quantrs2_tytan/
quantum_ml_integration.rs

1//! Quantum Machine Learning integration for optimization.
2//!
3//! This module provides quantum-inspired and quantum-enhanced machine learning
4//! algorithms for optimization problems.
5
6#![allow(dead_code)]
7
8#[cfg(feature = "dwave")]
9use crate::compile::CompiledModel;
10use scirs2_core::ndarray::{Array1, Array2, Array3};
11use scirs2_core::random::prelude::*;
12use scirs2_core::random::{Distribution, RandNormal};
13use std::f64::consts::PI;
14
15type Normal<T> = RandNormal<T>;
16
17/// Quantum Boltzmann Machine for optimization
18pub struct QuantumBoltzmannMachine {
19    /// Number of visible units
20    n_visible: usize,
21    /// Number of hidden units
22    n_hidden: usize,
23    /// Transverse field strength
24    transverse_field: f64,
25    /// Temperature
26    temperature: f64,
27    /// Learning rate
28    learning_rate: f64,
29    /// Weights between visible and hidden units
30    weights: Array2<f64>,
31    /// Visible bias
32    visible_bias: Array1<f64>,
33    /// Hidden bias
34    hidden_bias: Array1<f64>,
35    /// Use quantum annealing for sampling
36    use_quantum_sampling: bool,
37}
38
39impl QuantumBoltzmannMachine {
40    /// Create new Quantum Boltzmann Machine
41    pub fn new(n_visible: usize, n_hidden: usize) -> Self {
42        use scirs2_core::random::prelude::*;
43        let mut rng = StdRng::seed_from_u64(42);
44
45        // Initialize weights and biases with simple random values
46        let weights = Array2::from_shape_fn((n_visible, n_hidden), |_| rng.gen_range(-0.1..0.1));
47        let visible_bias = Array1::from_shape_fn(n_visible, |_| rng.gen_range(-0.1..0.1));
48        let hidden_bias = Array1::from_shape_fn(n_hidden, |_| rng.gen_range(-0.1..0.1));
49
50        Self {
51            n_visible,
52            n_hidden,
53            transverse_field: 1.0,
54            temperature: 1.0,
55            learning_rate: 0.01,
56            weights,
57            visible_bias,
58            hidden_bias,
59            use_quantum_sampling: true,
60        }
61    }
62
63    /// Set transverse field strength
64    pub const fn with_transverse_field(mut self, field: f64) -> Self {
65        self.transverse_field = field;
66        self
67    }
68
69    /// Set temperature
70    pub const fn with_temperature(mut self, temp: f64) -> Self {
71        self.temperature = temp;
72        self
73    }
74
75    /// Set learning rate
76    pub const fn with_learning_rate(mut self, rate: f64) -> Self {
77        self.learning_rate = rate;
78        self
79    }
80
81    /// Train the QBM on data
82    pub fn train(&mut self, data: &Array2<bool>, epochs: usize) -> Result<TrainingResult, String> {
83        let mut loss_history = Vec::new();
84        let batch_size = data.shape()[0];
85
86        for epoch in 0..epochs {
87            let mut epoch_loss = 0.0;
88
89            // Mini-batch training
90            for batch_idx in 0..batch_size {
91                let visible_view = data.row(batch_idx);
92                let visible: Array1<bool> = visible_view.to_owned();
93
94                // Positive phase: sample hidden given visible
95                let hidden_probs = self.hidden_given_visible(&visible);
96                let hidden_sample = self.sample_units(&hidden_probs);
97
98                // Negative phase: Gibbs sampling
99                let (v_neg, h_neg) = if self.use_quantum_sampling {
100                    self.quantum_gibbs_sampling(&visible)?
