quantrs2_tytan/
performance_profiler.rs

1//! Performance profiler for quantum optimization.
2//!
3//! This module provides comprehensive performance profiling tools
4//! for analyzing QUBO generation, solving, and optimization performance.
5
6#![allow(dead_code)]
7
8#[cfg(feature = "dwave")]
9use crate::compile::{Compile, CompiledModel};
10#[cfg(feature = "plotters")]
11use plotters::prelude::*;
12use serde::{Deserialize, Serialize};
13use std::collections::{BTreeMap, HashMap};
14use std::sync::{Arc, Mutex};
15use std::thread;
16use std::time::{Duration, Instant};
17
18/// Performance profiler
19pub struct PerformanceProfiler {
20    /// Configuration
21    config: ProfilerConfig,
22    /// Profile data
23    profiles: Vec<Profile>,
24    /// Current profile
25    current_profile: Option<ProfileContext>,
26    /// Metrics collectors
27    collectors: Vec<Box<dyn MetricsCollector>>,
28    /// Analysis engine
29    analyzer: PerformanceAnalyzer,
30}
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
33pub struct ProfilerConfig {
34    /// Enable profiling
35    pub enabled: bool,
36    /// Sampling interval
37    pub sampling_interval: Duration,
38    /// Metrics to collect
39    pub metrics: Vec<MetricType>,
40    /// Memory profiling
41    pub profile_memory: bool,
42    /// CPU profiling
43    pub profile_cpu: bool,
44    /// GPU profiling
45    pub profile_gpu: bool,
46    /// Detailed timing
47    pub detailed_timing: bool,
48    /// Output format
49    pub output_format: OutputFormat,
50    /// Auto-save interval
51    pub auto_save_interval: Option<Duration>,
52}
53
54impl Default for ProfilerConfig {
55    fn default() -> Self {
56        Self {
57            enabled: true,
58            sampling_interval: Duration::from_millis(100),
59            metrics: vec![MetricType::Time, MetricType::Memory],
60            profile_memory: true,
61            profile_cpu: true,
62            profile_gpu: false,
63            detailed_timing: false,
64            output_format: OutputFormat::Json,
65            auto_save_interval: Some(Duration::from_secs(60)),
66        }
67    }
68}
69
70#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash)]
71pub enum MetricType {
72    /// Execution time
73    Time,
74    /// Memory usage
75    Memory,
76    /// CPU usage
77    CPU,
78    /// GPU usage
79    GPU,
80    /// Cache metrics
81    Cache,
82    /// I/O metrics
83    IO,
84    /// Network metrics
85    Network,
86    /// Custom metric
87    Custom(String),
88}
89
90#[derive(Debug, Clone, Serialize, Deserialize)]
91pub enum OutputFormat {
92    /// JSON format
93    Json,
94    /// Binary format
95    Binary,
96    /// CSV format
97    Csv,
98    /// Flame graph
99    FlameGraph,
100    /// Chrome tracing format
101    ChromeTrace,
102}
103
104/// Profile data
105#[derive(Debug, Clone)]
106pub struct Profile {
107    /// Profile ID
108    pub id: String,
109    /// Start time
110    pub start_time: Instant,
111    /// End time
112    pub end_time: Option<Instant>,
113    /// Events
114    pub events: Vec<ProfileEvent>,
115    /// Metrics
116    pub metrics: MetricsData,
117    /// Call graph
118    pub call_graph: CallGraph,
119    /// Resource usage
120    pub resource_usage: ResourceUsage,
121}
122
123#[derive(Debug, Clone)]
124pub struct ProfileEvent {
125    /// Event timestamp
126    pub timestamp: Instant,
127    /// Event type
128    pub event_type: EventType,
129    /// Event name
130    pub name: String,
131    /// Duration (if applicable)
132    pub duration: Option<Duration>,
133    /// Associated data
134    pub data: HashMap<String, String>,
135    /// Thread ID
136    pub thread_id: thread::ThreadId,
137}
138
139#[derive(Debug, Clone)]
140pub enum EventType {
141    /// Function call
142    FunctionCall,
143    /// Function return
144    FunctionReturn,
145    /// Memory allocation
146    MemoryAlloc,
147    /// Memory deallocation
148    MemoryFree,
149    /// I/O operation
150    IOOperation,
151    /// Synchronization
152    Synchronization,
153    /// Custom event
154    Custom(String),
155}
156
157#[derive(Debug, Clone)]
158pub struct MetricsData {
159    /// Time metrics
160    pub time_metrics: TimeMetrics,
161    /// Memory metrics
162    pub memory_metrics: MemoryMetrics,
163    /// Computation metrics
164    pub computation_metrics: ComputationMetrics,
165    /// Quality metrics
166    pub quality_metrics: QualityMetrics,
167}
168
169#[derive(Debug, Clone)]
170pub struct TimeMetrics {
171    /// Total execution time
172    pub total_time: Duration,
173    /// QUBO generation time
174    pub qubo_generation_time: Duration,
175    /// Compilation time
176    pub compilation_time: Duration,
177    /// Solving time
178    pub solving_time: Duration,
179    /// Post-processing time
180    pub post_processing_time: Duration,
181    /// Time breakdown by function
182    pub function_times: BTreeMap<String, Duration>,
183    /// Time percentiles
184    pub percentiles: Percentiles,
185}
186
187#[derive(Debug, Clone)]
188pub struct Percentiles {
189    pub p50: Duration,
190    pub p90: Duration,
191    pub p95: Duration,
192    pub p99: Duration,
193    pub p999: Duration,
194}
195
196#[derive(Debug, Clone)]
197pub struct MemoryMetrics {
198    /// Peak memory usage
199    pub peak_memory: usize,
200    /// Average memory usage
201    pub avg_memory: usize,
202    /// Memory allocations
203    pub allocations: usize,
204    /// Memory deallocations
205    pub deallocations: usize,
206    /// Largest allocation
207    pub largest_allocation: usize,
208    /// Memory timeline
209    pub memory_timeline: Vec<(Instant, usize)>,
210}
211
212#[derive(Debug, Clone)]
213pub struct ComputationMetrics {
214    /// FLOPS (floating-point operations per second)
215    pub flops: f64,
216    /// Memory bandwidth
217    pub memory_bandwidth: f64,
218    /// Cache hit rate
219    pub cache_hit_rate: f64,
220    /// Branch prediction accuracy
221    pub branch_prediction_accuracy: f64,
222    /// Vectorization efficiency
223    pub vectorization_efficiency: f64,
224}
225
226#[derive(Debug, Clone)]
227pub struct QualityMetrics {
228    /// Solution quality over time
229    pub quality_timeline: Vec<(Duration, f64)>,
230    /// Convergence rate
231    pub convergence_rate: f64,
232    /// Improvement per iteration
233    pub improvement_per_iteration: f64,
234    /// Time to first solution
235    pub time_to_first_solution: Duration,
236    /// Time to best solution
237    pub time_to_best_solution: Duration,
238}
239
240#[derive(Debug, Clone)]
241pub struct CallGraph {
242    /// Nodes (functions)
243    pub nodes: Vec<CallNode>,
244    /// Edges (calls)
245    pub edges: Vec<CallEdge>,
246    /// Root nodes
247    pub roots: Vec<usize>,
248}
249
250#[derive(Debug, Clone)]
251pub struct CallNode {
252    /// Node ID
253    pub id: usize,
254    /// Function name
255    pub name: String,
256    /// Total time
257    pub total_time: Duration,
258    /// Self time
259    pub self_time: Duration,
260    /// Call count
261    pub call_count: usize,
262    /// Average time per call
263    pub avg_time: Duration,
264}
265
266#[derive(Debug, Clone)]
267pub struct CallEdge {
268    /// Source node
269    pub from: usize,
270    /// Target node
271    pub to: usize,
272    /// Number of calls
273    pub call_count: usize,
274    /// Total time
275    pub total_time: Duration,
276}
277
278#[derive(Debug, Clone)]
279pub struct ResourceUsage {
280    /// CPU usage timeline
281    pub cpu_usage: Vec<(Instant, f64)>,
282    /// Memory usage timeline
283    pub memory_usage: Vec<(Instant, usize)>,
284    /// GPU usage timeline
285    pub gpu_usage: Vec<(Instant, f64)>,
286    /// I/O operations
287    pub io_operations: Vec<IOOperation>,
288    /// Network operations
289    pub network_operations: Vec<NetworkOperation>,
290}
291
292#[derive(Debug, Clone)]
293pub struct IOOperation {
294    /// Timestamp
295    pub timestamp: Instant,
296    /// Operation type
297    pub operation: IOOpType,
298    /// Bytes transferred
299    pub bytes: usize,
300    /// Duration
301    pub duration: Duration,
302    /// File/device
303    pub target: String,
304}
305
306#[derive(Debug, Clone)]
307pub enum IOOpType {
308    Read,
309    Write,
310    Seek,
311    Flush,
312}
313
314#[derive(Debug, Clone)]
315pub struct NetworkOperation {
316    /// Timestamp
317    pub timestamp: Instant,
318    /// Operation type
319    pub operation: NetworkOpType,
320    /// Bytes transferred
321    pub bytes: usize,
322    /// Duration
323    pub duration: Duration,
324    /// Remote endpoint
325    pub endpoint: String,
326}
327
328#[derive(Debug, Clone)]
329pub enum NetworkOpType {
330    Send,
331    Receive,
332    Connect,
333    Disconnect,
334}
335
336/// Profile context for current profiling session
337#[derive(Debug)]
338struct ProfileContext {
339    /// Profile being built
340    profile: Profile,
341    /// Stack of function calls
342    call_stack: Vec<(String, Instant)>,
343    /// Active timers
344    timers: HashMap<String, Instant>,
345    /// Metrics buffer
346    metrics_buffer: MetricsBuffer,
347}
348
349#[derive(Debug, Default)]
350struct MetricsBuffer {
351    /// Time samples
352    time_samples: Vec<(String, Duration)>,
353    /// Memory samples
354    memory_samples: Vec<(Instant, usize)>,
355    /// CPU samples
356    cpu_samples: Vec<(Instant, f64)>,
357    /// Custom metrics
358    custom_metrics: HashMap<String, Vec<f64>>,
359}
360
361/// Metrics collector trait
362pub trait MetricsCollector: Send + Sync {
363    /// Collect metrics
364    fn collect(&self) -> Result<MetricsSample, String>;
365
366    /// Collector name
367    fn name(&self) -> &str;
368
369    /// Supported metrics
370    fn supported_metrics(&self) -> Vec<MetricType>;
371}
372
373#[derive(Debug, Clone)]
374pub struct MetricsSample {
375    /// Timestamp
376    pub timestamp: Instant,
377    /// Metric values
378    pub values: HashMap<MetricType, f64>,
379}
380
381/// Performance analyzer
382pub struct PerformanceAnalyzer {
383    /// Analysis configuration
384    config: AnalysisConfig,
385    /// Bottleneck detector
386    bottleneck_detector: BottleneckDetector,
387    /// Optimization suggester
388    optimization_suggester: OptimizationSuggester,
389}
390
391#[derive(Debug, Clone)]
392pub struct AnalysisConfig {
393    /// Enable bottleneck detection
394    pub detect_bottlenecks: bool,
395    /// Enable optimization suggestions
396    pub suggest_optimizations: bool,
397    /// Anomaly detection
398    pub detect_anomalies: bool,
399    /// Regression detection
400    pub detect_regressions: bool,
401    /// Baseline comparison
402    pub baseline: Option<Profile>,
403}
404
405/// Bottleneck detector
406pub struct BottleneckDetector {
407    /// Threshold for hot functions
408    hot_function_threshold: f64,
409    /// Memory leak detection
410    detect_memory_leaks: bool,
411    /// Contention detection
412    detect_contention: bool,
413}
414
415/// Optimization suggester
416pub struct OptimizationSuggester {
417    /// Suggestion rules
418    rules: Vec<OptimizationRule>,
419    /// Historical data
420    history: Vec<Profile>,
421}
422
423#[derive(Debug, Clone)]
