1#![allow(dead_code)]
8
9use crate::sampler::{SampleResult, Sampler, SamplerError, SamplerResult};
10use scirs2_core::ndarray::{Array1, Array2, ArrayD};
11use scirs2_core::random::prelude::*;
12use std::collections::HashMap;
13
14pub struct TensorNetworkSampler {
16 pub config: TensorNetworkConfig,
18 pub tensor_network: TensorNetwork,
20 pub optimization: TensorOptimization,
22 pub compression: TensorCompression,
24 pub metrics: TensorNetworkMetrics,
26}
27
28#[derive(Debug, Clone)]
30pub struct TensorNetworkConfig {
31 pub network_type: TensorNetworkType,
33 pub max_bond_dimension: usize,
35 pub compression_tolerance: f64,
37 pub num_sweeps: usize,
39 pub convergence_tolerance: f64,
41 pub use_gpu: bool,
43 pub parallel_config: ParallelConfig,
45 pub memory_config: MemoryConfig,
47}
48
49#[derive(Debug, Clone, PartialEq, Eq)]
51pub enum TensorNetworkType {
52 MPS { bond_dimension: usize },
54 PEPS {
56 bond_dimension: usize,
57 lattice_shape: (usize, usize),
58 },
59 MERA {
61 layers: usize,
62 branching_factor: usize,
63 },
64 TTN { tree_structure: TreeStructure },
66 IMps { unit_cell_size: usize },
68 IPeps { unit_cell_shape: (usize, usize) },
70 BranchingMERA {
72 layers: usize,
73 branching_tree: BranchingTree,
74 },
75}
76
77#[derive(Debug, Clone, PartialEq, Eq)]
79pub struct TreeStructure {
80 pub nodes: Vec<TreeNode>,
82 pub edges: Vec<(usize, usize)>,
84 pub root: usize,
86 pub depth: usize,
88}
89
90#[derive(Debug, Clone, PartialEq, Eq)]
92pub struct TreeNode {
93 pub id: usize,
95 pub physical_indices: Vec<usize>,
97 pub virtual_indices: Vec<usize>,
99 pub tensor_shape: Vec<usize>,
101}
102
103#[derive(Debug, Clone, PartialEq, Eq)]
105pub struct BranchingTree {
106 pub branching_factors: Vec<usize>,
108 pub isometry_placements: Vec<Vec<usize>>,
110 pub disentangler_placements: Vec<Vec<usize>>,
112}
113
114#[derive(Debug, Clone)]
116pub struct ParallelConfig {
117 pub num_threads: usize,
119 pub distributed: bool,
121 pub chunk_size: usize,
123 pub load_balancing: LoadBalancingStrategy,
125}
126
127#[derive(Debug, Clone, PartialEq, Eq)]
129pub enum LoadBalancingStrategy {
130 Static,
132 Dynamic,
134 WorkStealing,
136 Adaptive,
138}
139
140#[derive(Debug, Clone)]
142pub struct MemoryConfig {
143 pub max_memory_gb: f64,
145 pub memory_mapping: bool,
147 pub gc_frequency: usize,
149 pub cache_optimization: CacheOptimization,
151}
152
153#[derive(Debug, Clone, PartialEq, Eq)]
155pub enum CacheOptimization {
156 None,
158 Spatial,
160 Temporal,
162 Combined,
164}
165
166#[derive(Debug)]
168pub struct TensorNetwork {
169 pub tensors: Vec<Tensor>,
171 pub bond_dimensions: HashMap<(usize, usize), usize>,
173 pub topology: NetworkTopology,
175 pub symmetries: Vec<Box<dyn TensorSymmetry>>,
177 pub canonical_form: CanonicalForm,
179}
180
181#[derive(Debug, Clone)]
183pub struct Tensor {
184 pub id: usize,
186 pub data: ArrayD<f64>,
188 pub indices: Vec<IndexLabel>,
190 pub symmetries: Vec<SymmetryAction>,
192 pub compression_info: CompressionInfo,
194}
195
196#[derive(Debug, Clone, PartialEq, Eq)]
198pub struct IndexLabel {
199 pub name: String,
201 pub index_type: IndexType,
203 pub dimension: usize,
205 pub quantum_numbers: Vec<i32>,
207}
208
209#[derive(Debug, Clone, PartialEq, Eq)]
211pub enum IndexType {
212 Physical,
214 Virtual,
216 Auxiliary,
218 Time,
220}
221
222#[derive(Debug, Clone)]
224pub struct SymmetryAction {
225 pub symmetry_type: SymmetryType,
227 pub action_matrix: Array2<f64>,
229 pub quantum_numbers: Vec<i32>,
231}
232
233#[derive(Debug, Clone, PartialEq, Eq)]
235pub enum SymmetryType {
236 U1,
238 Z2,
240 SU2,
242 Translation,
244 Reflection,
246 Custom { name: String },
248}
249
250#[derive(Debug, Clone)]
252pub struct CompressionInfo {
253 pub original_dimension: usize,
255 pub compressed_dimension: usize,
257 pub compression_ratio: f64,
259 pub truncation_error: f64,
261 pub method: CompressionMethod,
263}
264
265#[derive(Debug, Clone, PartialEq, Eq)]
267pub enum CompressionMethod {
268 SVD,
270 QR,
272 RandomizedSVD,
274 TensorTrain,
276 Tucker,
278 CP,
280}
281
282#[derive(Debug, Clone)]
284pub struct NetworkTopology {
285 pub adjacency: Array2<bool>,
287 pub topology_type: TopologyType,
289 pub connectivity: ConnectivityGraph,
291 pub boundary_conditions: BoundaryConditions,
293}
294
295#[derive(Debug, Clone, PartialEq, Eq)]
297pub enum TopologyType {
298 Chain,
300 Ladder,
302 SquareLattice,
304 TriangularLattice,
306 HexagonalLattice,
308 Tree,
310 CompleteGraph,
312 Custom,
314}
315
316#[derive(Debug, Clone)]
318pub struct ConnectivityGraph {
319 pub nodes: Vec<GraphNode>,
321 pub edges: Vec<GraphEdge>,
323 pub coordination_numbers: Array1<usize>,
325 pub diameter: usize,
327}
328
329#[derive(Debug, Clone)]
331pub struct GraphNode {
332 pub id: usize,
334 pub coordinates: Vec<f64>,
336 pub node_type: NodeType,
338 pub tensor_id: usize,
340}
341
342#[derive(Debug, Clone, PartialEq, Eq)]
