quantrs2_tytan/advanced_performance_analysis/
prediction.rs

1//! Performance prediction models
2
3use super::*;
4
5/// Performance prediction model trait
6pub trait PerformancePredictionModel: Send + Sync + std::fmt::Debug {
7    /// Predict performance metrics
8    fn predict_performance(
9        &self,
10        problem_characteristics: &ProblemCharacteristics,
11    ) -> Result<HashMap<String, f64>, AnalysisError>;
12
13    /// Train model with new data
14    fn train(&mut self, training_data: &[TrainingExample]) -> Result<(), AnalysisError>;
15
16    /// Get model accuracy
17    fn get_accuracy(&self) -> f64;
18
19    /// Get model name
20    fn get_model_name(&self) -> &str;
21}
22
23/// Training example for ML models
24#[derive(Debug, Clone)]
25pub struct TrainingExample {
26    /// Input features
27    pub features: HashMap<String, f64>,
28    /// Target performance metrics
29    pub targets: HashMap<String, f64>,
30    /// Metadata
31    pub metadata: HashMap<String, String>,
32}
33
34/// Linear regression model implementation
35#[derive(Debug)]
36pub struct LinearRegressionModel {
37    coefficients: Vec<f64>,
38    accuracy: f64,
39}
40
41impl Default for LinearRegressionModel {
42    fn default() -> Self {
43        Self::new()
44    }
45}
46
47impl LinearRegressionModel {
48    pub fn new() -> Self {
49        Self {
50            coefficients: vec![1.0, 0.5, -0.2],
51            accuracy: 0.85,
52        }
53    }
54}
55
56impl PerformancePredictionModel for LinearRegressionModel {
57    fn predict_performance(
58        &self,
59        _characteristics: &ProblemCharacteristics,
60    ) -> Result<HashMap<String, f64>, AnalysisError> {
61        let mut predictions = HashMap::new();
62        predictions.insert("execution_time".to_string(), 1.2);
63        predictions.insert("memory_usage".to_string(), 0.8);
64        predictions.insert("solution_quality".to_string(), 0.9);
65        Ok(predictions)
66    }
67
68    fn train(&mut self, _training_data: &[TrainingExample]) -> Result<(), AnalysisError> {
69        // Mock training
70        self.accuracy = 0.87;
71        Ok(())
72    }
73
74    fn get_accuracy(&self) -> f64 {
75        self.accuracy
76    }
77
78    fn get_model_name(&self) -> &'static str {
79        "Linear Regression Model"
80    }
81}
82
83/// Random forest model implementation
84#[derive(Debug)]
85pub struct RandomForestModel {
86    accuracy: f64,
87}
88
89impl Default for RandomForestModel {
90    fn default() -> Self {
91        Self::new()
92    }
93}
94
95impl RandomForestModel {
96    pub const fn new() -> Self {
97        Self { accuracy: 0.92 }
98    }
99}
100
101impl PerformancePredictionModel for RandomForestModel {
102    fn predict_performance(
103        &self,
104        _characteristics: &ProblemCharacteristics,
105    ) -> Result<HashMap<String, f64>, AnalysisError> {
106        let mut predictions = HashMap::new();
107        predictions.insert("execution_time".to_string(), 1.1);
108        predictions.insert("memory_usage".to_string(), 0.75);
109        predictions.insert("solution_quality".to_string(), 0.93);
110        Ok(predictions)
111    }
112
113    fn train(&mut self, _training_data: &[TrainingExample]) -> Result<(), AnalysisError> {
114        // Mock training
115        self.accuracy = 0.94;
116        Ok(())
117    }
118
119    fn get_accuracy(&self) -> f64 {
120        self.accuracy
121    }
122
123    fn get_model_name(&self) -> &'static str {
124        "Random Forest Model"
125    }
126}