101                } else {
102                    self.classical_gibbs_sampling(&visible, 1)
103                };
104
105                // Update weights and biases
106                self.update_parameters(&visible, &hidden_sample, &v_neg, &h_neg);
107
108                // Compute reconstruction error
109                let reconstruction_error = self.compute_reconstruction_error(&visible, &v_neg);
110                epoch_loss += reconstruction_error;
111            }
112
113            loss_history.push(epoch_loss / batch_size as f64);
114
115            // Adaptive learning rate
116            if epoch > 0 && loss_history[epoch] > loss_history[epoch - 1] {
117                self.learning_rate *= 0.95;
118            }
119        }
120
121        let final_loss = *loss_history
122            .last()
123            .ok_or("Training failed: epochs must be > 0")?;
124        let converged = final_loss < 0.01;
125
126        Ok(TrainingResult {
127            final_loss,
128            loss_history,
129            converged,
130        })
131    }
132
133    /// Hidden units given visible
134    fn hidden_given_visible(&self, visible: &Array1<bool>) -> Array1<f64> {
135        let visible_float: Array1<f64> = visible.mapv(|v| if v { 1.0 } else { -1.0 });
136        let activation = self.hidden_bias.clone() + visible_float.dot(&self.weights);
137        activation.mapv(|a| 1.0 / (1.0 + (-a / self.temperature).exp()))
138    }
139
140    /// Visible units given hidden
141    fn visible_given_hidden(&self, hidden: &Array1<bool>) -> Array1<f64> {
142        let hidden_float: Array1<f64> = hidden.mapv(|h| if h { 1.0 } else { -1.0 });
143        let activation = self.visible_bias.clone() + self.weights.dot(&hidden_float);
144        activation.mapv(|a| 1.0 / (1.0 + (-a / self.temperature).exp()))
145    }
146
147    /// Sample units from probabilities
148    fn sample_units(&self, probs: &Array1<f64>) -> Array1<bool> {
149        let mut rng = thread_rng();
150        probs.mapv(|p| rng.gen_bool(p))
151    }
152
153    /// Classical Gibbs sampling
154    fn classical_gibbs_sampling(
155        &self,
156        initial_visible: &Array1<bool>,
157        steps: usize,
158    ) -> (Array1<bool>, Array1<bool>) {
159        let mut visible = initial_visible.clone();
160        let mut hidden = Array1::from_elem(self.n_hidden, false);
161
162        for _ in 0..steps {
163            let hidden_probs = self.hidden_given_visible(&visible);
164            hidden = self.sample_units(&hidden_probs);
165
166            let visible_probs = self.visible_given_hidden(&hidden);
167            visible = self.sample_units(&visible_probs);
168        }
169
170        (visible, hidden)
171    }
172
173    /// Quantum-enhanced Gibbs sampling
174    fn quantum_gibbs_sampling(
175        &self,
176        initial_visible: &Array1<bool>,
177    ) -> Result<(Array1<bool>, Array1<bool>), String> {
178        // Simulate quantum tunneling effects
179        let mut rng = thread_rng();
180        let tunneling_prob = (-2.0 / self.transverse_field).exp();
181
182        let mut visible = initial_visible.clone();
183        let mut hidden = Array1::from_elem(self.n_hidden, false);
184
185        // Quantum evolution
186        for _ in 0..10 {
187            // Classical update
188            let hidden_probs = self.hidden_given_visible(&visible);
189            hidden = self.sample_units(&hidden_probs);
190
191            // Quantum tunneling
192            if rng.gen_bool(tunneling_prob) {
193                // Flip random spins
194                let flip_idx = rng.gen_range(0..self.n_visible);
195                visible[flip_idx] = !visible[flip_idx];
196            }
197
198            let visible_probs = self.visible_given_hidden(&hidden);
199            visible = self.sample_units(&visible_probs);
200
201            // Hidden unit tunneling
202            if rng.gen_bool(tunneling_prob) {
203                let flip_idx = rng.gen_range(0..self.n_hidden);
204                hidden[flip_idx] = !hidden[flip_idx];
205            }
206        }
207
208        Ok((visible, hidden))
209    }
210
211    /// Update parameters using contrastive divergence
212    fn update_parameters(
213        &mut self,
214        v_pos: &Array1<bool>,
215        h_pos: &Array1<bool>,
216        v_neg: &Array1<bool>,
217        h_neg: &Array1<bool>,
218    ) {