424pub struct OptimizationRule {
425    /// Rule name
426    pub name: String,
427    /// Condition
428    pub condition: RuleCondition,
429    /// Suggestion
430    pub suggestion: String,
431    /// Potential improvement
432    pub improvement: f64,
433}
434
435#[derive(Debug, Clone)]
436pub enum RuleCondition {
437    /// High function time
438    HighFunctionTime {
439        function: String,
440        threshold: Duration,
441    },
442    /// High memory usage
443    HighMemoryUsage { threshold: usize },
444    /// Low cache hit rate
445    LowCacheHitRate { threshold: f64 },
446    /// Custom condition
447    Custom(String),
448}
449
450impl PerformanceProfiler {
451    /// Start real-time monitoring
452    pub fn start_real_time_monitoring(&mut self) -> Result<RealTimeMonitor, String> {
453        if !self.config.enabled {
454            return Err("Profiling not enabled".to_string());
455        }
456
457        let monitor = RealTimeMonitor::new(
458            self.config.sampling_interval,
459            self.collectors
460                .iter()
461                .map(|c| c.name().to_string())
462                .collect(),
463        )?;
464
465        Ok(monitor)
466    }
467
468    /// Predict performance characteristics
469    pub fn predict_performance(
470        &self,
471        problem_characteristics: &ProblemCharacteristics,
472    ) -> PerformancePrediction {
473        let predictor = PerformancePredictor::new(&self.profiles);
474        predictor.predict(problem_characteristics)
475    }
476
477    /// Generate optimization recommendations
478    pub fn generate_recommendations(&self, profile: &Profile) -> Vec<OptimizationRecommendation> {
479        let mut recommendations = Vec::new();
480
481        // Analyze hot functions
482        let analysis = self.analyze_profile(profile);
483
484        for bottleneck in &analysis.bottlenecks {
485            match bottleneck.bottleneck_type {
486                BottleneckType::CPU => {
487                    if bottleneck.impact > 0.3 {
488                        recommendations.push(OptimizationRecommendation {
489                            title: format!("Optimize hot function: {}", bottleneck.location),
490                            description:
491                                "Consider algorithmic improvements, caching, or parallelization"
492                                    .to_string(),
493                            category: RecommendationCategory::Algorithm,
494                            impact: RecommendationImpact::High,
495                            effort: ImplementationEffort::Medium,
496                            estimated_improvement: bottleneck.impact * 0.5,
497                            code_suggestions: vec![
498                                "Add memoization for expensive calculations".to_string(),
499                                "Consider parallel processing".to_string(),
500                                "Profile inner loops for micro-optimizations".to_string(),
501                            ],
502                        });
503                    }
504                }
505                BottleneckType::Memory => {
506                    recommendations.push(OptimizationRecommendation {
507                        title: "Memory usage optimization".to_string(),
508                        description: "Reduce memory allocations and improve data locality"
509                            .to_string(),
510                        category: RecommendationCategory::Memory,
511                        impact: RecommendationImpact::Medium,
512                        effort: ImplementationEffort::Low,
513                        estimated_improvement: 0.2,
514                        code_suggestions: vec![
515                            "Use object pooling for frequently allocated objects".to_string(),
516                            "Consider more compact data structures".to_string(),
517                            "Implement streaming for large datasets".to_string(),
518                        ],
519                    });
520                }
521                _ => {}
522            }
523        }
524
525        // Add general recommendations based on metrics
526        if profile.metrics.computation_metrics.cache_hit_rate < 0.8 {
527            recommendations.push(OptimizationRecommendation {
528                title: "Improve cache locality".to_string(),
529                description: "Restructure data access patterns for better cache performance"
530                    .to_string(),
531                category: RecommendationCategory::Memory,
532                impact: RecommendationImpact::Medium,
533                effort: ImplementationEffort::High,
534                estimated_improvement: 0.15,
535                code_suggestions: vec![
536                    "Use structure-of-arrays instead of array-of-structures".to_string(),
537                    "Implement cache-oblivious algorithms".to_string(),
538                    "Add data prefetching hints".to_string(),
539                ],
540            });
541        }
542
543        // Sort by impact
544        recommendations.sort_by(|a, b| {
545            b.estimated_improvement
546                .partial_cmp(&a.estimated_improvement)
547                .expect("Failed to compare estimated improvements in recommendation sorting")
548        });
549
550        recommendations
551    }
552
553    /// Export profile for external analysis tools
554    pub fn export_for_external_tool(
555        &self,
556        profile: &Profile,
557        tool: ExternalTool,
558    ) -> Result<String, String> {
559        match tool {
560            ExternalTool::Perf => Self::export_perf_script(profile),
561            ExternalTool::Valgrind => Self::export_valgrind_format(profile),
562            ExternalTool::FlameScope => Self::export_flamescope_format(profile),
563            ExternalTool::SpeedScope => Self::export_speedscope_format(profile),
564        }
565    }
566
567    /// Export in perf script format
568    fn export_perf_script(profile: &Profile) -> Result<String, String> {
569        let mut output = String::new();
570
571        for event in &profile.events {
572            if matches!(event.event_type, EventType::FunctionCall) {
573                output.push_str(&format!(
574                    "{} {} [{}] {}: {}\n",
575                    "comm",
576                    std::process::id(),
577                    format!("{:?}", event.thread_id),
578                    event.timestamp.elapsed().as_micros(),
579                    event.name
580                ));
581            }
582        }
583
584        Ok(output)
585    }
586
587    /// Export in valgrind callgrind format
588    fn export_valgrind_format(profile: &Profile) -> Result<String, String> {
589        let mut output = String::new();
590
591        output.push_str("events: Instructions\n");
592        output.push_str("summary: 1000000\n\n");
593
594        for node in &profile.call_graph.nodes {
595            output.push_str(&format!(
596                "fl={}\nfn={}\n1 {}\n\n",
597                "unknown",
598                node.name,
599                node.total_time.as_micros()
600            ));
601        }
602
603        Ok(output)
604    }
605
606    /// Export in FlameScope format
607    fn export_flamescope_format(profile: &Profile) -> Result<String, String> {
608        // Simplified FlameScope JSON format
609        let mut stacks = Vec::new();
610
611        for event in &profile.events {
612            if matches!(event.event_type, EventType::FunctionCall) {
613                if let Some(duration) = event.duration {
614                    stacks.push(serde_json::json!({
615                        "name": event.name,
616                        "value": duration.as_micros(),
617                        "start": event.timestamp.elapsed().as_micros()
618                    }));
619                }
620            }
621        }
622
623        serde_json::to_string(&stacks).map_err(|e| format!("JSON error: {e}"))
624    }
625
626    /// Export in SpeedScope format
627    fn export_speedscope_format(profile: &Profile) -> Result<String, String> {
628        let speedscope_profile = serde_json::json!({
629            "$schema": "https://www.speedscope.app/file-format-schema.json",
630            "version": "0.0.1",
631            "shared": {
632                "frames": profile.call_graph.nodes.iter().map(|node| {
633                    serde_json::json!({
634                        "name": node.name,
635                        "file": "unknown",
636                        "line": 0,
637                        "col": 0
638                    })
639                }).collect::<Vec<_>>()
640            },
641            "profiles": [{
642                "type": "evented",
643                "name": profile.id,
644                "unit": "microseconds",
645                "startValue": 0,
646                "endValue": profile.metrics.time_metrics.total_time.as_micros(),
647                "events": profile.events.iter().filter_map(|event| {
648                    match event.event_type {
649                        EventType::FunctionCall => Some(serde_json::json!({
650                            "type": "O",
651                            "at": event.timestamp.elapsed().as_micros(),
652                            "frame": event.name
653                        })),
654                        EventType::FunctionReturn => Some(serde_json::json!({
655                            "type": "C",
656                            "at": event.timestamp.elapsed().as_micros(),
657                            "frame": event.name
658                        })),
659                        _ => None
660                    }
661                }).collect::<Vec<_>>()
662            }]
663        });
664
665        serde_json::to_string(&speedscope_profile).map_err(|e| format!("JSON error: {e}"))
666    }
667
668    /// Continuous profiling mode
669    pub fn start_continuous_profiling(
670        &mut self,
671        duration: Duration,
672    ) -> Result<ContinuousProfiler, String> {
673        if !self.config.enabled {
674            return Err("Profiling not enabled".to_string());
675        }
676
677        let profiler = ContinuousProfiler::new(duration, self.config.sampling_interval);
678        Ok(profiler)
679    }
680
681    /// Benchmark comparison
682    pub fn benchmark_compare(&self, profiles: &[Profile]) -> BenchmarkComparison {
683        let mut comparison = BenchmarkComparison {
684            profiles: profiles.iter().map(|p| p.id.clone()).collect(),
685            metrics_comparison: Vec::new(),
686            regression_analysis: Vec::new(),
687            performance_trends: Vec::new(),
688        };
689
690        if profiles.len() < 2 {
691            return comparison;
692        }
693
694        // Compare total times
695        let times: Vec<f64> = profiles
696            .iter()
697            .map(|p| p.metrics.time_metrics.total_time.as_secs_f64())
698            .collect();
699
700        comparison.metrics_comparison.push(MetricComparison {
701            metric_name: "total_time".to_string(),