344pub enum NodeType {
345 Physical,
347 Virtual,
349 Auxiliary,
351}
352
353#[derive(Debug, Clone)]
355pub struct GraphEdge {
356 pub id: usize,
358 pub nodes: (usize, usize),
360 pub weight: f64,
362 pub bond_dimension: usize,
364}
365
366#[derive(Debug, Clone, PartialEq)]
368pub enum BoundaryConditions {
369 Open,
371 Periodic,
373 Mixed { open_directions: Vec<usize> },
375 Twisted { twist_angles: Vec<f64> },
377}
378
379pub trait TensorSymmetry: Send + Sync + std::fmt::Debug {
381 fn apply_symmetry(&self, tensor: &Tensor) -> Result<Tensor, TensorNetworkError>;
383
384 fn check_symmetry(&self, tensor: &Tensor) -> bool;
386
387 fn get_quantum_numbers(&self) -> Vec<i32>;
389
390 fn get_symmetry_name(&self) -> &str;
392}
393
394#[derive(Debug, Clone, PartialEq, Eq)]
396pub enum CanonicalForm {
397 LeftCanonical,
399 RightCanonical,
401 MixedCanonical { orthogonality_center: usize },
403 NotCanonical,
405}
406
407#[derive(Debug)]
409pub struct TensorOptimization {
410 pub config: OptimizationConfig,
412 pub algorithms: Vec<Box<dyn TensorOptimizationAlgorithm>>,
414 pub convergence_monitors: Vec<Box<dyn ConvergenceMonitor>>,
416 pub performance_trackers: Vec<Box<dyn PerformanceTracker>>,
418}
419
420#[derive(Debug, Clone)]
422pub struct OptimizationConfig {
423 pub algorithm: OptimizationAlgorithm,
425 pub max_iterations: usize,
427 pub tolerance: f64,
429 pub learning_rate: f64,
431 pub regularization: RegularizationConfig,
433 pub line_search: LineSearchConfig,
435}
436
437#[derive(Debug, Clone, PartialEq, Eq)]
439pub enum OptimizationAlgorithm {
440 DMRG,
442 TEBD,
444 VMPS,
446 ALS,
448 GradientDescent,
450 ConjugateGradient,
452 LBFGS,
454 TrustRegion,
456}
457
458#[derive(Debug, Clone)]
460pub struct RegularizationConfig {
461 pub l1_strength: f64,
463 pub l2_strength: f64,
465 pub bond_dimension_penalty: f64,
467 pub entropy_regularization: f64,
469}
470
471#[derive(Debug, Clone)]
473pub struct LineSearchConfig {
474 pub method: LineSearchMethod,
476 pub max_step_size: f64,
478 pub backtracking_params: (f64, f64),
480 pub wolfe_conditions: bool,
482}
483
484#[derive(Debug, Clone, PartialEq, Eq)]
486pub enum LineSearchMethod {
487 Backtracking,
489 Wolfe,
491 Exact,
493 None,
495}
496
497pub trait TensorOptimizationAlgorithm: Send + Sync + std::fmt::Debug {
499 fn optimize(
501 &self,
502 network: &mut TensorNetwork,
503 target: &Tensor,
504 ) -> Result<OptimizationResult, TensorNetworkError>;
505
506 fn get_algorithm_name(&self) -> &str;
508
509 fn get_parameters(&self) -> HashMap<String, f64>;
511}
512
513#[derive(Debug, Clone)]
515pub struct OptimizationResult {
516 pub final_energy: f64,
518 pub iterations: usize,
520 pub converged: bool,
522 pub gradient_norm: f64,
524 pub optimization_time: f64,
526 pub memory_usage: f64,
528}
529
530pub trait ConvergenceMonitor: Send + Sync + std::fmt::Debug {
532 fn check_convergence(&self, iteration: usize, energy: f64, gradient_norm: f64) -> bool;
534
535 fn get_monitor_name(&self) -> &str;
537}
538
539pub trait PerformanceTracker: Send + Sync + std::fmt::Debug {
541 fn track_performance(&self, iteration: usize, metrics: &TensorNetworkMetrics);
543
544 fn get_tracker_name(&self) -> &str;
546}
547
548#[derive(Debug)]
550pub struct TensorCompression {
551 pub config: CompressionConfig,
553 pub methods: Vec<Box<dyn CompressionAlgorithm>>,
555 pub quality_assessors: Vec<Box<dyn CompressionQualityAssessor>>,
557}
558
559#[derive(Debug, Clone)]
561pub struct CompressionConfig {
562 pub target_compression_ratio: f64,
564 pub max_error: f64,
566 pub method: CompressionMethod,
568 pub adaptive_compression: bool,
570 pub quality_control: QualityControlConfig,
572}
573
574#[derive(Debug, Clone)]
576pub struct QualityControlConfig {
577 pub error_tolerance: f64,
579 pub quality_metrics: Vec<QualityMetric>,
581 pub validation_frequency: usize,
583 pub recovery_strategies: Vec<RecoveryStrategy>,
585}
586
587#[derive(Debug, Clone, PartialEq, Eq)]
589pub enum QualityMetric {
590 RelativeError,
592 SpectralNormError,
594 FrobeniusNormError,
596 InformationLoss,
598 EntanglementPreservation,
600}
601
602#[derive(Debug, Clone, PartialEq, Eq)]
604pub enum RecoveryStrategy {
605 IncreaseBondDimension,
607 SwitchMethod,
609 AdaptiveRefinement,
611 Rollback,
613}
614
615pub trait CompressionAlgorithm: Send + Sync + std::fmt::Debug {
617 fn compress(
619 &self,
620 tensor: &Tensor,
621 target_dimension: usize,
622 ) -> Result<Tensor, TensorNetworkError>;
623
624 fn get_method_name(&self) -> &str;
626
627 fn estimate_quality(&self, original: &Tensor, compressed: &Tensor) -> f64;
629}
630
631pub trait CompressionQualityAssessor: Send + Sync + std::fmt::Debug {
633 fn assess_quality(&self, original: &Tensor, compressed: &Tensor) -> QualityAssessment;
635
636 fn get_assessor_name(&self) -> &str;
638}
639
640#[derive(Debug, Clone)]
642pub struct QualityAssessment {
643 pub overall_score: f64,
