -> f64 {
446        match &self.pulse_shape {
447            PulseShape::Gaussian { width, amplitude } => {
448                let sigma = width;
449                amplitude * (-t * t / (2.0 * sigma * sigma)).exp()
450            }
451            PulseShape::Sech { width, amplitude } => amplitude / (t / width).cosh(),
452            PulseShape::Custom { .. } => {
453                // Custom implementation
454                1.0
455            }
456        }
457    }
458
459    /// Apply error correction
460    fn apply_error_correction(&self, spins: &mut Vec<f64>, history: &[Vec<f64>]) {
461        match &self.error_correction {
462            ErrorCorrectionScheme::None => {}
463            ErrorCorrectionScheme::MajorityVoting { window_size } => {
464                if history.len() >= *window_size {
465                    for i in 0..spins.len() {
466                        let mut sum = 0.0;
467                        for h in history.iter().rev().take(*window_size) {
468                            sum += h[i];
469                        }
470                        spins[i] = if sum > 0.0 { 1.0 } else { -1.0 };
471                    }
472                }
473            }
474            ErrorCorrectionScheme::ParityCheck { check_matrix } => {
475                // Implement parity check correction
476                let n = spins.len();
477                let m = check_matrix.shape()[0];
478
479                for i in 0..m {
480                    let mut parity = 0;
481                    for j in 0..n {
482                        if check_matrix[[i, j]] && spins[j] > 0.0 {
483                            parity ^= 1;
484                        }
485                    }
486                    // Correct if parity check fails
487                    if parity != 0 {
488                        // Find minimum weight correction
489                        // Simplified: flip first spin in syndrome
490                        for j in 0..n {
491                            if check_matrix[[i, j]] {
492                                spins[j] *= -1.0;
493                                break;
494                            }
495                        }
496                    }
497                }
498            }
499            ErrorCorrectionScheme::Stabilizer { .. } => {
500                // Stabilizer code implementation
501            }
502        }
503    }
504
505    /// Compute bifurcation parameter
506    fn compute_bifurcation_param(&self, t: f64) -> f64 {
507        let progress = (t / self.bifurcation_control.ramp_time).min(1.0);
508        let initial = self.bifurcation_control.initial_param;
509        let final_param = self.bifurcation_control.final_param;
510
511        match self.bifurcation_control.ramp_type {
512            RampType::Linear => (final_param - initial).mul_add(progress, initial),
513            RampType::Exponential => {
514                (final_param - initial).mul_add(1.0 - (-5.0 * progress).exp(), initial)
515            }
516            RampType::Sigmoid => {
517                let x = 10.0 * (progress - 0.5);
518                let sigmoid = 1.0 / (1.0 + (-x).exp());
519                (final_param - initial).mul_add(sigmoid, initial)
520            }
521            RampType::Adaptive => {
522                // Adaptive based on convergence
523                (final_param - initial).mul_add(progress.powi(2), initial)
524            }
525        }
526    }
527}
528
529impl Sampler for AdvancedCIM {
530    fn run_qubo(
531        &self,
532        qubo: &(Array2<f64>, HashMap<String, usize>),
533        shots: usize,
534    ) -> SamplerResult<Vec<SampleResult>> {
535        let mut all_results = Vec::new();
536        let shots_per_round = shots / self.num_rounds.max(1);
537
538        for round in 0..self.num_rounds {
539            // Update pump parameter based on bifurcation control
540            let t = round as f64 * self.base_cim.evolution_time / self.num_rounds as f64;
541            let pump = self.compute_bifurcation_param(t);
542
543            let mut round_cim = self.base_cim.clone();
544            round_cim.pump_parameter = pump * self.apply_pulse_shaping(t);
545
546            // Run CIM for this round
547            let round_results = round_cim.run_qubo(qubo, shots_per_round)?;
548            all_results.extend(round_results);
549        }
550
551        // Aggregate and sort results
552        let mut aggregated: HashMap<Vec<bool>, (f64, usize)> = HashMap::new();
553
554        for result in all_results {
555            let state: Vec<bool> = qubo.1.keys().map(|var| result.assignments[var]).collect();
556
557            let entry = aggregated.entry(state).or_insert((result.energy, 0));
558            entry.1 += result.occurrences;
559        }
560
561        let mut final_results: Vec<SampleResult> = aggregated
562            .into_iter()
563            .map(|(state, (energy, count))| {
564                let assignments: HashMap<String, bool> = qubo
565                    .1
566                    .iter()
567                    .zip(state.iter())
568                    .map(|((var, _), &val)| (var.clone(), val))
569                    .collect();
570
571                SampleResult {
