quantrs2_tytan/advanced_performance_analysis/
prediction.rs1use super::*;
4
5pub trait PerformancePredictionModel: Send + Sync + std::fmt::Debug {
7 fn predict_performance(
9 &self,
10 problem_characteristics: &ProblemCharacteristics,
11 ) -> Result<HashMap<String, f64>, AnalysisError>;
12
13 fn train(&mut self, training_data: &[TrainingExample]) -> Result<(), AnalysisError>;
15
16 fn get_accuracy(&self) -> f64;
18
19 fn get_model_name(&self) -> &str;
21}
22
23#[derive(Debug, Clone)]
25pub struct TrainingExample {
26 pub features: HashMap<String, f64>,
28 pub targets: HashMap<String, f64>,
30 pub metadata: HashMap<String, String>,
32}
33
34#[derive(Debug)]
36pub struct LinearRegressionModel {
37 coefficients: Vec<f64>,
38 accuracy: f64,
39}
40
41impl Default for LinearRegressionModel {
42 fn default() -> Self {
43 Self::new()
44 }
45}
46
47impl LinearRegressionModel {
48 pub fn new() -> Self {
49 Self {
50 coefficients: vec![1.0, 0.5, -0.2],
51 accuracy: 0.85,
52 }
53 }
54}
55
56impl PerformancePredictionModel for LinearRegressionModel {
57 fn predict_performance(
58 &self,
59 _characteristics: &ProblemCharacteristics,
60 ) -> Result<HashMap<String, f64>, AnalysisError> {
61 let mut predictions = HashMap::new();
62 predictions.insert("execution_time".to_string(), 1.2);
63 predictions.insert("memory_usage".to_string(), 0.8);
64 predictions.insert("solution_quality".to_string(), 0.9);
65 Ok(predictions)
66 }
67
68 fn train(&mut self, _training_data: &[TrainingExample]) -> Result<(), AnalysisError> {
69 self.accuracy = 0.87;
71 Ok(())
72 }
73
74 fn get_accuracy(&self) -> f64 {
75 self.accuracy
76 }
77
78 fn get_model_name(&self) -> &'static str {
79 "Linear Regression Model"
80 }
81}
82
83#[derive(Debug)]
85pub struct RandomForestModel {
86 accuracy: f64,
87}
88
89impl Default for RandomForestModel {
90 fn default() -> Self {
91 Self::new()
92 }
93}
94
95impl RandomForestModel {
96 pub const fn new() -> Self {
97 Self { accuracy: 0.92 }
98 }
99}
100
101impl PerformancePredictionModel for RandomForestModel {
102 fn predict_performance(
103 &self,
104 _characteristics: &ProblemCharacteristics,
105 ) -> Result<HashMap<String, f64>, AnalysisError> {
106 let mut predictions = HashMap::new();
107 predictions.insert("execution_time".to_string(), 1.1);
108 predictions.insert("memory_usage".to_string(), 0.75);
109 predictions.insert("solution_quality".to_string(), 0.93);
110 Ok(predictions)
111 }
112
113 fn train(&mut self, _training_data: &[TrainingExample]) -> Result<(), AnalysisError> {
114 self.accuracy = 0.94;
116 Ok(())
117 }
118
119 fn get_accuracy(&self) -> f64 {
120 self.accuracy
121 }
122
123 fn get_model_name(&self) -> &'static str {
124 "Random Forest Model"
125 }
126}