645 pub metric_scores: HashMap<QualityMetric, f64>,
647 pub rating: QualityRating,
649 pub recommendations: Vec<String>,
651}
652
653#[derive(Debug, Clone, PartialEq, Eq)]
655pub enum QualityRating {
656 Excellent,
658 Good,
660 Fair,
662 Poor,
664 Unacceptable,
666}
667
668#[derive(Debug, Clone)]
670pub struct TensorNetworkMetrics {
671 pub compression_efficiency: f64,
673 pub convergence_rate: f64,
675 pub memory_efficiency: f64,
677 pub computational_speed: f64,
679 pub approximation_accuracy: f64,
681 pub entanglement_measures: EntanglementMeasures,
683 pub overall_performance: f64,
685}
686
687#[derive(Debug, Clone)]
689pub struct EntanglementMeasures {
690 pub entanglement_entropy: Array1<f64>,
692 pub mutual_information: Array2<f64>,
694 pub entanglement_spectrum: Vec<Array1<f64>>,
696 pub topological_entropy: f64,
698}
699
700#[derive(Debug, Clone)]
702pub enum TensorNetworkError {
703 InvalidDimensions(String),
705 CompressionFailed(String),
707 OptimizationFailed(String),
709 MemoryAllocationFailed(String),
711 SymmetryViolation(String),
713 ConvergenceFailed(String),
715 NumericalError(String),
717}
718
719impl std::fmt::Display for TensorNetworkError {
720 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
721 match self {
722 Self::InvalidDimensions(msg) => write!(f, "Invalid dimensions: {msg}"),
723 Self::CompressionFailed(msg) => write!(f, "Compression failed: {msg}"),
724 Self::OptimizationFailed(msg) => {
725 write!(f, "Optimization failed: {msg}")
726 }
727 Self::MemoryAllocationFailed(msg) => {
728 write!(f, "Memory allocation failed: {msg}")
729 }
730 Self::SymmetryViolation(msg) => write!(f, "Symmetry violation: {msg}"),
731 Self::ConvergenceFailed(msg) => write!(f, "Convergence failed: {msg}"),
732 Self::NumericalError(msg) => write!(f, "Numerical error: {msg}"),
733 }
734 }
735}
736
737impl std::error::Error for TensorNetworkError {}
738
739impl TensorNetworkSampler {
740 pub fn new(config: TensorNetworkConfig) -> Self {
742 Self {
743 tensor_network: TensorNetwork::new(&config),
744 optimization: TensorOptimization::new(),
745 compression: TensorCompression::new(),
746 metrics: TensorNetworkMetrics::default(),
747 config,
748 }
749 }
750
751 pub fn sample(
753 &mut self,
754 hamiltonian: &ArrayD<f64>,
755 num_samples: usize,
756 ) -> Result<Vec<SampleResult>, TensorNetworkError> {
757 println!("Starting tensor network sampling with {num_samples} samples");
758
759 self.initialize_from_hamiltonian(hamiltonian)?;
761
762 let optimization_result = self.optimize_network()?;
764
765 self.compress_network()?;
767
768 let samples = self.generate_samples(num_samples)?;
770
771 self.update_metrics(&optimization_result);
773
774 println!("Tensor network sampling completed");
775 println!(
776 "Compression efficiency: {:.4}",
777 self.metrics.compression_efficiency
778 );
779 println!(
780 "Approximation accuracy: {:.4}",
781 self.metrics.approximation_accuracy
782 );
783
784 Ok(samples)
785 }
786
787 fn initialize_from_hamiltonian(
789 &mut self,
790 hamiltonian: &ArrayD<f64>,
791 ) -> Result<(), TensorNetworkError> {
792 match &self.config.network_type {
793 TensorNetworkType::MPS { bond_dimension } => {
794 self.initialize_mps(hamiltonian, *bond_dimension)?;
795 }
796 TensorNetworkType::PEPS {
797 bond_dimension,
798 lattice_shape,
799 } => {
800 self.initialize_peps(hamiltonian, *bond_dimension, *lattice_shape)?;
801 }
802 TensorNetworkType::MERA {
803 layers,
804 branching_factor,
805 } => {
806 self.initialize_mera(hamiltonian, *layers, *branching_factor)?;
807 }
808 _ => {
809 return Err(TensorNetworkError::InvalidDimensions(
810 "Unsupported network type".to_string(),
811 ));
812 }
813 }
814
815 Ok(())
816 }
817
818 fn initialize_mps(
820 &mut self,
821 hamiltonian: &ArrayD<f64>,
822 bond_dimension: usize,
823 ) -> Result<(), TensorNetworkError> {
824 let num_sites = hamiltonian.shape()[0];
825 let mut tensors = Vec::new();
826
827 for i in 0..num_sites {
829 let left_dim = if i == 0 {
830 1
831 } else {
832 bond_dimension.min(2_usize.pow(i as u32))
833 };
834 let right_dim = if i == num_sites - 1 {
835 1
836 } else {
837 bond_dimension.min(2_usize.pow((num_sites - i - 1) as u32))
838 };
839 let physical_dim = 2; let shape = vec![left_dim, physical_dim, right_dim];
842 let mut rng = thread_rng();
843 let data = ArrayD::from_shape_fn(shape.clone(), |_| rng.gen_range(-0.1..0.1));
844
845 let tensor = Tensor {
846 id: i,
847 data,
848 indices: vec![
849 IndexLabel {
850 name: format!("left_{i}"),
851 index_type: IndexType::Virtual,
852 dimension: left_dim,
853 quantum_numbers: vec![],
854 },
855 IndexLabel {
856 name: format!("phys_{i}"),
857 index_type: IndexType::Physical,
858 dimension: physical_dim,
859 quantum_numbers: vec![],
860 },
861 IndexLabel {
862 name: format!("right_{i}"),
863 index_type: IndexType::Virtual,
864 dimension: right_dim,
865 quantum_numbers: vec![],
866 },
867 ],
868 symmetries: vec![],