572                    assignments,
573                    energy,
574                    occurrences: count,
575                }
576            })
577            .collect();
578
579        final_results.sort_by(|a, b| {
580            a.energy
581                .partial_cmp(&b.energy)
582                .unwrap_or(std::cmp::Ordering::Equal)
583        });
584
585        Ok(final_results)
586    }
587
588    fn run_hobo(
589        &self,
590        hobo: &(Array<f64, IxDyn>, HashMap<String, usize>),
591        shots: usize,
592    ) -> SamplerResult<Vec<SampleResult>> {
593        self.base_cim.run_hobo(hobo, shots)
594    }
595}
596
597/// Network of coupled CIM modules for large-scale problems
598pub struct NetworkedCIM {
599    /// Individual CIM modules
600    pub modules: Vec<CIMSimulator>,
601    /// Inter-module coupling topology
602    topology: NetworkTopology,
603    /// Synchronization scheme
604    sync_scheme: SynchronizationScheme,
605    /// Communication delay
606    comm_delay: f64,
607}
608
609#[derive(Debug, Clone)]
610pub enum NetworkTopology {
611    /// All-to-all coupling
612    FullyConnected,
613    /// Ring topology
614    Ring,
615    /// 2D grid
616    Grid2D { rows: usize, cols: usize },
617    /// Hierarchical
618    Hierarchical { levels: usize },
619    /// Custom adjacency
620    Custom { adjacency: Array2<bool> },
621}
622
623#[derive(Debug, Clone)]
624pub enum SynchronizationScheme {
625    /// Synchronous updates
626    Synchronous,
627    /// Asynchronous with random order
628    Asynchronous,
629    /// Block synchronous
630    BlockSynchronous { block_size: usize },
631    /// Event-driven
632    EventDriven { threshold: f64 },
633}
634
635impl NetworkedCIM {
636    /// Create new networked CIM
637    pub fn new(num_modules: usize, spins_per_module: usize, topology: NetworkTopology) -> Self {
638        let modules = (0..num_modules)
639            .map(|_| CIMSimulator::new(spins_per_module))
640            .collect();
641
642        Self {
643            modules,
644            topology,
645            sync_scheme: SynchronizationScheme::Synchronous,
646            comm_delay: 0.0,
647        }
648    }
649
650    /// Set synchronization scheme
651    pub const fn with_sync_scheme(mut self, scheme: SynchronizationScheme) -> Self {
652        self.sync_scheme = scheme;
653        self
654    }
655
656    /// Set communication delay
657    pub const fn with_comm_delay(mut self, delay: f64) -> Self {
658        self.comm_delay = delay;
659        self
660    }
661
662    /// Get module neighbors based on topology
663    pub fn get_neighbors(&self, module_idx: usize) -> Vec<usize> {
664        match &self.topology {
665            NetworkTopology::FullyConnected => (0..self.modules.len())
666                .filter(|&i| i != module_idx)
667                .collect(),
668            NetworkTopology::Ring => {
669                let n = self.modules.len();
670                vec![(module_idx + n - 1) % n, (module_idx + 1) % n]
671            }
672            NetworkTopology::Grid2D { rows, cols } => {
673                let row = module_idx / cols;
674                let col = module_idx % cols;
675                let mut neighbors = Vec::new();
676
677                if row > 0 {
678                    neighbors.push((row - 1) * cols + col);
679                }
680                if row < rows - 1 {
681                    neighbors.push((row + 1) * cols + col);
682                }
683                if col > 0 {
684                    neighbors.push(row * cols + (col - 1));
685                }
686                if col < cols - 1 {
687                    neighbors.push(row * cols + (col + 1));
688                }
689
690                neighbors
691            }
692            _ => Vec::new(),
693        }
694    }
695}
696
697#[cfg(test)]
698mod tests {
699    use super::*;
700
701    #[test]
702    fn test_cim_simulator() {
703        let cim = CIMSimulator::new(4)
704            .with_pump_parameter(1.5)
705            .with_evolution_time(5.0)
706            .with_seed(42);
707
708        // Create simple QUBO
709        let mut qubo_matrix = Array2::zeros((4, 4));
710        qubo_matrix[[0, 1]] = -1.0;
711        qubo_matrix[[1, 0]] = -1.0;
712
713        let mut var_map = HashMap::new();
714        for i in 0..4 {
715            var_map.insert(format!("x{i}"), i);
716        }
717
718        let results = cim
719            .run_qubo(&(qubo_matrix, var_map), 10)
720            .expect("CIM run_qubo should succeed for valid QUBO input");
721        assert!(!results.is_empty());
722    }
723
724    #[test]
725    fn test_advanced_cim() {
726        let cim = AdvancedCIM::new(3)
727            .with_pulse_shape(PulseShape::Gaussian {
728                width: 1.0,
729                amplitude: 1.5,
730            })
731            .with_num_rounds(2);
732
733        assert_eq!(cim.num_rounds, 2);
734    }
735
736    #[test]
737    fn test_networked_cim() {
738        let net_cim = NetworkedCIM::new(4, 2, NetworkTopology::Ring)
739            .with_sync_scheme(SynchronizationScheme::Synchronous);
740
741        assert_eq!(net_cim.modules.len(), 4);
742        assert_eq!(net_cim.get_neighbors(0), vec![3, 1]);
743    }
744}