Expand description
Multi-Objective QUBO Optimization
This module implements advanced multi-objective optimization algorithms for QUBO problems, allowing users to optimize multiple conflicting objectives simultaneously and explore Pareto frontiers.
§Features
- Pareto frontier computation
- Multiple scalarization methods (weighted sum, epsilon-constraint, Tchebycheff)
- Evolutionary multi-objective algorithms (NSGA-II, MOEA/D)
- Interactive objective exploration
- Trade-off visualization and analysis
§Examples
use quantrs2_tytan::multi_objective_optimization::*;
use std::collections::HashMap;
// Define multiple objectives
let objectives = vec![
Objective::new("cost", ObjectiveDirection::Minimize, 1.0),
Objective::new("quality", ObjectiveDirection::Maximize, 1.0),
];
// Create multi-objective optimizer
let config = MultiObjectiveConfig::default();
let mut optimizer = MultiObjectiveOptimizer::new(objectives, config);Structs§
- Multi
Objective Config - Multi-objective optimization configuration
- Multi
Objective Optimizer - Multi-objective optimizer
- Multi
Objective Result - Result of multi-objective optimization
- Multi
Objective Solution - A solution in objective space
- Objective
- Objective definition
- Optimization
Statistics - Statistics from multi-objective optimization
Enums§
- Objective
Direction - Objective direction
- Scalarization
Method - Scalarization method for multi-objective optimization