869 compression_info: CompressionInfo {
870 original_dimension: bond_dimension,
871 compressed_dimension: bond_dimension,
872 compression_ratio: 1.0,
873 truncation_error: 0.0,
874 method: CompressionMethod::SVD,
875 },
876 };
877
878 tensors.push(tensor);
879 }
880
881 self.tensor_network.tensors = tensors;
882 self.tensor_network.canonical_form = CanonicalForm::NotCanonical;
883
884 Ok(())
885 }
886
887 fn initialize_peps(
889 &mut self,
890 _hamiltonian: &ArrayD<f64>,
891 bond_dimension: usize,
892 lattice_shape: (usize, usize),
893 ) -> Result<(), TensorNetworkError> {
894 let (rows, cols) = lattice_shape;
895 let mut tensors = Vec::new();
896
897 for i in 0..rows {
899 for j in 0..cols {
900 let tensor_id = i * cols + j;
901 let physical_dim = 2; let up_dim = if i == 0 { 1 } else { bond_dimension };
905 let down_dim = if i == rows - 1 { 1 } else { bond_dimension };
906 let left_dim = if j == 0 { 1 } else { bond_dimension };
907 let right_dim = if j == cols - 1 { 1 } else { bond_dimension };
908
909 let shape = vec![up_dim, down_dim, left_dim, right_dim, physical_dim];
910 let mut rng = thread_rng();
911 let data = ArrayD::from_shape_fn(shape.clone(), |_| rng.gen_range(-0.1..0.1));
912
913 let tensor = Tensor {
914 id: tensor_id,
915 data,
916 indices: vec![
917 IndexLabel {
918 name: format!("up_{i}_{j}"),
919 index_type: IndexType::Virtual,
920 dimension: up_dim,
921 quantum_numbers: vec![],
922 },
923 IndexLabel {
924 name: format!("down_{i}_{j}"),
925 index_type: IndexType::Virtual,
926 dimension: down_dim,
927 quantum_numbers: vec![],
928 },
929 IndexLabel {
930 name: format!("left_{i}_{j}"),
931 index_type: IndexType::Virtual,
932 dimension: left_dim,
933 quantum_numbers: vec![],
934 },
935 IndexLabel {
936 name: format!("right_{i}_{j}"),
937 index_type: IndexType::Virtual,
938 dimension: right_dim,
939 quantum_numbers: vec![],
940 },
941 IndexLabel {
942 name: format!("phys_{i}_{j}"),
943 index_type: IndexType::Physical,
944 dimension: physical_dim,
945 quantum_numbers: vec![],
946 },
947 ],
948 symmetries: vec![],
949 compression_info: CompressionInfo {
950 original_dimension: bond_dimension,
951 compressed_dimension: bond_dimension,
952 compression_ratio: 1.0,
953 truncation_error: 0.0,
954 method: CompressionMethod::SVD,
955 },
956 };
957
958 tensors.push(tensor);
959 }
960 }
961
962 self.tensor_network.tensors = tensors;
963 self.tensor_network.canonical_form = CanonicalForm::NotCanonical;
964
965 Ok(())
966 }
967
968 fn initialize_mera(
970 &mut self,
971 hamiltonian: &ArrayD<f64>,
972 layers: usize,
973 branching_factor: usize,
974 ) -> Result<(), TensorNetworkError> {
975 let num_sites = hamiltonian.shape()[0];
976 let mut tensors = Vec::new();
977
978 let mut current_sites = num_sites;
980
981 for layer in 0..layers {
982 for i in (0..current_sites).step_by(2) {
984 let tensor_id = tensors.len();
985 let shape = vec![2, 2, 2, 2]; let mut rng = thread_rng();
987 let data = ArrayD::from_shape_fn(shape.clone(), |_| rng.gen_range(-0.1..0.1));
988
989 let tensor = Tensor {
990 id: tensor_id,
991 data,
992 indices: vec![
993 IndexLabel {
994 name: format!("dis_in1_{layer}_{i}"),
995 index_type: IndexType::Virtual,
996 dimension: 2,
997 quantum_numbers: vec![],
998 },
999 IndexLabel {
1000 name: format!("dis_in2_{layer}_{i}"),
1001 index_type: IndexType::Virtual,
1002 dimension: 2,
1003 quantum_numbers: vec![],
1004 },
1005 IndexLabel {
1006 name: format!("dis_out1_{layer}_{i}"),
1007 index_type: IndexType::Virtual,
1008 dimension: 2,
1009 quantum_numbers: vec![],
1010 },
1011 IndexLabel {
1012 name: format!("dis_out2_{layer}_{i}"),
1013 index_type: IndexType::Virtual,
1014 dimension: 2,
1015 quantum_numbers: vec![],
1016 },
1017 ],
1018 symmetries: vec![],
1019 compression_info: CompressionInfo {
1020 original_dimension: 2,
1021 compressed_dimension: 2,
1022 compression_ratio: 1.0,
1023 truncation_error: 0.0,
1024 method: CompressionMethod::SVD,
1025 },
1026 };
1027
1028 tensors.push(tensor);
1029 }
1030
1031 current_sites /= branching_factor;
1033 for i in 0..current_sites {
1034 let tensor_id = tensors.len();
1035 let shape = vec![2, 2, 2]; let mut rng = thread_rng();
1037 let data = ArrayD::from_shape_fn(shape.clone(), |_| rng.gen_range(-0.1..0.1));
1038
1039 let tensor = Tensor {
1040 id: tensor_id,
1041 data,
1042 indices: vec![
1043 IndexLabel {
1044 name: format!("iso_in1_{layer}_{i}"),
1045 index_type: IndexType::Virtual,
1046 dimension: 2,
1047 quantum_numbers: vec![],
1048 },
1049 IndexLabel {
1050 name: format!("iso_in2_{layer}_{i}"),
1051 index_type: IndexType::Virtual,
1052 dimension: 2,
1053 quantum_numbers: vec![],
1054 },
1055 IndexLabel {
1056 name: format!("iso_out_{layer}_{i}"),
1057 index_type: IndexType::Virtual,
1058 dimension: 2,
1059 quantum_numbers: vec![],
1060 },
1061 ],
1062 symmetries: vec![],
1063 compression_info: CompressionInfo {
1064 original_dimension: 2,
1065 compressed_dimension: 2,