219        let v_pos_float: Array1<f64> = v_pos.mapv(|v| if v { 1.0 } else { -1.0 });
220        let h_pos_float: Array1<f64> = h_pos.mapv(|h| if h { 1.0 } else { -1.0 });
221        let v_neg_float: Array1<f64> = v_neg.mapv(|v| if v { 1.0 } else { -1.0 });
222        let h_neg_float: Array1<f64> = h_neg.mapv(|h| if h { 1.0 } else { -1.0 });
223
224        // Update weights
225        for i in 0..self.n_visible {
226            for j in 0..self.n_hidden {
227                let positive = v_pos_float[i] * h_pos_float[j];
228                let negative = v_neg_float[i] * h_neg_float[j];
229                self.weights[[i, j]] += self.learning_rate * (positive - negative);
230            }
231        }
232
233        // Update biases
234        self.visible_bias += &(self.learning_rate * (v_pos_float - v_neg_float));
235        self.hidden_bias += &(self.learning_rate * (h_pos_float - h_neg_float));
236    }
237
238    /// Compute reconstruction error
239    fn compute_reconstruction_error(
240        &self,
241        original: &Array1<bool>,
242        reconstructed: &Array1<bool>,
243    ) -> f64 {
244        original
245            .iter()
246            .zip(reconstructed.iter())
247            .filter(|(&o, &r)| o != r)
248            .count() as f64
249            / original.len() as f64
250    }
251
252    /// Generate samples for optimization
253    pub fn generate_samples(&self, num_samples: usize) -> Vec<Array1<bool>> {
254        let mut samples = Vec::new();
255        let mut rng = thread_rng();
256
257        for _ in 0..num_samples {
258            // Start from random visible state
259            let initial_visible = Array1::from_shape_fn(self.n_visible, |_| rng.gen_bool(0.5));
260
261            let (sample, _) = self.classical_gibbs_sampling(&initial_visible, 100);
262            samples.push(sample);
263        }
264
265        samples
266    }
267}
268
269#[derive(Debug, Clone)]
270pub struct TrainingResult {
271    pub final_loss: f64,
272    pub loss_history: Vec<f64>,
273    pub converged: bool,
274}
275
276/// Quantum Variational Autoencoder for optimization
277pub struct QuantumVAE {
278    /// Input dimension
279    input_dim: usize,
280    /// Latent dimension
281    latent_dim: usize,
282    /// Number of quantum layers
283    n_layers: usize,
284    /// Encoder parameters
285    encoder_params: Array2<f64>,
286    /// Decoder parameters
287    decoder_params: Array2<f64>,
288    /// Use quantum circuit for encoding
289    use_quantum_encoder: bool,
290    /// Noise model
291    noise_strength: f64,
292}
293
294impl QuantumVAE {
295    /// Create new Quantum VAE
296    pub fn new(input_dim: usize, latent_dim: usize, n_layers: usize) -> Self {
297        use scirs2_core::random::prelude::*;
298        let mut rng = thread_rng();
299
300        let encoder_params =
301            Array2::from_shape_fn((n_layers, input_dim), |_| rng.gen_range(-0.1..0.1));
302
303        let decoder_params =
304            Array2::from_shape_fn((n_layers, latent_dim), |_| rng.gen_range(-0.1..0.1));
305
306        Self {
307            input_dim,
308            latent_dim,
309            n_layers,
310            encoder_params,
311            decoder_params,
312            use_quantum_encoder: true,
313            noise_strength: 0.01,
314        }
315    }
316
317    /// Encode input to latent space
318    pub fn encode(&self, input: &Array1<bool>) -> (Array1<f64>, Array1<f64>) {
319        if self.use_quantum_encoder {
320            self.quantum_encode(input)
321        } else {
322            self.classical_encode(input)
323        }
324    }
325
326    /// Quantum encoding
327    fn quantum_encode(&self, input: &Array1<bool>) -> (Array1<f64>, Array1<f64>) {
328        let input_float: Array1<f64> = input.mapv(|x| if x { 1.0 } else { 0.0 });
329        let mut state = input_float;
330
331        // Apply quantum layers
332        for layer in 0..self.n_layers {
333            // Rotation gates
334            for i in 0..self.input_dim {
335                let angle = self.encoder_params[[layer, i]];
336                state[i] = state[i].mul_add(angle.cos(), (1.0 - state[i]) * angle.sin());
337            }
338
339            // Entangling gates (simplified)
340            for i in 0..self.input_dim - 1 {
341                let temp = state[i];
342                state[i] = state[i].mul_add(0.9, state[i + 1] * 0.1);