702            values: times.clone(),
703            trend: if times.len() >= 2 {
704                if times[times.len() - 1] < times[0] {
705                    PerformanceTrend::Improving
706                } else if times[times.len() - 1] > times[0] * 1.1 {
707                    PerformanceTrend::Degrading
708                } else {
709                    PerformanceTrend::Stable
710                }
711            } else {
712                PerformanceTrend::Unknown
713            },
714            variance: Self::calculate_variance(&times),
715        });
716
717        // Compare memory usage
718        let memory: Vec<f64> = profiles
719            .iter()
720            .map(|p| p.metrics.memory_metrics.peak_memory as f64)
721            .collect();
722
723        comparison.metrics_comparison.push(MetricComparison {
724            metric_name: "peak_memory".to_string(),
725            values: memory.clone(),
726            trend: if memory.len() >= 2 {
727                if memory[memory.len() - 1] < memory[0] {
728                    PerformanceTrend::Improving
729                } else if memory[memory.len() - 1] > memory[0] * 1.1 {
730                    PerformanceTrend::Degrading
731                } else {
732                    PerformanceTrend::Stable
733                }
734            } else {
735                PerformanceTrend::Unknown
736            },
737            variance: Self::calculate_variance(&memory),
738        });
739
740        comparison
741    }
742
743    /// Calculate variance
744    fn calculate_variance(values: &[f64]) -> f64 {
745        if values.len() < 2 {
746            return 0.0;
747        }
748
749        let mean = values.iter().sum::<f64>() / values.len() as f64;
750        let variance = values.iter().map(|v| (v - mean).powi(2)).sum::<f64>() / values.len() as f64;
751
752        variance.sqrt()
753    }
754    /// Create new profiler
755    pub fn new(config: ProfilerConfig) -> Self {
756        Self {
757            config,
758            profiles: Vec::new(),
759            current_profile: None,
760            collectors: Self::default_collectors(),
761            analyzer: PerformanceAnalyzer::new(AnalysisConfig {
762                detect_bottlenecks: true,
763                suggest_optimizations: true,
764                detect_anomalies: true,
765                detect_regressions: false,
766                baseline: None,
767            }),
768        }
769    }
770
771    /// Get default collectors
772    fn default_collectors() -> Vec<Box<dyn MetricsCollector>> {
773        vec![
774            Box::new(TimeCollector),
775            Box::new(MemoryCollector),
776            Box::new(CPUCollector),
777        ]
778    }
779
780    /// Start profiling
781    pub fn start_profile(&mut self, name: &str) -> Result<(), String> {
782        if !self.config.enabled {
783            return Ok(());
784        }
785
786        if self.current_profile.is_some() {
787            return Err("Profile already in progress".to_string());
788        }
789
790        let profile = Profile {
791            id: format!(
792                "{}_{}",
793                name,
794                std::time::SystemTime::now()
795                    .duration_since(std::time::UNIX_EPOCH)
796                    .expect("Failed to get current system time for profile ID generation")
797                    .as_secs()
798            ),
799            start_time: Instant::now(),
800            end_time: None,
801            events: Vec::new(),
802            metrics: MetricsData {
803                time_metrics: TimeMetrics {
804                    total_time: Duration::from_secs(0),
805                    qubo_generation_time: Duration::from_secs(0),
806                    compilation_time: Duration::from_secs(0),
807                    solving_time: Duration::from_secs(0),
808                    post_processing_time: Duration::from_secs(0),
809                    function_times: BTreeMap::new(),
810                    percentiles: Percentiles {
811                        p50: Duration::from_secs(0),
812                        p90: Duration::from_secs(0),
813                        p95: Duration::from_secs(0),
814                        p99: Duration::from_secs(0),
815                        p999: Duration::from_secs(0),
816                    },
817                },
818                memory_metrics: MemoryMetrics {
819                    peak_memory: 0,
820                    avg_memory: 0,
821                    allocations: 0,
822                    deallocations: 0,
823                    largest_allocation: 0,
824                    memory_timeline: Vec::new(),
825                },
826                computation_metrics: ComputationMetrics {
827                    flops: 0.0,
828                    memory_bandwidth: 0.0,
829                    cache_hit_rate: 0.0,
830                    branch_prediction_accuracy: 0.0,
831                    vectorization_efficiency: 0.0,
832                },
833                quality_metrics: QualityMetrics {
834                    quality_timeline: Vec::new(),
835                    convergence_rate: 0.0,
836                    improvement_per_iteration: 0.0,
837                    time_to_first_solution: Duration::from_secs(0),
838                    time_to_best_solution: Duration::from_secs(0),
839                },
840            },
841            call_graph: CallGraph {
842                nodes: Vec::new(),
843                edges: Vec::new(),
844                roots: Vec::new(),
845            },
846            resource_usage: ResourceUsage {
847                cpu_usage: Vec::new(),
848                memory_usage: Vec::new(),
849                gpu_usage: Vec::new(),
850                io_operations: Vec::new(),
851                network_operations: Vec::new(),
852            },
853        };
854
855        self.current_profile = Some(ProfileContext {
856            profile,
857            call_stack: Vec::new(),
858            timers: HashMap::new(),
859            metrics_buffer: MetricsBuffer::default(),
860        });
861
862        // Start metrics collection thread
863        if self.config.sampling_interval > Duration::from_secs(0) {
864            Self::start_metrics_collection()?;
865        }
866
867        Ok(())
868    }
869
870    /// Stop profiling
871    pub fn stop_profile(&mut self) -> Result<Profile, String> {
872        if !self.config.enabled {
873            return Err("Profiling not enabled".to_string());
874        }
875
876        let mut context = self
877            .current_profile
878            .take()
879            .ok_or("No profile in progress")?;
880
881        context.profile.end_time = Some(Instant::now());
882
883        // Calculate total time
884        context.profile.metrics.time_metrics.total_time = context
885            .profile
886            .end_time
887            .expect("Profile end_time should be set before calculating total time")
888            - context.profile.start_time;
889
890        // Process metrics buffer
891        Self::process_metrics_buffer(&mut context)?;
892
893        // Build call graph
894        Self::build_call_graph(&mut context.profile)?;
895
896        // Calculate percentiles
897        Self::calculate_percentiles(&mut context.profile)?;
898
899        // Store profile
900        self.profiles.push(context.profile.clone());
901
902        Ok(context.profile)
903    }
904
905    /// Record function entry
906    pub fn enter_function(&mut self, name: &str) -> FunctionGuard {
907        if !self.config.enabled {
908            return FunctionGuard {
909                profiler: None,
910                name: String::new(),
911            };
912        }
913
914        if let Some(ref mut context) = self.current_profile {
915            let event = ProfileEvent {
916                timestamp: Instant::now(),
917                event_type: EventType::FunctionCall,
918                name: name.to_string(),
919                duration: None,
920                data: HashMap::new(),
921                thread_id: thread::current().id(),
922            };
923
924            context.profile.events.push(event);
925            context.call_stack.push((name.to_string(), Instant::now()));
926        }
927
928        FunctionGuard {
929            profiler: Some(std::ptr::from_mut::<Self>(self)),
930            name: name.to_string(),
931        }
932    }
933
934    /// Record function exit
935    fn exit_function(&mut self, name: &str) {
936        if let Some(ref mut context) = self.current_profile {
937            if let Some((_, enter_time)) = context.call_stack.pop() {
938                let duration = enter_time.elapsed();
939
940                let event = ProfileEvent {
941                    timestamp: Instant::now(),
942                    event_type: EventType::FunctionReturn,
943                    name: name.to_string(),
944                    duration: Some(duration),
945                    data: HashMap::new(),
946                    thread_id: thread::current().id(),
947                };
948
949                context.profile.events.push(event);
950
951                // Update function times
952                *context
953                    .profile
954                    .metrics
955                    .time_metrics
956                    .function_times
957                    .entry(name.to_string())
958                    .or_insert(Duration::from_secs(0)) += duration;
959            }
960        }
961    }
962
963    /// Start timer
964    pub fn start_timer(&mut self, name: &str) {
965        if !self.config.enabled {
966            return;
967        }
968
969        if let Some(ref mut context) = self.current_profile {
970            context.timers.insert(name.to_string(), Instant::now());
971        }
972    }
973
974    /// Stop timer
975    pub fn stop_timer(&mut self, name: &str) -> Option<Duration> {
976        if !self.config.enabled {
977            return None;
978        }
979
980        if let Some(ref mut context) = self.current_profile {
981            if let Some(start_time) = context.timers.remove(name) {
982                let duration = start_time.elapsed();
983
984                // Store in appropriate metric
985                match name {
986                    "qubo_generation" => {
987                        context.profile.metrics.time_metrics.qubo_generation_time = duration;
988                    }
989                    "compilation" => {
990                        context.profile.metrics.time_metrics.compilation_time = duration;
991                    }
992                    "solving" => {
993                        context.profile.metrics.time_metrics.solving_time = duration;
994                    }
995                    "post_processing" => {
996                        context.profile.metrics.time_metrics.post_processing_time = duration;
997                    }
998                    _ => {
999                        context
1000                            .metrics_buffer
1001                            .time_samples
1002                            .push((name.to_string(), duration));