1066 compression_ratio: 1.0,
1067 truncation_error: 0.0,
1068 method: CompressionMethod::SVD,
1069 },
1070 };
1071
1072 tensors.push(tensor);
1073 }
1074 }
1075
1076 self.tensor_network.tensors = tensors;
1077 self.tensor_network.canonical_form = CanonicalForm::NotCanonical;
1078
1079 Ok(())
1080 }
1081
1082 fn optimize_network(&mut self) -> Result<OptimizationResult, TensorNetworkError> {
1084 println!("Optimizing tensor network...");
1085
1086 let mut energy = f64::INFINITY;
1087 let mut converged = false;
1088 let start_time = std::time::Instant::now();
1089
1090 for iteration in 0..self.config.num_sweeps {
1091 let old_energy = energy;
1092
1093 energy = self.perform_optimization_sweep()?;
1095
1096 if (old_energy - energy).abs() < self.config.convergence_tolerance {
1098 converged = true;
1099 println!("Optimization converged at iteration {iteration}");
1100 break;
1101 }
1102
1103 if iteration % 10 == 0 {
1104 println!("Iteration {iteration}: Energy = {energy:.8}");
1105 }
1106 }
1107
1108 let optimization_time = start_time.elapsed().as_secs_f64();
1109
1110 Ok(OptimizationResult {
1111 final_energy: energy,
1112 iterations: self.config.num_sweeps,
1113 converged,
1114 gradient_norm: 0.01, optimization_time,
1116 memory_usage: self.estimate_memory_usage(),
1117 })
1118 }
1119
1120 fn perform_optimization_sweep(&mut self) -> Result<f64, TensorNetworkError> {
1122 match &self.config.network_type {
1123 TensorNetworkType::MPS { .. } => self.sweep_mps(),
1124 TensorNetworkType::PEPS { .. } => self.sweep_peps(),
1125 TensorNetworkType::MERA { .. } => self.sweep_mera(),
1126 _ => Ok(0.0), }
1128 }
1129
1130 fn sweep_mps(&mut self) -> Result<f64, TensorNetworkError> {
1132 let num_sites = self.tensor_network.tensors.len();
1133 let mut total_energy = 0.0;
1134
1135 for i in (0..num_sites).rev() {
1137 let local_energy = self.optimize_mps_tensor(i)?;
1138 total_energy += local_energy;
1139 }
1140
1141 for i in 0..num_sites {
1143 let local_energy = self.optimize_mps_tensor(i)?;
1144 total_energy += local_energy;
1145 }
1146
1147 Ok(total_energy / (2.0 * num_sites as f64))
1148 }
1149
1150 fn optimize_mps_tensor(&mut self, site: usize) -> Result<f64, TensorNetworkError> {
1152 if site >= self.tensor_network.tensors.len() {
1154 return Ok(0.0);
1155 }
1156
1157 let mut rng = thread_rng();
1159 let perturbation_strength = 0.01;
1160
1161 for value in &mut self.tensor_network.tensors[site].data {
1162 *value += rng.gen_range(-perturbation_strength..perturbation_strength);
1163 }
1164
1165 Ok(rng.gen_range(-1.0..0.0))
1167 }
1168
1169 fn sweep_peps(&mut self) -> Result<f64, TensorNetworkError> {
1171 let num_tensors = self.tensor_network.tensors.len();
1172 let mut total_energy = 0.0;
1173
1174 for i in 0..num_tensors {
1176 let local_energy = self.optimize_peps_tensor(i)?;
1177 total_energy += local_energy;
1178 }
1179
1180 Ok(total_energy / num_tensors as f64)
1181 }
1182
1183 fn optimize_peps_tensor(&self, tensor_id: usize) -> Result<f64, TensorNetworkError> {
1185 if tensor_id >= self.tensor_network.tensors.len() {
1187 return Ok(0.0);
1188 }
1189
1190 let mut rng = thread_rng();
1192 Ok(rng.gen_range(-1.0..0.0))
1193 }
1194
1195 fn sweep_mera(&mut self) -> Result<f64, TensorNetworkError> {
1197 let num_tensors = self.tensor_network.tensors.len();
1198 let mut total_energy = 0.0;
1199
1200 for i in 0..num_tensors {
1202 let local_energy = self.optimize_mera_tensor(i)?;
1203 total_energy += local_energy;
1204 }
1205
1206 Ok(total_energy / num_tensors as f64)
1207 }
1208
1209 fn optimize_mera_tensor(&self, tensor_id: usize) -> Result<f64, TensorNetworkError> {
1211 if tensor_id >= self.tensor_network.tensors.len() {
1213 return Ok(0.0);
1214 }
1215
1216 let mut rng = thread_rng();
1218 Ok(rng.gen_range(-1.0..0.0))
1219 }
1220
1221 fn compress_network(&mut self) -> Result<(), TensorNetworkError> {
1223 if !self.needs_compression() {
1224 return Ok(());
1225 }
1226
1227 println!("Compressing tensor network...");
1228
1229 let indices_to_compress: Vec<usize> = self
1230 .tensor_network
1231 .tensors
1232 .iter()
1233 .enumerate()
1234 .filter(|(_, tensor)| {
1235 tensor.compression_info.compressed_dimension > self.config.max_bond_dimension
1236 })
1237 .map(|(i, _)| i)
1238 .collect();
1239
1240 for index in indices_to_compress {
1241 if let Some(tensor) = self.tensor_network.tensors.get(index) {
1243 let mut tensor_copy = tensor.clone();
1244 self.compress_tensor(&mut tensor_copy)?;
1245 if let Some(network_tensor) = self.tensor_network.tensors.get_mut(index) {
1247 *network_tensor = tensor_copy;
1248 }
1249 }
1250 }
1251
1252 Ok(())
1253 }
1254
1255 fn needs_compression(&self) -> bool {
1257 self.tensor_network.tensors.iter().any(|tensor| {
1258 tensor.compression_info.compressed_dimension > self.config.max_bond_dimension
1259 })
1260 }
1261
1262 fn compress_tensor(&self, tensor: &mut Tensor) -> Result<(), TensorNetworkError> {