343                state[i + 1] = state[i + 1].mul_add(0.9, temp * 0.1);
344            }
345        }
346
347        // Extract mean and variance for latent distribution
348        let mean = state
349            .slice(scirs2_core::ndarray::s![..self.latent_dim])
350            .to_owned();
351        let log_var = state
352            .slice(scirs2_core::ndarray::s![
353                self.latent_dim..2 * self.latent_dim.min(self.input_dim)
354            ])
355            .to_owned();
356
357        (mean, log_var)
358    }
359
360    /// Classical encoding
361    fn classical_encode(&self, input: &Array1<bool>) -> (Array1<f64>, Array1<f64>) {
362        let input_float: Array1<f64> = input.mapv(|x| if x { 1.0 } else { 0.0 });
363
364        // Simple linear encoding
365        let encoded = self.encoder_params.dot(&input_float);
366
367        let mean = Array1::from_vec(encoded.iter().take(self.latent_dim).copied().collect());
368        let log_var = Array1::from_vec(
369            encoded
370                .iter()
371                .skip(self.latent_dim)
372                .take(self.latent_dim)
373                .copied()
374                .collect(),
375        );
376
377        (mean, log_var)
378    }
379
380    /// Decode from latent space
381    pub fn decode(&self, latent: &Array1<f64>) -> Array1<f64> {
382        let mut output = latent.clone();
383
384        // Apply decoder layers
385        for layer in 0..self.n_layers {
386            let mut new_output = Array1::zeros(self.input_dim);
387
388            for i in 0..self.latent_dim.min(output.len()) {
389                for j in 0..self.input_dim {
390                    new_output[j] += output[i] * self.decoder_params[[layer, i]].sin();
391                }
392            }
393
394            output = new_output.mapv(|x: f64| 1.0 / (1.0 + (-x).exp()));
395        }
396
397        output
398    }
399
400    /// Reparameterization trick
401    fn reparameterize(&self, mean: &Array1<f64>, log_var: &Array1<f64>) -> Array1<f64> {
402        use scirs2_core::random::prelude::*;
403        let mut rng = thread_rng();
404        let std = log_var.mapv(|x| (x / 2.0).exp());
405        let eps = Array1::from_shape_fn(mean.len(), |_| rng.gen_range(-1.0..1.0));
406
407        mean + eps * std
408    }
409
410    /// Generate new samples
411    pub fn generate(&self, num_samples: usize) -> Vec<Array1<bool>> {
412        use scirs2_core::random::prelude::*;
413        let mut rng = thread_rng();
414        let mut samples = Vec::new();
415
416        for _ in 0..num_samples {
417            // Sample from prior
418            let z = Array1::from_shape_fn(self.latent_dim, |_| rng.gen_range(-1.0..1.0));
419
420            // Decode
421            let decoded = self.decode(&z);
422
423            // Convert to binary
424            let binary = decoded.mapv(|x| x > 0.5);
425            samples.push(binary);
426        }
427
428        samples
429    }
430}
431
432/// Quantum Generative Adversarial Network for optimization
433pub struct QuantumGAN {
434    /// Generator network
435    generator: QuantumGenerator,
436    /// Discriminator network
437    discriminator: QuantumDiscriminator,
438    /// Training configuration
439    config: QGANConfig,
440}
441
442#[derive(Clone)]
443pub struct QuantumGenerator {
444    /// Latent dimension
445    latent_dim: usize,
446    /// Output dimension
447    output_dim: usize,
448    /// Circuit depth
449    depth: usize,
450    /// Parameters
451    params: Array2<f64>,
452}
453
454#[derive(Clone)]
455pub struct QuantumDiscriminator {
456    /// Input dimension
457    input_dim: usize,
458    /// Circuit depth
459    depth: usize,
460    /// Parameters
461    params: Array2<f64>,
462}
463
464#[derive(Debug, Clone)]
465pub struct QGANConfig {
466    /// Learning rate for generator
467    gen_lr: f64,
468    /// Learning rate for discriminator
469    disc_lr: f64,
470    /// Number of discriminator updates per generator update
471    disc_steps: usize,
472    /// Gradient penalty coefficient
473    gradient_penalty: f64,
474    /// Use Wasserstein loss
475    use_wasserstein: bool,
476}
477
478impl QuantumGAN {
479    /// Create new Quantum GAN
480    pub fn new(latent_dim: usize, output_dim: usize, depth: usize) -> Self {
481        let generator = QuantumGenerator::new(latent_dim, output_dim, depth);