1003                    }
1004                }
1005
1006                return Some(duration);
1007            }
1008        }
1009
1010        None
1011    }
1012
1013    /// Record memory allocation
1014    pub fn record_allocation(&mut self, size: usize) {
1015        if !self.config.enabled || !self.config.profile_memory {
1016            return;
1017        }
1018
1019        if let Some(ref mut context) = self.current_profile {
1020            context.profile.metrics.memory_metrics.allocations += 1;
1021            context.profile.metrics.memory_metrics.largest_allocation = context
1022                .profile
1023                .metrics
1024                .memory_metrics
1025                .largest_allocation
1026                .max(size);
1027
1028            let event = ProfileEvent {
1029                timestamp: Instant::now(),
1030                event_type: EventType::MemoryAlloc,
1031                name: "allocation".to_string(),
1032                duration: None,
1033                data: {
1034                    let mut data = HashMap::new();
1035                    data.insert("size".to_string(), size.to_string());
1036                    data
1037                },
1038                thread_id: thread::current().id(),
1039            };
1040
1041            context.profile.events.push(event);
1042        }
1043    }
1044
1045    /// Record memory deallocation
1046    pub fn record_deallocation(&mut self, size: usize) {
1047        if !self.config.enabled || !self.config.profile_memory {
1048            return;
1049        }
1050
1051        if let Some(ref mut context) = self.current_profile {
1052            context.profile.metrics.memory_metrics.deallocations += 1;
1053
1054            let event = ProfileEvent {
1055                timestamp: Instant::now(),
1056                event_type: EventType::MemoryFree,
1057                name: "deallocation".to_string(),
1058                duration: None,
1059                data: {
1060                    let mut data = HashMap::new();
1061                    data.insert("size".to_string(), size.to_string());
1062                    data
1063                },
1064                thread_id: thread::current().id(),
1065            };
1066
1067            context.profile.events.push(event);
1068        }
1069    }
1070
1071    /// Record solution quality
1072    pub fn record_solution_quality(&mut self, quality: f64) {
1073        if !self.config.enabled {
1074            return;
1075        }
1076
1077        if let Some(ref mut context) = self.current_profile {
1078            let elapsed = context.profile.start_time.elapsed();
1079            context
1080                .profile
1081                .metrics
1082                .quality_metrics
1083                .quality_timeline
1084                .push((elapsed, quality));
1085
1086            // Update time to first solution
1087            if context
1088                .profile
1089                .metrics
1090                .quality_metrics
1091                .quality_timeline
1092                .len()
1093                == 1
1094            {
1095                context
1096                    .profile
1097                    .metrics
1098                    .quality_metrics
1099                    .time_to_first_solution = elapsed;
1100            }
1101        }
1102    }
1103
1104    /// Start metrics collection
1105    const fn start_metrics_collection() -> Result<(), String> {
1106        // This would spawn a thread to collect metrics periodically
1107        // Simplified for now
1108        Ok(())
1109    }
1110
1111    /// Process metrics buffer
1112    fn process_metrics_buffer(context: &mut ProfileContext) -> Result<(), String> {
1113        // Calculate memory statistics
1114        if !context.metrics_buffer.memory_samples.is_empty() {
1115            let total_memory: usize = context
1116                .metrics_buffer
1117                .memory_samples
1118                .iter()
1119                .map(|(_, mem)| mem)
1120                .sum();
1121            context.profile.metrics.memory_metrics.avg_memory =
1122                total_memory / context.metrics_buffer.memory_samples.len();
1123
1124            context.profile.metrics.memory_metrics.peak_memory = context
1125                .metrics_buffer
1126                .memory_samples
1127                .iter()
1128                .map(|(_, mem)| *mem)
1129                .max()
1130                .unwrap_or(0);
1131
1132            context.profile.metrics.memory_metrics.memory_timeline =
1133                context.metrics_buffer.memory_samples.clone();
1134        }
1135
1136        // Calculate CPU statistics
1137        if !context.metrics_buffer.cpu_samples.is_empty() {
1138            context.profile.resource_usage.cpu_usage = context.metrics_buffer.cpu_samples.clone();
1139        }
1140
1141        Ok(())
1142    }
1143
1144    /// Build call graph
1145    fn build_call_graph(profile: &mut Profile) -> Result<(), String> {
1146        let mut node_map: HashMap<String, usize> = HashMap::new();
1147        let mut nodes = Vec::new();
1148        let mut edges: HashMap<(usize, usize), CallEdge> = HashMap::new();
1149
1150        // Create nodes
1151        for (func_name, &total_time) in &profile.metrics.time_metrics.function_times {
1152            let node_id = nodes.len();
1153            node_map.insert(func_name.clone(), node_id);
1154
1155            nodes.push(CallNode {
1156                id: node_id,
1157                name: func_name.clone(),
1158                total_time,
1159                self_time: total_time,            // Will be adjusted
1160                call_count: 0,                    // Will be counted
1161                avg_time: Duration::from_secs(0), // Will be calculated
1162            });
1163        }
1164
1165        // Count calls and build edges
1166        let mut call_stack: Vec<usize> = Vec::new();
1167
1168        for event in &profile.events {
1169            match event.event_type {
1170                EventType::FunctionCall => {
1171                    if let Some(&node_id) = node_map.get(&event.name) {
1172                        nodes[node_id].call_count += 1;
1173
1174                        if let Some(&parent_id) = call_stack.last() {
1175                            let edge_key = (parent_id, node_id);
1176                            edges
1177                                .entry(edge_key)
1178                                .and_modify(|e| e.call_count += 1)
1179                                .or_insert(CallEdge {
1180                                    from: parent_id,
1181                                    to: node_id,
1182                                    call_count: 1,
1183                                    total_time: Duration::from_secs(0),
1184                                });
1185                        }
1186
1187                        call_stack.push(node_id);
1188                    }
1189                }
1190                EventType::FunctionReturn => {
1191                    call_stack.pop();
1192                }
1193                _ => {}
1194            }
1195        }
1196
1197        // Calculate average times
1198        for node in &mut nodes {
1199            if node.call_count > 0 {
1200                node.avg_time = node.total_time / node.call_count as u32;
1201            }
1202        }
1203
1204        // Find root nodes
1205        let mut has_parent = vec![false; nodes.len()];
1206        for edge in edges.values() {
1207            has_parent[edge.to] = true;
1208        }
1209
1210        let roots: Vec<usize> = (0..nodes.len()).filter(|&i| !has_parent[i]).collect();
1211
1212        profile.call_graph = CallGraph {
1213            nodes,
1214            edges: edges.into_values().collect(),
1215            roots,
1216        };
1217
1218        Ok(())
1219    }
1220
1221    /// Calculate percentiles
1222    fn calculate_percentiles(profile: &mut Profile) -> Result<(), String> {
1223        let mut durations: Vec<Duration> =
1224            profile.events.iter().filter_map(|e| e.duration).collect();
1225
1226        if durations.is_empty() {
1227            return Ok(());
1228        }
1229
1230        durations.sort();
1231
1232        let len = durations.len();
1233        profile.metrics.time_metrics.percentiles = Percentiles {
1234            p50: durations[len * 50 / 100],
1235            p90: durations[len * 90 / 100],
1236            p95: durations[len * 95 / 100],
1237            p99: durations[len * 99 / 100],
1238            p999: durations[len.saturating_sub(1)],
1239        };
1240
1241        Ok(())
1242    }
1243
1244    /// Analyze profile
1245    pub fn analyze_profile(&self, profile: &Profile) -> AnalysisReport {
1246        self.analyzer.analyze(profile)
1247    }
1248
1249    /// Compare profiles
1250    pub fn compare_profiles(&self, profile1: &Profile, profile2: &Profile) -> ComparisonReport {
1251        ComparisonReport {
1252            time_comparison: Self::compare_time_metrics(
1253                &profile1.metrics.time_metrics,
1254                &profile2.metrics.time_metrics,
1255            ),
1256            memory_comparison: Self::compare_memory_metrics(
1257                &profile1.metrics.memory_metrics,
1258                &profile2.metrics.memory_metrics,
1259            ),
1260            quality_comparison: Self::compare_quality_metrics(
1261                &profile1.metrics.quality_metrics,
1262                &profile2.metrics.quality_metrics,
1263            ),
1264            regressions: Vec::new(),
1265            improvements: Vec::new(),
1266        }
1267    }
1268
1269    /// Compare time metrics
1270    fn compare_time_metrics(m1: &TimeMetrics, m2: &TimeMetrics) -> TimeComparison {
1271        TimeComparison {
1272            total_time_diff: m2.total_time.as_secs_f64() - m1.total_time.as_secs_f64(),
1273            total_time_ratio: m2.total_time.as_secs_f64() / m1.total_time.as_secs_f64(),
1274            qubo_time_diff: m2.qubo_generation_time.as_secs_f64()
1275                - m1.qubo_generation_time.as_secs_f64(),
1276            solving_time_diff: m2.solving_time.as_secs_f64() - m1.solving_time.as_secs_f64(),
1277            function_diffs: BTreeMap::new(), // TODO: implement
1278        }
1279    }
1280
1281    /// Compare memory metrics
1282    fn compare_memory_metrics(m1: &MemoryMetrics, m2: &MemoryMetrics) -> MemoryComparison {
1283        MemoryComparison {
1284            peak_memory_diff: m2.peak_memory as i64 - m1.peak_memory as i64,
1285            peak_memory_ratio: m2.peak_memory as f64 / m1.peak_memory as f64,
1286            avg_memory_diff: m2.avg_memory as i64 - m1.avg_memory as i64,
1287            allocations_diff: m2.allocations as i64 - m1.allocations as i64,
1288        }
1289    }
1290
1291    /// Compare quality metrics
1292    fn compare_quality_metrics(m1: &QualityMetrics, m2: &QualityMetrics) -> QualityComparison {
1293        QualityComparison {
1294            convergence_rate_diff: m2.convergence_rate - m1.convergence_rate,
1295            time_to_best_diff: m2.time_to_best_solution.as_secs_f64()
1296                - m1.time_to_best_solution.as_secs_f64(),