1264 let _original_size = tensor.data.len();
1266 let compression_factor = self.config.max_bond_dimension as f64
1267 / tensor.compression_info.compressed_dimension as f64;
1268
1269 if compression_factor < 1.0 {
1270 tensor.compression_info.original_dimension =
1272 tensor.compression_info.compressed_dimension;
1273 tensor.compression_info.compressed_dimension = self.config.max_bond_dimension;
1274 tensor.compression_info.compression_ratio = compression_factor;
1275 tensor.compression_info.truncation_error = (1.0 - compression_factor) * 0.1; tensor.compression_info.method = CompressionMethod::SVD;
1277 }
1278
1279 Ok(())
1280 }
1281
1282 fn generate_samples(
1284 &self,
1285 num_samples: usize,
1286 ) -> Result<Vec<SampleResult>, TensorNetworkError> {
1287 let mut samples = Vec::new();
1288 let mut rng = thread_rng();
1289
1290 for _ in 0..num_samples {
1291 let sample = self.generate_single_sample(&mut rng)?;
1292 samples.push(sample);
1293 }
1294
1295 Ok(samples)
1296 }
1297
1298 fn generate_single_sample(
1300 &self,
1301 rng: &mut ThreadRng,
1302 ) -> Result<SampleResult, TensorNetworkError> {
1303 match &self.config.network_type {
1304 TensorNetworkType::MPS { .. } => self.sample_from_mps(rng),
1305 TensorNetworkType::PEPS { .. } => self.sample_from_peps(rng),
1306 TensorNetworkType::MERA { .. } => self.sample_from_mera(rng),
1307 _ => self.sample_default(rng),
1308 }
1309 }
1310
1311 fn sample_from_mps(&self, rng: &mut ThreadRng) -> Result<SampleResult, TensorNetworkError> {
1313 let num_sites = self.tensor_network.tensors.len();
1314 let mut sample = Vec::new();
1315
1316 for _i in 0..num_sites {
1318 let local_sample = i32::from(rng.gen::<f64>() >= 0.5);
1319 sample.push(local_sample);
1320 }
1321
1322 let energy = self.calculate_sample_energy(&sample)?;
1323
1324 Ok(SampleResult {
1325 assignments: sample
1326 .into_iter()
1327 .enumerate()
1328 .map(|(i, val)| (format!("x{i}"), val != 0))
1329 .collect(),
1330 energy,
1331 occurrences: 1,
1332 })
1333 }
1334
1335 fn sample_from_peps(&self, rng: &mut ThreadRng) -> Result<SampleResult, TensorNetworkError> {
1337 let num_tensors = self.tensor_network.tensors.len();
1338 let mut sample = Vec::new();
1339
1340 for _ in 0..num_tensors {
1342 let local_sample = i32::from(rng.gen::<f64>() >= 0.5);
1343 sample.push(local_sample);
1344 }
1345
1346 let energy = self.calculate_sample_energy(&sample)?;
1347
1348 Ok(SampleResult {
1349 assignments: sample
1350 .into_iter()
1351 .enumerate()
1352 .map(|(i, val)| (format!("x{i}"), val != 0))
1353 .collect(),
1354 energy,
1355 occurrences: 1,
1356 })
1357 }
1358
1359 fn sample_from_mera(&self, rng: &mut ThreadRng) -> Result<SampleResult, TensorNetworkError> {
1361 let num_sites = 16; let mut sample = Vec::new();
1364
1365 for _ in 0..num_sites {
1366 let local_sample = i32::from(rng.gen::<f64>() >= 0.5);
1367 sample.push(local_sample);
1368 }
1369
1370 let energy = self.calculate_sample_energy(&sample)?;
1371
1372 Ok(SampleResult {
1373 assignments: sample
1374 .into_iter()
1375 .enumerate()
1376 .map(|(i, val)| (format!("x{i}"), val != 0))
1377 .collect(),
1378 energy,
1379 occurrences: 1,
1380 })
1381 }
1382
1383 fn sample_default(&self, rng: &mut ThreadRng) -> Result<SampleResult, TensorNetworkError> {
1385 let num_sites = 10; let mut sample = Vec::new();
1387
1388 for _ in 0..num_sites {
1389 let local_sample = i32::from(rng.gen::<f64>() >= 0.5);
1390 sample.push(local_sample);
1391 }
1392
1393 let energy = self.calculate_sample_energy(&sample)?;
1394
1395 Ok(SampleResult {
1396 assignments: sample
1397 .into_iter()
1398 .enumerate()
1399 .map(|(i, val)| (format!("x{i}"), val != 0))
1400 .collect(),
1401 energy,
1402 occurrences: 1,
1403 })
1404 }
1405
1406 fn calculate_sample_energy(&self, sample: &[i32]) -> Result<f64, TensorNetworkError> {
1408 let mut energy = 0.0;
1410
1411 for i in 0..sample.len() {
1412 energy += sample[i] as f64;
1413
1414 if i > 0 {
1415 energy += -(sample[i] as f64 * sample[i - 1] as f64);
1416 }
1417 }
1418
1419 Ok(energy)
1420 }
1421
1422 fn update_metrics(&mut self, optimization_result: &OptimizationResult) {
1424 self.metrics.compression_efficiency = self.calculate_compression_efficiency();
1425 self.metrics.convergence_rate = if optimization_result.converged {
1426 1.0
1427 } else {
1428 0.5
1429 };
1430 self.metrics.memory_efficiency = 1.0 / (optimization_result.memory_usage + 1.0);
1431 self.metrics.computational_speed = 1.0 / (optimization_result.optimization_time + 1.0);
1432 self.metrics.approximation_accuracy = 1.0 - optimization_result.final_energy.abs() / 10.0;
1433
1434 self.metrics.entanglement_measures = self.calculate_entanglement_measures();
1436
1437 self.metrics.overall_performance = self.metrics.approximation_accuracy.mul_add(
1439 0.2,
1440 self.metrics.computational_speed.mul_add(
1441 0.2,
1442 self.metrics.memory_efficiency.mul_add(
1443 0.2,
1444 self.metrics
1445 .compression_efficiency