482        let discriminator = QuantumDiscriminator::new(output_dim, depth);
483
484        let config = QGANConfig {
485            gen_lr: 0.0002,
486            disc_lr: 0.0002,
487            disc_steps: 5,
488            gradient_penalty: 10.0,
489            use_wasserstein: true,
490        };
491
492        Self {
493            generator,
494            discriminator,
495            config,
496        }
497    }
498
499    /// Train the QGAN
500    pub fn train(
501        &mut self,
502        real_data: &[Array1<bool>],
503        epochs: usize,
504    ) -> Result<QGANTrainingResult, String> {
505        let mut gen_losses = Vec::new();
506        let mut disc_losses = Vec::new();
507        let mut rng = thread_rng();
508
509        for _epoch in 0..epochs {
510            let mut epoch_gen_loss = 0.0;
511            let mut epoch_disc_loss = 0.0;
512
513            // Train discriminator
514            for _ in 0..self.config.disc_steps {
515                // Sample real data
516                let real_idx = rng.gen_range(0..real_data.len());
517                let real_sample = &real_data[real_idx];
518
519                // Generate fake data
520                let fake_sample = self.generator.generate(&mut rng);
521
522                // Update discriminator
523                let disc_loss = self.discriminator.train_step(
524                    real_sample,
525                    &fake_sample,
526                    self.config.disc_lr,
527                    self.config.use_wasserstein,
528                )?;
529
530                epoch_disc_loss += disc_loss;
531            }
532
533            // Train generator
534            let gen_loss = self.train_generator_step(&mut rng)?;
535            epoch_gen_loss += gen_loss;
536
537            gen_losses.push(epoch_gen_loss);
538            disc_losses.push(epoch_disc_loss / self.config.disc_steps as f64);
539        }
540
541        let final_gen_loss = *gen_losses
542            .last()
543            .ok_or("Training failed: epochs must be > 0")?;
544        let final_disc_loss = *disc_losses
545            .last()
546            .ok_or("Training failed: epochs must be > 0")?;
547
548        Ok(QGANTrainingResult {
549            generator_losses: gen_losses,
550            discriminator_losses: disc_losses,
551            final_gen_loss,
552            final_disc_loss,
553        })
554    }
555
556    /// Train generator for one step
557    fn train_generator_step<R: Rng>(&mut self, rng: &mut R) -> Result<f64, String> {
558        // Generate fake sample
559        let fake_sample = self.generator.generate(rng);
560
561        // Get discriminator score
562        let disc_score = self.discriminator.forward(&fake_sample)?;
563
564        // Compute loss (maximize discriminator score for fake samples)
565        let loss = if self.config.use_wasserstein {
566            -disc_score // Wasserstein loss
567        } else {
568            -(disc_score + 1e-8).ln() // BCE loss
569        };
570
571        // Update generator parameters
572        self.generator.update_parameters(loss, self.config.gen_lr);
573
574        Ok(loss)
575    }
576
577    /// Generate optimized samples
578    pub fn generate_optimized(&self, num_samples: usize) -> Vec<Array1<bool>> {
579        let mut rng = thread_rng();
580        let mut samples = Vec::new();
581
582        for _ in 0..num_samples {
583            let sample = self.generator.generate(&mut rng);
584            samples.push(sample);
585        }
586
587        samples
588    }
589}
590
591impl QuantumGenerator {
592    fn new(latent_dim: usize, output_dim: usize, depth: usize) -> Self {
593        let mut rng = thread_rng();
594
595        let params = Array2::from_shape_fn(
596            (depth, latent_dim + output_dim),
597            |_| rng.gen::<f64>() * PI / 2.0 - PI / 4.0, // Sample from [-PI/4, PI/4]
598        );
599
600        Self {
601            latent_dim,
602            output_dim,
603            depth,
604            params,
605        }
606    }
607
608    fn generate<R: Rng>(&self, rng: &mut R) -> Array1<bool> {
609        // Sample latent vector using simple approach
610        let latent = Array1::from_shape_fn(
611            self.latent_dim,
612            |_| rng.gen::<f64>().mul_add(2.0, -1.0), // Sample from [-1, 1]
613        );
614
615        // Initialize quantum state
616        let mut state = Array1::zeros(self.output_dim);