1297            final_quality_diff: 0.0, // TODO: implement
1298        }
1299    }
1300
1301    /// Generate report
1302    pub fn generate_report(
1303        &self,
1304        profile: &Profile,
1305        format: &OutputFormat,
1306    ) -> Result<String, String> {
1307        match format {
1308            OutputFormat::Json => Self::generate_json_report(profile),
1309            OutputFormat::Csv => Self::generate_csv_report(profile),
1310            OutputFormat::FlameGraph => Self::generate_flame_graph(profile),
1311            OutputFormat::ChromeTrace => Self::generate_chrome_trace(profile),
1312            OutputFormat::Binary => Err("Format not implemented".to_string()),
1313        }
1314    }
1315
1316    /// Generate JSON report
1317    fn generate_json_report(profile: &Profile) -> Result<String, String> {
1318        use std::fmt::Write;
1319
1320        let mut json = String::new();
1321
1322        // Build comprehensive JSON report
1323        json.push_str("{\n");
1324
1325        // Profile metadata
1326        json.push_str("  \"metadata\": {\n");
1327        writeln!(&mut json, "    \"id\": \"{}\",", profile.id)
1328            .expect("Failed to write profile ID to JSON report");
1329        writeln!(
1330            &mut json,
1331            "    \"start_time\": {},",
1332            profile.start_time.elapsed().as_millis()
1333        )
1334        .expect("Failed to write start_time to JSON report");
1335        if let Some(end_time) = profile.end_time {
1336            writeln!(
1337                &mut json,
1338                "    \"end_time\": {},",
1339                end_time.elapsed().as_millis()
1340            )
1341            .expect("Failed to write end_time to JSON report");
1342        }
1343        json.push_str("    \"duration_ms\": ");
1344        write!(
1345            &mut json,
1346            "{}",
1347            profile.metrics.time_metrics.total_time.as_millis()
1348        )
1349        .expect("Failed to write duration_ms to JSON report");
1350        json.push_str("\n  },\n");
1351
1352        // Time metrics
1353        json.push_str("  \"time_metrics\": {\n");
1354        writeln!(
1355            &mut json,
1356            "    \"total_time_ms\": {},",
1357            profile.metrics.time_metrics.total_time.as_millis()
1358        )
1359        .expect("Failed to write total_time_ms to JSON report");
1360        writeln!(
1361            &mut json,
1362            "    \"qubo_generation_ms\": {},",
1363            profile
1364                .metrics
1365                .time_metrics
1366                .qubo_generation_time
1367                .as_millis()
1368        )
1369        .expect("Failed to write qubo_generation_ms to JSON report");
1370        writeln!(
1371            &mut json,
1372            "    \"compilation_ms\": {},",
1373            profile.metrics.time_metrics.compilation_time.as_millis()
1374        )
1375        .expect("Failed to write compilation_ms to JSON report");
1376        writeln!(
1377            &mut json,
1378            "    \"solving_ms\": {},",
1379            profile.metrics.time_metrics.solving_time.as_millis()
1380        )
1381        .expect("Failed to write solving_ms to JSON report");
1382        writeln!(
1383            &mut json,
1384            "    \"post_processing_ms\": {},",
1385            profile
1386                .metrics
1387                .time_metrics
1388                .post_processing_time
1389                .as_millis()
1390        )
1391        .expect("Failed to write post_processing_ms to JSON report");
1392
1393        // Function times
1394        json.push_str("    \"function_times\": {\n");
1395        let func_entries: Vec<_> = profile.metrics.time_metrics.function_times.iter().collect();
1396        for (i, (func, time)) in func_entries.iter().enumerate() {
1397            write!(&mut json, "      \"{}\": {}", func, time.as_millis())
1398                .expect("Failed to write function time entry to JSON report");
1399            if i < func_entries.len() - 1 {
1400                json.push(',');
1401            }
1402            json.push('\n');
1403        }
1404        json.push_str("    },\n");
1405
1406        // Percentiles
1407        json.push_str("    \"percentiles_ms\": {\n");
1408        writeln!(
1409            &mut json,
1410            "      \"p50\": {},",
1411            profile.metrics.time_metrics.percentiles.p50.as_millis()
1412        )
1413        .expect("Failed to write p50 percentile to JSON report");
1414        writeln!(
1415            &mut json,
1416            "      \"p90\": {},",
1417            profile.metrics.time_metrics.percentiles.p90.as_millis()
1418        )
1419        .expect("Failed to write p90 percentile to JSON report");
1420        writeln!(
1421            &mut json,
1422            "      \"p95\": {},",
1423            profile.metrics.time_metrics.percentiles.p95.as_millis()
1424        )
1425        .expect("Failed to write p95 percentile to JSON report");
1426        writeln!(
1427            &mut json,
1428            "      \"p99\": {},",
1429            profile.metrics.time_metrics.percentiles.p99.as_millis()
1430        )
1431        .expect("Failed to write p99 percentile to JSON report");
1432        writeln!(
1433            &mut json,
1434            "      \"p999\": {}",
1435            profile.metrics.time_metrics.percentiles.p999.as_millis()
1436        )
1437        .expect("Failed to write p999 percentile to JSON report");
1438        json.push_str("    }\n");
1439        json.push_str("  },\n");
1440
1441        // Memory metrics
1442        json.push_str("  \"memory_metrics\": {\n");
1443        writeln!(
1444            &mut json,
1445            "    \"peak_memory_bytes\": {},",
1446            profile.metrics.memory_metrics.peak_memory
1447        )
1448        .expect("Failed to write peak_memory_bytes to JSON report");
1449        writeln!(
1450            &mut json,
1451            "    \"avg_memory_bytes\": {},",
1452            profile.metrics.memory_metrics.avg_memory
1453        )
1454        .expect("Failed to write avg_memory_bytes to JSON report");
1455        writeln!(
1456            &mut json,
1457            "    \"allocations\": {},",
1458            profile.metrics.memory_metrics.allocations
1459        )
1460        .expect("Failed to write allocations to JSON report");
1461        writeln!(
1462            &mut json,
1463            "    \"deallocations\": {},",
1464            profile.metrics.memory_metrics.deallocations
1465        )
1466        .expect("Failed to write deallocations to JSON report");
1467        writeln!(
1468            &mut json,
1469            "    \"largest_allocation_bytes\": {}",
1470            profile.metrics.memory_metrics.largest_allocation
1471        )
1472        .expect("Failed to write largest_allocation_bytes to JSON report");
1473        json.push_str("  },\n");
1474
1475        // Computation metrics
1476        json.push_str("  \"computation_metrics\": {\n");
1477        writeln!(
1478            &mut json,
1479            "    \"flops\": {},",
1480            profile.metrics.computation_metrics.flops
1481        )
1482        .expect("Failed to write flops to JSON report");
1483        writeln!(
1484            &mut json,
1485            "    \"memory_bandwidth_gbps\": {},",
1486            profile.metrics.computation_metrics.memory_bandwidth
1487        )
1488        .expect("Failed to write memory_bandwidth_gbps to JSON report");
1489        writeln!(
1490            &mut json,
1491            "    \"cache_hit_rate\": {},",
1492            profile.metrics.computation_metrics.cache_hit_rate
1493        )
1494        .expect("Failed to write cache_hit_rate to JSON report");
1495        writeln!(
1496            &mut json,
1497            "    \"branch_prediction_accuracy\": {},",
1498            profile
1499                .metrics
1500                .computation_metrics
1501                .branch_prediction_accuracy
1502        )
1503        .expect("Failed to write branch_prediction_accuracy to JSON report");
1504        writeln!(
1505            &mut json,
1506            "    \"vectorization_efficiency\": {}",
1507            profile.metrics.computation_metrics.vectorization_efficiency
1508        )
1509        .expect("Failed to write vectorization_efficiency to JSON report");
1510        json.push_str("  },\n");
1511
1512        // Quality metrics
1513        json.push_str("  \"quality_metrics\": {\n");
1514        writeln!(
1515            &mut json,
1516            "    \"convergence_rate\": {},",
1517            profile.metrics.quality_metrics.convergence_rate
1518        )
1519        .expect("Failed to write convergence_rate to JSON report");
1520        writeln!(
1521            &mut json,
1522            "    \"improvement_per_iteration\": {},",
1523            profile.metrics.quality_metrics.improvement_per_iteration
1524        )
1525        .expect("Failed to write improvement_per_iteration to JSON report");
1526        writeln!(
1527            &mut json,
1528            "    \"time_to_first_solution_ms\": {},",
1529            profile
1530                .metrics
1531                .quality_metrics
1532                .time_to_first_solution
1533                .as_millis()
1534        )
1535        .expect("Failed to write time_to_first_solution_ms to JSON report");
1536        writeln!(
1537            &mut json,
1538            "    \"time_to_best_solution_ms\": {},",
1539            profile
1540                .metrics
1541                .quality_metrics
1542                .time_to_best_solution
1543                .as_millis()
1544        )
1545        .expect("Failed to write time_to_best_solution_ms to JSON report");
1546
1547        // Quality timeline
1548        json.push_str("    \"quality_timeline\": [\n");
1549        for (i, (time, quality)) in profile
1550            .metrics
1551            .quality_metrics
1552            .quality_timeline
1553            .iter()
1554            .enumerate()
1555        {
1556            json.push_str("      {\n");
1557            writeln!(&mut json, "        \"time_ms\": {},", time.as_millis())
1558                .expect("Failed to write quality timeline time_ms to JSON report");
1559            writeln!(&mut json, "        \"quality\": {quality}")
1560                .expect("Failed to write quality timeline quality value to JSON report");
1561            json.push_str("      }");
1562            if i < profile.metrics.quality_metrics.quality_timeline.len() - 1 {
1563                json.push(',');
1564            }
1565            json.push('\n');
1566        }
1567        json.push_str("    ]\n");
1568        json.push_str("  },\n");
1569
1570        // Call graph
1571        json.push_str("  \"call_graph\": {\n");
1572        json.push_str("    \"nodes\": [\n");
1573        for (i, node) in profile.call_graph.nodes.iter().enumerate() {
1574            json.push_str("      {\n");
1575            writeln!(&mut json, "        \"id\": {},", node.id)
1576                .expect("Failed to write call graph node id to JSON report");
1577            writeln!(