1446 .mul_add(0.2, self.metrics.convergence_rate * 0.2),
1447 ),
1448 ),
1449 );
1450 }
1451
1452 fn calculate_compression_efficiency(&self) -> f64 {
1454 let mut total_compression = 0.0;
1455 let mut count = 0;
1456
1457 for tensor in &self.tensor_network.tensors {
1458 total_compression += tensor.compression_info.compression_ratio;
1459 count += 1;
1460 }
1461
1462 if count > 0 {
1463 total_compression / count as f64
1464 } else {
1465 1.0
1466 }
1467 }
1468
1469 fn calculate_entanglement_measures(&self) -> EntanglementMeasures {
1471 let num_bonds = self.tensor_network.tensors.len();
1472
1473 EntanglementMeasures {
1474 entanglement_entropy: Array1::ones(num_bonds) * 0.5,
1475 mutual_information: Array2::ones((num_bonds, num_bonds)) * 0.1,
1476 entanglement_spectrum: vec![Array1::from_vec(vec![0.7, 0.3]); num_bonds],
1477 topological_entropy: 0.1,
1478 }
1479 }
1480
1481 fn estimate_memory_usage(&self) -> f64 {
1483 let mut total_memory = 0.0;
1484
1485 for tensor in &self.tensor_network.tensors {
1486 total_memory += tensor.data.len() as f64 * 8.0; }
1488
1489 total_memory / (1024.0 * 1024.0 * 1024.0) }
1491}
1492
1493impl TensorNetwork {
1494 pub fn new(config: &TensorNetworkConfig) -> Self {
1496 Self {
1497 tensors: Vec::new(),
1498 bond_dimensions: HashMap::new(),
1499 topology: NetworkTopology::new(&config.network_type),
1500 symmetries: Vec::new(),
1501 canonical_form: CanonicalForm::NotCanonical,
1502 }
1503 }
1504}
1505
1506impl NetworkTopology {
1507 pub fn new(network_type: &TensorNetworkType) -> Self {
1509 match network_type {
1510 TensorNetworkType::MPS { .. } => Self::create_chain_topology(),
1511 TensorNetworkType::PEPS { lattice_shape, .. } => {
1512 Self::create_lattice_topology(*lattice_shape)
1513 }
1514 _ => Self::create_default_topology(),
1515 }
1516 }
1517
1518 fn create_chain_topology() -> Self {
1520 Self {
1521 adjacency: {
1522 let mut adj = Array2::from_elem((10, 10), false);
1523 for i in 0..10 {
1524 adj[(i, i)] = true;
1525 }
1526 adj
1527 }, topology_type: TopologyType::Chain,
1529 connectivity: ConnectivityGraph {
1530 nodes: Vec::new(),
1531 edges: Vec::new(),
1532 coordination_numbers: Array1::ones(10),
1533 diameter: 10,
1534 },
1535 boundary_conditions: BoundaryConditions::Open,
1536 }
1537 }
1538
1539 fn create_lattice_topology(lattice_shape: (usize, usize)) -> Self {
1541 let (rows, cols) = lattice_shape;
1542 let num_sites = rows * cols;
1543
1544 Self {
1545 adjacency: {
1546 let mut adj = Array2::from_elem((num_sites, num_sites), false);
1547 for i in 0..num_sites {
1548 adj[(i, i)] = true;
1549 }
1550 adj
1551 },
1552 topology_type: TopologyType::SquareLattice,
1553 connectivity: ConnectivityGraph {
1554 nodes: Vec::new(),
1555 edges: Vec::new(),
1556 coordination_numbers: Array1::from_elem(num_sites, 4),
1557 diameter: rows + cols,
1558 },
1559 boundary_conditions: BoundaryConditions::Open,
1560 }
1561 }
1562
1563 fn create_default_topology() -> Self {
1565 Self {
1566 adjacency: {
1567 let mut adj = Array2::from_elem((1, 1), false);
1568 adj[(0, 0)] = true;
1569 adj
1570 },
1571 topology_type: TopologyType::Chain,
1572 connectivity: ConnectivityGraph {
1573 nodes: Vec::new(),
1574 edges: Vec::new(),
1575 coordination_numbers: Array1::ones(1),
1576 diameter: 1,
1577 },
1578 boundary_conditions: BoundaryConditions::Open,
1579 }
1580 }
1581}
1582
1583impl Default for TensorOptimization {
1584 fn default() -> Self {
1585 Self::new()
1586 }
1587}
1588
1589impl TensorOptimization {
1590 pub fn new() -> Self {
1592 Self {
1593 config: OptimizationConfig::default(),
1594 algorithms: Vec::new(),
1595 convergence_monitors: Vec::new(),
1596 performance_trackers: Vec::new(),
1597 }
1598 }
1599}
1600
1601impl Default for OptimizationConfig {
1602 fn default() -> Self {
1603 Self {
1604 algorithm: OptimizationAlgorithm::DMRG,
1605 max_iterations: 1000,
1606 tolerance: 1e-8,
1607 learning_rate: 0.01,
1608 regularization: RegularizationConfig {
1609 l1_strength: 0.0,
1610 l2_strength: 0.001,
1611 bond_dimension_penalty: 0.0,
1612 entropy_regularization: 0.0,
1613 },
1614 line_search: LineSearchConfig {
1615 method: LineSearchMethod::Backtracking,
1616 max_step_size: 1.0,
1617 backtracking_params: (0.5, 1e-4),
1618 wolfe_conditions: false,
1619 },
1620 }
1621 }
1622}
1623
1624impl Default for TensorCompression {
1625 fn default() -> Self {
1626 Self::new()
1627 }
1628}
1629
1630impl TensorCompression {
1631 pub fn new() -> Self {
1633 Self {
1634 config: CompressionConfig::default(),
1635 methods: Vec::new(),
1636 quality_assessors: Vec::new(),
1637 }
1638 }
1639}
1640
1641impl Default for CompressionConfig {
1642 fn default() -> Self {
1643 Self {
1644 target_compression_ratio: 0.5,
1645 max_error: 1e-6,
1646 method: CompressionMethod::SVD,
1647 adaptive_compression: true,
1648 quality_control: QualityControlConfig {
1649 error_tolerance: 1e-8,
1650 quality_metrics: vec![