617
618        // Apply quantum circuit
619        for layer in 0..self.depth {
620            // Rotation gates based on latent vector
621            for i in 0..self.output_dim.min(self.latent_dim) {
622                let angle = latent[i] * self.params[[layer, i]];
623                state[i] = angle.sin();
624            }
625
626            // Entangling layer
627            for i in 0..self.output_dim - 1 {
628                let coupling = self.params[[layer, self.latent_dim + i]];
629                let temp = state[i];
630                state[i] = state[i].mul_add(coupling.cos(), state[i + 1] * coupling.sin());
631                state[i + 1] = state[i + 1].mul_add(coupling.cos(), -(temp * coupling.sin()));
632            }
633        }
634
635        // Measure (convert to binary)
636        state.mapv(|x| x > 0.0)
637    }
638
639    fn update_parameters(&mut self, loss: f64, lr: f64) {
640        // Simplified parameter update
641        let gradient_estimate = loss * 0.1;
642        self.params -= lr * gradient_estimate;
643    }
644}
645
646impl QuantumDiscriminator {
647    fn new(input_dim: usize, depth: usize) -> Self {
648        let mut rng = thread_rng();
649        let normal =
650            Normal::new(0.0, PI / 4.0).expect("Normal distribution with std=PI/4 is always valid");
651
652        let params = Array2::from_shape_fn((depth, input_dim), |_| normal.sample(&mut rng));
653
654        Self {
655            input_dim,
656            depth,
657            params,
658        }
659    }
660
661    fn forward(&self, input: &Array1<bool>) -> Result<f64, String> {
662        let input_float: Array1<f64> = input.mapv(|x| if x { 1.0 } else { -1.0 });
663        let mut state = input_float;
664
665        // Apply quantum circuit
666        for layer in 0..self.depth {
667            // Rotation gates
668            for i in 0..self.input_dim {
669                let angle = self.params[[layer, i]];
670                state[i] = state[i].mul_add(angle.cos(), (1.0 - state[i].abs()) * angle.sin());
671            }
672
673            // Pooling layer (reduce dimension)
674            if layer == self.depth - 1 {
675                // Global pooling for final output
676                return state
677                    .mean()
678                    .ok_or_else(|| "Cannot compute mean of empty state".to_string());
679            }
680        }
681
682        Ok(state[0])
683    }
684
685    fn train_step(
686        &mut self,
687        real: &Array1<bool>,
688        fake: &Array1<bool>,
689        lr: f64,
690        wasserstein: bool,
691    ) -> Result<f64, String> {
692        let real_score = self.forward(real)?;
693        let fake_score = self.forward(fake)?;
694
695        let loss = if wasserstein {
696            fake_score - real_score // Wasserstein loss
697        } else {
698            -(real_score + 1e-8).ln() - (1.0 - fake_score + 1e-8).ln() // BCE loss
699        };
700
701        // Update parameters
702        let gradient_estimate = loss * 0.1;
703        self.params -= lr * gradient_estimate;
704
705        Ok(loss)
706    }
707}
708
709#[derive(Debug, Clone)]
710pub struct QGANTrainingResult {
711    pub generator_losses: Vec<f64>,
712    pub discriminator_losses: Vec<f64>,
713    pub final_gen_loss: f64,
714    pub final_disc_loss: f64,
715}
716
717/// Quantum Reinforcement Learning for optimization
718pub struct QuantumRL {
719    /// State dimension
720    state_dim: usize,
721    /// Action dimension
722    action_dim: usize,
723    /// Q-network
724    q_network: QuantumQNetwork,
725    /// Experience replay buffer
726    replay_buffer: Vec<Experience>,
727    /// Exploration rate
728    epsilon: f64,
729    /// Discount factor
730    gamma: f64,
731    /// Learning rate
732    learning_rate: f64,
733}
734
735#[derive(Clone)]
736struct QuantumQNetwork {
737    /// Input dimension
738    input_dim: usize,
739    /// Output dimension
740    output_dim: usize,
741    /// Number of layers
742    n_layers: usize,
743    /// Parameters
744    params: Array3<f64>,
745}
746
747#[derive(Debug, Clone)]
748pub struct Experience {
749    pub state: Array1<f64>,
750    pub action: usize,
751    pub reward: f64,
752    pub next_state: Array1<f64>,
753    pub done: bool,
754}
755
756impl QuantumRL {
757    /// Create new Quantum RL agent
758    pub fn new(state_dim: usize, action_dim: usize) -> Self {