1578                &mut json,
1579                "        \"name\": \"{}\",",
1580                node.name.replace('"', "\\\"")
1581            )
1582            .expect("Failed to write call graph node name to JSON report");
1583            writeln!(
1584                &mut json,
1585                "        \"total_time_ms\": {},",
1586                node.total_time.as_millis()
1587            )
1588            .expect("Failed to write call graph node total_time_ms to JSON report");
1589            writeln!(
1590                &mut json,
1591                "        \"self_time_ms\": {},",
1592                node.self_time.as_millis()
1593            )
1594            .expect("Failed to write call graph node self_time_ms to JSON report");
1595            writeln!(&mut json, "        \"call_count\": {},", node.call_count)
1596                .expect("Failed to write call graph node call_count to JSON report");
1597            writeln!(
1598                &mut json,
1599                "        \"avg_time_ms\": {}",
1600                node.avg_time.as_millis()
1601            )
1602            .expect("Failed to write call graph node avg_time_ms to JSON report");
1603            json.push_str("      }");
1604            if i < profile.call_graph.nodes.len() - 1 {
1605                json.push(',');
1606            }
1607            json.push('\n');
1608        }
1609        json.push_str("    ],\n");
1610
1611        json.push_str("    \"edges\": [\n");
1612        for (i, edge) in profile.call_graph.edges.iter().enumerate() {
1613            json.push_str("      {\n");
1614            writeln!(&mut json, "        \"from\": {},", edge.from)
1615                .expect("Failed to write call graph edge from to JSON report");
1616            writeln!(&mut json, "        \"to\": {},", edge.to)
1617                .expect("Failed to write call graph edge to to JSON report");
1618            writeln!(&mut json, "        \"call_count\": {},", edge.call_count)
1619                .expect("Failed to write call graph edge call_count to JSON report");
1620            writeln!(
1621                &mut json,
1622                "        \"total_time_ms\": {}",
1623                edge.total_time.as_millis()
1624            )
1625            .expect("Failed to write call graph edge total_time_ms to JSON report");
1626            json.push_str("      }");
1627            if i < profile.call_graph.edges.len() - 1 {
1628                json.push(',');
1629            }
1630            json.push('\n');
1631        }
1632        json.push_str("    ]\n");
1633        json.push_str("  },\n");
1634
1635        // Events summary
1636        json.push_str("  \"events_summary\": {\n");
1637        writeln!(&mut json, "    \"total_events\": {},", profile.events.len())
1638            .expect("Failed to write total_events to JSON report");
1639
1640        // Count events by type
1641        let mut event_counts = std::collections::BTreeMap::new();
1642        for event in &profile.events {
1643            let type_name = match &event.event_type {
1644                EventType::FunctionCall => "function_call",
1645                EventType::FunctionReturn => "function_return",
1646                EventType::MemoryAlloc => "memory_alloc",
1647                EventType::MemoryFree => "memory_free",
1648                EventType::IOOperation => "io_operation",
1649                EventType::Synchronization => "synchronization",
1650                EventType::Custom(name) => name,
1651            };
1652            *event_counts.entry(type_name).or_insert(0) += 1;
1653        }
1654
1655        json.push_str("    \"event_counts\": {\n");
1656        let count_entries: Vec<_> = event_counts.iter().collect();
1657        for (i, (event_type, count)) in count_entries.iter().enumerate() {
1658            write!(&mut json, "      \"{event_type}\": {count}")
1659                .expect("Failed to write event count entry to JSON report");
1660            if i < count_entries.len() - 1 {
1661                json.push(',');
1662            }
1663            json.push('\n');
1664        }
1665        json.push_str("    }\n");
1666        json.push_str("  }\n");
1667
1668        json.push_str("}\n");
1669
1670        Ok(json)
1671    }
1672
1673    /// Generate CSV report
1674    fn generate_csv_report(profile: &Profile) -> Result<String, String> {
1675        let mut csv = String::new();
1676
1677        csv.push_str("function,total_time_ms,call_count,avg_time_ms\n");
1678
1679        for node in &profile.call_graph.nodes {
1680            csv.push_str(&format!(
1681                "{},{},{},{}\n",
1682                node.name,
1683                node.total_time.as_millis(),
1684                node.call_count,
1685                node.avg_time.as_millis()
1686            ));
1687        }
1688
1689        Ok(csv)
1690    }
1691
1692    /// Generate flame graph
1693    fn generate_flame_graph(profile: &Profile) -> Result<String, String> {
1694        // Simplified flame graph generation
1695        let mut stacks = Vec::new();
1696
1697        for node in &profile.call_graph.nodes {
1698            let stack = vec![node.name.clone()];
1699            let value = node.self_time.as_micros() as usize;
1700            stacks.push((stack, value));
1701        }
1702
1703        // Would use inferno crate for actual flame graph generation
1704        Ok(format!("Flame graph with {} stacks", stacks.len()))
1705    }
1706
1707    /// Generate Chrome trace format
1708    fn generate_chrome_trace(profile: &Profile) -> Result<String, String> {
1709        #[derive(Serialize)]
1710        struct TraceEvent {
1711            name: String,
1712            cat: String,
1713            ph: String,
1714            ts: u64,
1715            dur: Option<u64>,
1716            pid: u32,
1717            tid: String,
1718        }
1719
1720        let mut events = Vec::new();
1721
1722        for event in &profile.events {
1723            let trace_event = TraceEvent {
1724                name: event.name.clone(),
1725                cat: "function".to_string(),
1726                ph: match event.event_type {
1727                    EventType::FunctionCall => "B".to_string(),
1728                    EventType::FunctionReturn => "E".to_string(),
1729                    _ => "i".to_string(),
1730                },
1731                ts: event.timestamp.elapsed().as_micros() as u64,
1732                dur: event.duration.map(|d| d.as_micros() as u64),
1733                pid: std::process::id(),
1734                tid: format!("{:?}", event.thread_id),
1735            };
1736
1737            events.push(trace_event);
1738        }
1739
1740        serde_json::to_string(&events).map_err(|e| format!("JSON serialization error: {e}"))
1741    }
1742
1743    /// Visualize profile
1744    #[cfg(feature = "plotters")]
1745    pub fn visualize_profile(&self, profile: &Profile, output_path: &str) -> Result<(), String> {
1746        let root = BitMapBackend::new(output_path, (1024, 768)).into_drawing_area();
1747        root.fill(&WHITE)
1748            .map_err(|e| format!("Drawing error: {e}"))?;
1749
1750        let mut chart = ChartBuilder::on(&root)
1751            .caption("Performance Profile", ("sans-serif", 40))
1752            .margin(10)
1753            .x_label_area_size(30)
1754            .y_label_area_size(40)
1755            .build_cartesian_2d(
1756                0f64..profile.metrics.time_metrics.total_time.as_secs_f64(),
1757                0f64..100f64,
1758            )
1759            .map_err(|e| format!("Chart error: {e}"))?;
1760
1761        chart
1762            .configure_mesh()
1763            .draw()
1764            .map_err(|e| format!("Mesh error: {e}"))?;
1765
1766        // Plot CPU usage
1767        if !profile.resource_usage.cpu_usage.is_empty() {
1768            let cpu_data: Vec<(f64, f64)> = profile
1769                .resource_usage
1770                .cpu_usage
1771                .iter()
1772                .map(|(t, usage)| (t.duration_since(profile.start_time).as_secs_f64(), *usage))
1773                .collect();
1774
1775            chart
1776                .draw_series(LineSeries::new(cpu_data, &RED))
1777                .map_err(|e| format!("Series error: {e}"))?
1778                .label("CPU Usage")
1779                .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 10, y)], RED));
1780        }
1781
1782        chart
1783            .configure_series_labels()
1784            .background_style(WHITE.mix(0.8))
1785            .border_style(BLACK)
1786            .draw()
1787            .map_err(|e| format!("Legend error: {e}"))?;
1788
1789        root.present().map_err(|e| format!("Present error: {e}"))?;
1790
1791        Ok(())
1792    }
1793}
1794
1795/// RAII guard for function profiling
1796pub struct FunctionGuard {
1797    profiler: Option<*mut PerformanceProfiler>,
1798    name: String,
1799}
1800
1801impl Drop for FunctionGuard {
1802    fn drop(&mut self) {
1803        if let Some(profiler_ptr) = self.profiler {
1804            unsafe {
1805                (*profiler_ptr).exit_function(&self.name);
1806            }
1807        }
1808    }
1809}
1810
1811unsafe impl Send for FunctionGuard {}
1812
1813impl PerformanceAnalyzer {
1814    /// Create new analyzer
1815    pub fn new(config: AnalysisConfig) -> Self {
1816        Self {
1817            config,
1818            bottleneck_detector: BottleneckDetector {
1819                hot_function_threshold: 0.1, // 10% of total time
1820                detect_memory_leaks: true,
1821                detect_contention: true,
1822            },
1823            optimization_suggester: OptimizationSuggester {
1824                rules: Self::default_optimization_rules(),
1825                history: Vec::new(),
1826            },
1827        }
1828    }
1829
1830    /// Default optimization rules
1831    fn default_optimization_rules() -> Vec<OptimizationRule> {
1832        vec![
1833            OptimizationRule {
1834                name: "Hot function optimization".to_string(),
1835                condition: RuleCondition::HighFunctionTime {
1836                    function: "any".to_string(),
1837                    threshold: Duration::from_millis(100),
1838                },
1839                suggestion: "Consider optimizing this function or caching results".to_string(),
1840                improvement: 0.2,
1841            },
1842            OptimizationRule {
1843                name: "Memory optimization".to_string(),
1844                condition: RuleCondition::HighMemoryUsage {
1845                    threshold: 1024 * 1024 * 1024, // 1GB
1846                },
1847                suggestion: "Consider using more memory-efficient data structures".to_string(),
1848                improvement: 0.15,
1849            },
1850            OptimizationRule {
1851                name: "Cache optimization".to_string(),
1852                condition: RuleCondition::LowCacheHitRate { threshold: 0.8 },
1853                suggestion: "Consider improving data locality or cache-friendly algorithms"
1854                    .to_string(),
1855                improvement: 0.1,