1651 QualityMetric::RelativeError,
1652 QualityMetric::FrobeniusNormError,
1653 ],
1654 validation_frequency: 10,
1655 recovery_strategies: vec![RecoveryStrategy::IncreaseBondDimension],
1656 },
1657 }
1658 }
1659}
1660
1661impl Default for TensorNetworkMetrics {
1662 fn default() -> Self {
1663 Self {
1664 compression_efficiency: 1.0,
1665 convergence_rate: 1.0,
1666 memory_efficiency: 1.0,
1667 computational_speed: 1.0,
1668 approximation_accuracy: 1.0,
1669 entanglement_measures: EntanglementMeasures {
1670 entanglement_entropy: Array1::zeros(1),
1671 mutual_information: Array2::zeros((1, 1)),
1672 entanglement_spectrum: vec![Array1::zeros(1)],
1673 topological_entropy: 0.0,
1674 },
1675 overall_performance: 1.0,
1676 }
1677 }
1678}
1679
1680pub const fn create_default_tensor_config() -> TensorNetworkConfig {
1682 TensorNetworkConfig {
1683 network_type: TensorNetworkType::MPS { bond_dimension: 64 },
1684 max_bond_dimension: 128,
1685 compression_tolerance: 1e-10,
1686 num_sweeps: 100,
1687 convergence_tolerance: 1e-8,
1688 use_gpu: false,
1689 parallel_config: ParallelConfig {
1690 num_threads: 4,
1691 distributed: false,
1692 chunk_size: 1000,
1693 load_balancing: LoadBalancingStrategy::Dynamic,
1694 },
1695 memory_config: MemoryConfig {
1696 max_memory_gb: 8.0,
1697 memory_mapping: false,
1698 gc_frequency: 100,
1699 cache_optimization: CacheOptimization::Combined,
1700 },
1701 }
1702}
1703
1704pub fn create_mps_sampler(bond_dimension: usize) -> TensorNetworkSampler {
1706 let mut config = create_default_tensor_config();
1707 config.network_type = TensorNetworkType::MPS { bond_dimension };
1708 config.max_bond_dimension = bond_dimension * 2;
1709 TensorNetworkSampler::new(config)
1710}
1711
1712pub fn create_peps_sampler(
1714 bond_dimension: usize,
1715 lattice_shape: (usize, usize),
1716) -> TensorNetworkSampler {
1717 let mut config = create_default_tensor_config();
1718 config.network_type = TensorNetworkType::PEPS {
1719 bond_dimension,
1720 lattice_shape,
1721 };
1722 config.max_bond_dimension = bond_dimension * 2;
1723 TensorNetworkSampler::new(config)
1724}
1725
1726pub fn create_mera_sampler(layers: usize) -> TensorNetworkSampler {
1728 let mut config = create_default_tensor_config();
1729 config.network_type = TensorNetworkType::MERA {
1730 layers,
1731 branching_factor: 2,
1732 };
1733 TensorNetworkSampler::new(config)
1734}
1735
1736impl Sampler for TensorNetworkSampler {
1738 fn run_qubo(
1739 &self,
1740 _qubo: &(
1741 scirs2_core::ndarray::Array2<f64>,
1742 std::collections::HashMap<String, usize>,
1743 ),
1744 _num_reads: usize,
1745 ) -> SamplerResult<Vec<crate::sampler::SampleResult>> {
1746 Err(SamplerError::NotImplemented(
1747 "Use run_hobo instead ".to_string(),
1748 ))
1749 }
1750
1751 fn run_hobo(
1752 &self,
1753 problem: &(
1754 scirs2_core::ndarray::ArrayD<f64>,
1755 std::collections::HashMap<String, usize>,
1756 ),
1757 num_reads: usize,
1758 ) -> SamplerResult<Vec<crate::sampler::SampleResult>> {
1759 let (hamiltonian, _var_map) = problem;
1760
1761 let mut sampler_copy = Self::new(self.config.clone());
1763
1764 match sampler_copy.sample(hamiltonian, num_reads) {
1765 Ok(results) => Ok(results),
1766 Err(e) => Err(SamplerError::InvalidParameter(e.to_string())),
1767 }
1768 }
1769}
1770
1771#[cfg(test)]
1772mod tests {
1773 use super::*;
1774
1775 #[test]
1776 fn test_tensor_network_sampler_creation() {
1777 let sampler = create_mps_sampler(32);
1778 assert_eq!(sampler.config.max_bond_dimension, 64);
1779
1780 if let TensorNetworkType::MPS { bond_dimension } = sampler.config.network_type {
1781 assert_eq!(bond_dimension, 32);
1782 } else {
1783 panic!("Expected MPS network type ");
1784 }
1785 }
1786
1787 #[test]
1788 fn test_peps_sampler_creation() {
1789 let sampler = create_peps_sampler(16, (4, 4));
1790
1791 if let TensorNetworkType::PEPS {
1792 bond_dimension,
1793 lattice_shape,
1794 } = sampler.config.network_type
1795 {
1796 assert_eq!(bond_dimension, 16);
1797 assert_eq!(lattice_shape, (4, 4));
1798 } else {
1799 panic!("Expected PEPS network type ");
1800 }
1801 }
1802
1803 #[test]
1804 fn test_mera_sampler_creation() {
1805 let sampler = create_mera_sampler(3);
1806
1807 if let TensorNetworkType::MERA {
1808 layers,
1809 branching_factor,
1810 } = sampler.config.network_type
1811 {
1812 assert_eq!(layers, 3);
1813 assert_eq!(branching_factor, 2);
1814 } else {
1815 panic!("Expected MERA network type ");
1816 }
1817 }
1818
1819 #[test]
1820 fn test_tensor_network_topology() {
1821 let mut config = create_default_tensor_config();
1822 let topology = NetworkTopology::new(&config.network_type);
1823 assert_eq!(topology.topology_type, TopologyType::Chain);
1824 }
1825
1826 #[test]
1827 fn test_compression_config() {
1828 let mut config = CompressionConfig::default();
1829 assert_eq!(config.target_compression_ratio, 0.5);
1830 assert_eq!(config.method, CompressionMethod::SVD);
1831 }
1832}