759        let q_network = QuantumQNetwork::new(state_dim, action_dim, 4);
760
761        Self {
762            state_dim,
763            action_dim,
764            q_network,
765            replay_buffer: Vec::new(),
766            epsilon: 1.0,
767            gamma: 0.99,
768            learning_rate: 0.001,
769        }
770    }
771
772    /// Select action using epsilon-greedy policy
773    pub fn select_action(&self, state: &Array1<f64>, rng: &mut StdRng) -> usize {
774        if rng.gen_bool(self.epsilon) {
775            // Explore
776            rng.gen_range(0..self.action_dim)
777        } else {
778            // Exploit
779            let q_values = self.q_network.forward(state);
780            q_values
781                .iter()
782                .enumerate()
783                .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
784                .map(|(idx, _)| idx)
785                .unwrap_or(0)
786        }
787    }
788
789    /// Store experience in replay buffer
790    pub fn store_experience(&mut self, experience: Experience) {
791        self.replay_buffer.push(experience);
792
793        // Limit buffer size
794        if self.replay_buffer.len() > 10000 {
795            self.replay_buffer.remove(0);
796        }
797    }
798
799    /// Train Q-network
800    pub fn train(&mut self, batch_size: usize) -> Result<f64, String> {
801        if self.replay_buffer.len() < batch_size {
802            return Ok(0.0);
803        }
804
805        let mut rng = thread_rng();
806        let mut total_loss = 0.0;
807
808        // Sample batch
809        for _ in 0..batch_size {
810            let idx = rng.gen_range(0..self.replay_buffer.len());
811            let experience = &self.replay_buffer[idx];
812
813            // Compute target
814            let target = if experience.done {
815                experience.reward
816            } else {
817                let next_q_values = self.q_network.forward(&experience.next_state);
818                self.gamma.mul_add(
819                    next_q_values
820                        .iter()
821                        .copied()
822                        .fold(f64::NEG_INFINITY, f64::max),
823                    experience.reward,
824                )
825            };
826
827            // Update Q-network
828            let loss = self.q_network.update(
829                &experience.state,
830                experience.action,
831                target,
832                self.learning_rate,
833            )?;
834
835            total_loss += loss;
836        }
837
838        // Decay epsilon
839        self.epsilon *= 0.995;
840        self.epsilon = self.epsilon.max(0.01);
841
842        Ok(total_loss / batch_size as f64)
843    }
844}
845
846impl QuantumQNetwork {
847    fn new(input_dim: usize, output_dim: usize, n_layers: usize) -> Self {
848        let mut rng = thread_rng();
849        let normal =
850            Normal::new(0.0, 0.1).expect("Normal distribution with std=0.1 is always valid");
851
852        let params = Array3::from_shape_fn(
853            (n_layers, input_dim + output_dim, input_dim + output_dim),
854            |_| normal.sample(&mut rng),
855        );
856
857        Self {
858            input_dim,
859            output_dim,
860            n_layers,
861            params,
862        }
863    }
864
865    fn forward(&self, state: &Array1<f64>) -> Array1<f64> {
866        // Encode state into quantum circuit
867        let mut quantum_state = Array1::zeros(self.input_dim + self.output_dim);
868        quantum_state
869            .slice_mut(scirs2_core::ndarray::s![..self.input_dim])
870            .assign(state);
871
872        // Apply quantum layers
873        for layer in 0..self.n_layers {
874            let mut new_state = Array1::zeros(quantum_state.len());
875
876            // Matrix multiplication (simplified)
877            for i in 0..quantum_state.len() {
878                for j in 0..quantum_state.len() {
879                    new_state[i] += quantum_state[j] * self.params[[layer, i, j]];
880                }
881            }
882
883            // Non-linearity (quantum measurement)
884            quantum_state = new_state.mapv(|x: f64| x.tanh());
885        }
886
887        // Extract Q-values
888        quantum_state
889            .slice(scirs2_core::ndarray::s![self.input_dim..])