1856            },
1857        ]
1858    }
1859
1860    /// Analyze profile
1861    pub fn analyze(&self, profile: &Profile) -> AnalysisReport {
1862        let mut report = AnalysisReport {
1863            bottlenecks: Vec::new(),
1864            optimizations: Vec::new(),
1865            anomalies: Vec::new(),
1866            summary: AnalysisSummary {
1867                total_time: profile.metrics.time_metrics.total_time,
1868                peak_memory: profile.metrics.memory_metrics.peak_memory,
1869                hot_functions: Vec::new(),
1870                critical_path: Vec::new(),
1871            },
1872        };
1873
1874        // Detect bottlenecks
1875        if self.config.detect_bottlenecks {
1876            report.bottlenecks = self.detect_bottlenecks(profile);
1877        }
1878
1879        // Suggest optimizations
1880        if self.config.suggest_optimizations {
1881            report.optimizations = self.suggest_optimizations(profile);
1882        }
1883
1884        // Detect anomalies
1885        if self.config.detect_anomalies {
1886            report.anomalies = Self::detect_anomalies(profile);
1887        }
1888
1889        // Find hot functions
1890        report.summary.hot_functions = Self::find_hot_functions(profile);
1891
1892        // Find critical path
1893        report.summary.critical_path = Self::find_critical_path(profile);
1894
1895        report
1896    }
1897
1898    /// Detect bottlenecks
1899    fn detect_bottlenecks(&self, profile: &Profile) -> Vec<Bottleneck> {
1900        let mut bottlenecks = Vec::new();
1901
1902        // CPU bottlenecks
1903        for node in &profile.call_graph.nodes {
1904            let time_percentage = node.total_time.as_secs_f64()
1905                / profile.metrics.time_metrics.total_time.as_secs_f64();
1906
1907            if time_percentage > self.bottleneck_detector.hot_function_threshold {
1908                bottlenecks.push(Bottleneck {
1909                    bottleneck_type: BottleneckType::CPU,
1910                    location: node.name.clone(),
1911                    severity: if time_percentage > 0.5 {
1912                        Severity::High
1913                    } else if time_percentage > 0.3 {
1914                        Severity::Medium
1915                    } else {
1916                        Severity::Low
1917                    },
1918                    impact: time_percentage,
1919                    description: format!(
1920                        "Function uses {:.1}% of total time",
1921                        time_percentage * 100.0
1922                    ),
1923                });
1924            }
1925        }
1926
1927        // Memory bottlenecks
1928        if self.bottleneck_detector.detect_memory_leaks {
1929            let alloc_dealloc_diff = profile.metrics.memory_metrics.allocations as i64
1930                - profile.metrics.memory_metrics.deallocations as i64;
1931
1932            if alloc_dealloc_diff > 1000 {
1933                bottlenecks.push(Bottleneck {
1934                    bottleneck_type: BottleneckType::Memory,
1935                    location: "global".to_string(),
1936                    severity: Severity::High,
1937                    impact: alloc_dealloc_diff as f64
1938                        / profile.metrics.memory_metrics.allocations as f64,
1939                    description: format!(
1940                        "Potential memory leak: {alloc_dealloc_diff} unfreed allocations"
1941                    ),
1942                });
1943            }
1944        }
1945
1946        bottlenecks
1947    }
1948
1949    /// Suggest optimizations
1950    fn suggest_optimizations(&self, profile: &Profile) -> Vec<OptimizationSuggestion> {
1951        let mut suggestions = Vec::new();
1952
1953        for rule in &self.optimization_suggester.rules {
1954            if Self::check_rule_condition(&rule.condition, profile) {
1955                suggestions.push(OptimizationSuggestion {
1956                    title: rule.name.clone(),
1957                    description: rule.suggestion.clone(),
1958                    expected_improvement: rule.improvement,
1959                    implementation_effort: ImplementationEffort::Medium,
1960                    priority: Priority::High,
1961                });
1962            }
1963        }
1964
1965        suggestions
1966    }
1967
1968    /// Check rule condition
1969    fn check_rule_condition(condition: &RuleCondition, profile: &Profile) -> bool {
1970        match condition {
1971            RuleCondition::HighFunctionTime {
1972                function,
1973                threshold,
1974            } => {
1975                if function == "any" {
1976                    profile
1977                        .call_graph
1978                        .nodes
1979                        .iter()
1980                        .any(|n| n.total_time > *threshold)
1981                } else {
1982                    profile
1983                        .call_graph
1984                        .nodes
1985                        .iter()
1986                        .any(|n| n.name == *function && n.total_time > *threshold)
1987                }
1988            }
1989            RuleCondition::HighMemoryUsage { threshold } => {
1990                profile.metrics.memory_metrics.peak_memory > *threshold
1991            }
1992            RuleCondition::LowCacheHitRate { threshold } => {
1993                profile.metrics.computation_metrics.cache_hit_rate < *threshold
1994            }
1995            RuleCondition::Custom(_) => false,
1996        }
1997    }
1998
1999    /// Detect anomalies
2000    fn detect_anomalies(profile: &Profile) -> Vec<Anomaly> {
2001        let mut anomalies = Vec::new();
2002
2003        // Check for unusual time distributions
2004        for node in &profile.call_graph.nodes {
2005            if node.call_count > 10 {
2006                let avg_time = node.avg_time.as_secs_f64();
2007                let total_time = node.total_time.as_secs_f64();
2008                let expected_total = avg_time * node.call_count as f64;
2009
2010                if (total_time - expected_total).abs() / expected_total > 0.5 {
2011                    anomalies.push(Anomaly {
2012                        anomaly_type: AnomalyType::Performance,
2013                        location: node.name.clone(),
2014                        description: "Unusual time distribution detected".to_string(),
2015                        confidence: 0.8,
2016                    });
2017                }
2018            }
2019        }
2020
2021        anomalies
2022    }
2023
2024    /// Find hot functions
2025    fn find_hot_functions(profile: &Profile) -> Vec<(String, f64)> {
2026        let total_time = profile.metrics.time_metrics.total_time.as_secs_f64();
2027
2028        let mut hot_functions: Vec<_> = profile
2029            .call_graph
2030            .nodes
2031            .iter()
2032            .map(|n| (n.name.clone(), n.total_time.as_secs_f64() / total_time))
2033            .collect();
2034
2035        hot_functions.sort_by(|a, b| {
2036            b.1.partial_cmp(&a.1)
2037                .expect("Failed to compare time percentages in hot function sorting")
2038        });
2039        hot_functions.truncate(10);
2040
2041        hot_functions
2042    }
2043
2044    /// Find critical path
2045    fn find_critical_path(profile: &Profile) -> Vec<String> {
2046        // Simplified critical path - longest execution path
2047        let mut path = Vec::new();
2048
2049        if let Some(&root) = profile.call_graph.roots.first() {
2050            let mut current = root;
2051            path.push(profile.call_graph.nodes[current].name.clone());
2052
2053            // Follow the most expensive child at each level
2054            while let Some(edge) = profile
2055                .call_graph
2056                .edges
2057                .iter()
2058                .filter(|e| e.from == current)
2059                .max_by_key(|e| profile.call_graph.nodes[e.to].total_time)
2060            {
2061                current = edge.to;
2062                path.push(profile.call_graph.nodes[current].name.clone());
2063            }
2064        }
2065
2066        path
2067    }
2068}
2069
2070/// Analysis report
2071#[derive(Debug, Clone)]
2072pub struct AnalysisReport {
2073    pub bottlenecks: Vec<Bottleneck>,
2074    pub optimizations: Vec<OptimizationSuggestion>,
2075    pub anomalies: Vec<Anomaly>,
2076    pub summary: AnalysisSummary,
2077}
2078
2079#[derive(Debug, Clone)]
2080pub struct Bottleneck {
2081    pub bottleneck_type: BottleneckType,
2082    pub location: String,
2083    pub severity: Severity,
2084    pub impact: f64,
2085    pub description: String,
2086}
2087
2088#[derive(Debug, Clone)]
2089pub enum BottleneckType {
2090    CPU,
2091    Memory,
2092    IO,
2093    Network,
2094    Contention,
2095}
2096
2097#[derive(Debug, Clone)]
2098pub enum Severity {
2099    Low,
2100    Medium,
2101    High,
2102    Critical,
2103}
2104
2105#[derive(Debug, Clone)]
2106pub struct OptimizationSuggestion {
2107    pub title: String,
2108    pub description: String,
2109    pub expected_improvement: f64,
2110    pub implementation_effort: ImplementationEffort,
2111    pub priority: Priority,
2112}
2113
2114#[derive(Debug, Clone)]
2115pub enum ImplementationEffort {
2116    Low,
2117    Medium,
2118    High,
2119}
2120
2121#[derive(Debug, Clone)]
2122pub enum Priority {
2123    Low,
2124    Medium,
2125    High,
2126    Critical,
2127}
2128
2129#[derive(Debug, Clone)]
2130pub struct Anomaly {
2131    pub anomaly_type: AnomalyType,
2132    pub location: String,
2133    pub description: String,
2134    pub confidence: f64,
2135}
2136
2137#[derive(Debug, Clone)]
2138pub enum AnomalyType {
2139    Performance,
2140    Memory,
2141    Behavior,
2142}
2143
2144#[derive(Debug, Clone)]
2145pub struct AnalysisSummary {
2146    pub total_time: Duration,
2147    pub peak_memory: usize,
2148    pub hot_functions: Vec<(String, f64)>,
2149    pub critical_path: Vec<String>,
2150}
2151
2152/// Comparison report
2153#[derive(Debug, Clone)]
2154pub struct ComparisonReport {
2155    pub time_comparison: TimeComparison,
2156    pub memory_comparison: MemoryComparison,
2157    pub quality_comparison: QualityComparison,
2158    pub regressions: Vec<Regression>,
2159    pub improvements: Vec<Improvement>,
2160}
2161
2162#[derive(Debug, Clone)]
2163pub struct TimeComparison {
2164    pub total_time_diff: f64,
2165    pub total_time_ratio: f64,
2166    pub qubo_time_diff: f64,
2167    pub solving_time_diff: f64,
2168    pub function_diffs: BTreeMap<String, f64>,
2169}
2170
2171#[derive(Debug, Clone)]
2172pub struct MemoryComparison {
2173    pub peak_memory_diff: i64,
2174    pub peak_memory_ratio: f64,
2175    pub avg_memory_diff: i64,
2176    pub allocations_diff: i64,
2177}
2178
2179#[derive(Debug, Clone)]
2180pub struct QualityComparison {
2181    pub convergence_rate_diff: f64,
2182    pub time_to_best_diff: f64,
2183    pub final_quality_diff: f64,
2184}
2185
2186#[derive(Debug, Clone)]
2187pub struct Regression {
2188    pub metric: String,
2189    pub old_value: f64,
2190    pub new_value: f64,
2191    pub change_percentage: f64,
2192    pub severity: Severity,
2193}
2194
2195#[derive(Debug, Clone)]
2196pub struct Improvement {
2197    pub metric: String,
2198    pub old_value: f64,
2199    pub new_value: f64,
2200    pub change_percentage: f64,
2201}
2202
2203/// Real-time performance monitor
2204pub struct RealTimeMonitor {
2205    /// Sampling interval
2206    sampling_interval: Duration,
2207    /// Collectors to use
2208    collector_names: Vec<String>,
2209    /// Live metrics
2210    live_metrics: Arc<Mutex<LiveMetrics>>,
2211    /// Monitor thread handle
2212    _monitor_handle: Option<thread::JoinHandle<()>>,
2213}
2214
2215impl RealTimeMonitor {
2216    pub fn new(sampling_interval: Duration, collector_names: Vec<String>) -> Result<Self, String> {
2217        let live_metrics = Arc::new(Mutex::new(LiveMetrics::default()));
2218
2219        Ok(Self {
2220            sampling_interval,
2221            collector_names,
2222            live_metrics,
2223            _monitor_handle: None,
2224        })
2225    }
2226
2227    pub fn get_live_metrics(&self) -> LiveMetrics {
2228        self.live_metrics
2229            .lock()
2230            .expect("Failed to acquire lock on live_metrics for reading")
2231            .clone()
2232    }
2233}
2234
2235#[derive(Debug, Clone, Default)]
2236pub struct LiveMetrics {
2237    pub current_cpu: f64,
2238    pub current_memory: usize,
2239    pub current_functions: Vec<(String, Duration)>,
2240    pub events_per_second: f64,
2241    pub last_update: Option<Instant>,
2242}
2243
2244/// Performance prediction system
2245pub struct PerformancePredictor {
2246    /// Historical profiles
2247    history: Vec<Profile>,
2248    /// Prediction model
2249    model: PredictionModel,
2250}
2251
2252impl PerformancePredictor {
2253    pub fn new(profiles: &[Profile]) -> Self {
2254        Self {
2255            history: profiles.to_vec(),
2256            model: PredictionModel::Linear,
2257        }
2258    }
2259
2260    pub fn predict(&self, characteristics: &ProblemCharacteristics) -> PerformancePrediction {
2261        // Simplified prediction based on problem size
2262        let base_time = Duration::from_millis(100);
2263        let complexity_factor = match characteristics.complexity {
2264            ProblemComplexity::Linear => characteristics.size as f64,
2265            ProblemComplexity::Quadratic => (characteristics.size as f64).powi(2),
2266            ProblemComplexity::Exponential => 2.0_f64.powi(characteristics.size.min(30) as i32),
2267        };
2268
2269        let estimated_time = base_time.mul_f64(complexity_factor / 1000.0);
2270        let estimated_memory = characteristics.size * 8; // 8 bytes per element
2271
2272        PerformancePrediction {
2273            estimated_runtime: estimated_time,
2274            estimated_memory,
2275            confidence: if self.history.len() > 5 { 0.8 } else { 0.5 },
2276            bottleneck_predictions: vec![
2277                BottleneckPrediction {
2278                    location: "QUBO generation".to_string(),
2279                    probability: 0.3,
2280                    predicted_impact: 0.4,
2281                },
2282                BottleneckPrediction {
2283                    location: "Solving".to_string(),
2284                    probability: 0.7,
2285                    predicted_impact: 0.6,
2286                },
2287            ],
2288        }
2289    }
2290}
2291
2292#[derive(Debug, Clone)]
2293pub enum PredictionModel {
2294    Linear,
2295    Polynomial,
2296    MachineLearning,
2297}
2298
2299#[derive(Debug, Clone)]
2300pub struct ProblemCharacteristics {
2301    pub size: usize,
2302    pub complexity: ProblemComplexity,
2303    pub sparsity: f64,
2304    pub symmetry: bool,
2305    pub structure: ProblemStructure,
2306}
2307
2308#[derive(Debug, Clone)]
2309pub enum ProblemComplexity {
2310    Linear,
2311    Quadratic,
2312    Exponential,
2313}
2314
2315#[derive(Debug, Clone)]
2316pub enum ProblemStructure {
2317    Dense,
2318    Sparse,
2319    Structured,
2320    Random,
2321}
2322
2323#[derive(Debug, Clone)]
2324pub struct PerformancePrediction {
2325    pub estimated_runtime: Duration,
2326    pub estimated_memory: usize,
2327    pub confidence: f64,
2328    pub bottleneck_predictions: Vec<BottleneckPrediction>,
2329}
2330
2331#[derive(Debug, Clone)]
2332pub struct BottleneckPrediction {
2333    pub location: String,
2334    pub probability: f64,
2335    pub predicted_impact: f64,
2336}
2337
2338/// Advanced optimization recommendations
2339#[derive(Debug, Clone)]
2340pub struct OptimizationRecommendation {
2341    pub title: String,
2342    pub description: String,
2343    pub category: RecommendationCategory,
2344    pub impact: RecommendationImpact,
2345    pub effort: ImplementationEffort,
2346    pub estimated_improvement: f64,
2347    pub code_suggestions: Vec<String>,
2348}
2349
2350#[derive(Debug, Clone)]
2351pub enum RecommendationCategory {
2352    Algorithm,
2353    Memory,
2354    IO,
2355    Parallelization,
2356    Caching,
2357    DataStructure,
2358}
2359
2360#[derive(Debug, Clone)]
2361pub enum RecommendationImpact {
2362    Low,
2363    Medium,
2364    High,
2365    Critical,
2366}
2367
2368/// External tool integration
2369#[derive(Debug, Clone)]
2370pub enum ExternalTool {
2371    Perf,
2372    Valgrind,
2373    FlameScope,
2374    SpeedScope,
2375}
2376
2377/// Continuous profiling
2378pub struct ContinuousProfiler {
2379    duration: Duration,
2380    sampling_interval: Duration,
2381    profiles: Vec<Profile>,
2382}
2383
2384impl ContinuousProfiler {
2385    pub const fn new(duration: Duration, sampling_interval: Duration) -> Self {
2386        Self {
2387            duration,
2388            sampling_interval,
2389            profiles: Vec::new(),
2390        }
2391    }
2392
2393    pub fn get_profiles(&self) -> &[Profile] {
2394        &self.profiles
2395    }
2396}
2397
2398/// Benchmark comparison
2399#[derive(Debug, Clone)]
2400pub struct BenchmarkComparison {
2401    pub profiles: Vec<String>,
2402    pub metrics_comparison: Vec<MetricComparison>,
2403    pub regression_analysis: Vec<RegressionAnalysis>,
2404    pub performance_trends: Vec<PerformanceTrendAnalysis>,
2405}
2406
2407#[derive(Debug, Clone)]
2408pub struct MetricComparison {
2409    pub metric_name: String,
2410    pub values: Vec<f64>,
2411    pub trend: PerformanceTrend,
2412    pub variance: f64,
2413}
2414
2415#[derive(Debug, Clone)]
2416pub enum PerformanceTrend {
2417    Improving,
2418    Stable,
2419    Degrading,
2420    Unknown,
2421}
2422
2423#[derive(Debug, Clone)]
2424pub struct RegressionAnalysis {
2425    pub metric: String,
2426    pub regression_coefficient: f64,
2427    pub correlation: f64,
2428    pub prediction_accuracy: f64,
2429}
2430
2431#[derive(Debug, Clone)]
2432pub struct PerformanceTrendAnalysis {
2433    pub function_name: String,
2434    pub trend: PerformanceTrend,
2435    pub rate_of_change: f64,
2436    pub statistical_significance: f64,
2437}
2438
2439/// Default collectors
2440struct TimeCollector;
2441
2442impl MetricsCollector for TimeCollector {
2443    fn collect(&self) -> Result<MetricsSample, String> {
2444        Ok(MetricsSample {
2445            timestamp: Instant::now(),
2446            values: HashMap::new(),
2447        })
2448    }
2449
2450    fn name(&self) -> &'static str {
2451        "TimeCollector"
2452    }
2453
2454    fn supported_metrics(&self) -> Vec<MetricType> {
2455        vec![MetricType::Time]
2456    }
2457}
2458
2459struct MemoryCollector;
2460
2461impl MetricsCollector for MemoryCollector {
2462    fn collect(&self) -> Result<MetricsSample, String> {
2463        // Would use system APIs to get actual memory usage
2464        let mut values = HashMap::new();
2465        values.insert(MetricType::Memory, 0.0);
2466
2467        Ok(MetricsSample {
2468            timestamp: Instant::now(),
2469            values,
2470        })
2471    }
2472
2473    fn name(&self) -> &'static str {
2474        "MemoryCollector"
2475    }
2476
2477    fn supported_metrics(&self) -> Vec<MetricType> {
2478        vec![MetricType::Memory]
2479    }
2480}
2481
2482struct CPUCollector;
2483
2484impl MetricsCollector for CPUCollector {
2485    fn collect(&self) -> Result<MetricsSample, String> {
2486        // Would use system APIs to get actual CPU usage
2487        let mut values = HashMap::new();
2488        values.insert(MetricType::CPU, 0.0);
2489
2490        Ok(MetricsSample {
2491            timestamp: Instant::now(),
2492            values,
2493        })
2494    }
2495
2496    fn name(&self) -> &'static str {
2497        "CPUCollector"
2498    }
2499
2500    fn supported_metrics(&self) -> Vec<MetricType> {
2501        vec![MetricType::CPU]
2502    }
2503}
2504
2505/// Profiling macros
2506#[macro_export]
2507macro_rules! profile {
2508    ($profiler:expr, $name:expr) => {
2509        $profiler.enter_function($name)
2510    };
2511}
2512
2513#[macro_export]
2514macro_rules! time_it {
2515    ($profiler:expr, $name:expr, $code:block) => {{
2516        $profiler.start_timer($name);
2517        let mut result = $code;
2518        $profiler.stop_timer($name);
2519        result
2520    }};
2521}
2522
2523#[cfg(test)]
2524mod tests {
2525    use super::*;
2526
2527    #[test]
2528    fn test_performance_profiler() {
2529        let mut config = ProfilerConfig {
2530            enabled: true,
2531            sampling_interval: Duration::from_millis(10),
2532            metrics: vec![MetricType::Time, MetricType::Memory],
2533            profile_memory: true,
2534            profile_cpu: true,
2535            profile_gpu: false,
2536            detailed_timing: true,
2537            output_format: OutputFormat::Json,
2538            auto_save_interval: None,
2539        };
2540
2541        let mut profiler = PerformanceProfiler::new(config);
2542
2543        // Start profiling
2544        let mut result = profiler.start_profile("test_profile");
2545        assert!(result.is_ok());
2546
2547        // Simulate some work
2548        {
2549            let _guard = profiler.enter_function("test_function");
2550            profiler.start_timer("computation");
2551            thread::sleep(Duration::from_millis(10));
2552            profiler.stop_timer("computation");
2553
2554            profiler.record_allocation(1024);
2555            profiler.record_solution_quality(0.5);
2556            profiler.record_deallocation(1024);
2557        }
2558
2559        // Stop profiling
2560        let profile = profiler.stop_profile();
2561        assert!(profile.is_ok());
2562
2563        let profile = profile.expect("Failed to stop profiling in test_performance_profiler");
2564        assert!(!profile.events.is_empty());
2565        assert!(profile.metrics.time_metrics.total_time > Duration::from_secs(0));
2566
2567        // Analyze profile
2568        let mut report = profiler.analyze_profile(&profile);
2569        assert!(report.summary.total_time > Duration::from_secs(0));
2570
2571        // Generate report
2572        let json_report = profiler.generate_report(&profile, &OutputFormat::Json);
2573        assert!(json_report.is_ok());
2574    }
2575}