890            .to_owned()
891    }
892
893    fn update(
894        &mut self,
895        state: &Array1<f64>,
896        action: usize,
897        target: f64,
898        lr: f64,
899    ) -> Result<f64, String> {
900        let q_values = self.forward(state);
901        let prediction = q_values[action];
902        let loss = (target - prediction).powi(2);
903
904        // Gradient descent (simplified)
905        let gradient = 2.0 * (prediction - target);
906
907        // Update parameters
908        for layer in 0..self.n_layers {
909            for i in 0..self.params.shape()[1] {
910                for j in 0..self.params.shape()[2] {
911                    self.params[[layer, i, j]] -= lr * gradient * 0.01;
912                }
913            }
914        }
915
916        Ok(loss)
917    }
918}
919
920#[cfg(test)]
921mod tests {
922    use super::*;
923
924    #[test]
925    fn test_quantum_boltzmann_machine() {
926        let mut qbm = QuantumBoltzmannMachine::new(4, 2);
927
928        // Create training data
929        let data = Array2::from_shape_fn((10, 4), |(i, j)| (i + j) % 2 == 0);
930
931        let mut result = qbm.train(&data, 10);
932        assert!(result.is_ok());
933
934        let samples = qbm.generate_samples(5);
935        assert_eq!(samples.len(), 5);
936    }
937
938    #[test]
939    fn test_quantum_vae() {
940        let qvae = QuantumVAE::new(8, 2, 3);
941
942        let input = Array1::from_vec(vec![true, false, true, false, true, false, true, false]);
943        let (mean, log_var) = qvae.encode(&input);
944
945        assert_eq!(mean.len(), 2);
946        assert_eq!(log_var.len(), 2);
947
948        let samples = qvae.generate(3);
949        assert_eq!(samples.len(), 3);
950    }
951
952    #[test]
953    fn test_quantum_gan() {
954        let mut qgan = QuantumGAN::new(2, 4, 2);
955
956        // Create fake training data
957        let mut real_data = vec![
958            Array1::from_vec(vec![true, false, true, false]),
959            Array1::from_vec(vec![false, true, false, true]),
960        ];
961
962        let mut result = qgan.train(&real_data, 5);
963        assert!(result.is_ok());
964
965        let samples = qgan.generate_optimized(3);
966        assert_eq!(samples.len(), 3);
967    }
968
969    #[test]
970    fn test_quantum_rl() {
971        let mut qrl = QuantumRL::new(4, 2);
972        let mut rng = StdRng::seed_from_u64(42);
973
974        let mut state = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
975        let action = qrl.select_action(&state, &mut rng);
976        assert!(action < 2);
977
978        let experience = Experience {
979            state: state.clone(),
980            action,
981            reward: 1.0,
982            next_state: Array1::from_vec(vec![0.2, 0.3, 0.4, 0.5]),
983            done: false,
984        };
985
986        qrl.store_experience(experience);
987        assert_eq!(qrl.replay_buffer.len(), 1);
988    }
989}