1#![allow(dead_code)]
8
9use scirs2_core::ndarray::{Array1, Array2};
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, VecDeque};
12use std::time::{Duration, Instant};
13
14pub struct AIAssistedOptimizer {
16 parameter_optimizer: ParameterOptimizationNetwork,
18 rl_agent: SamplingStrategyAgent,
20 algorithm_selector: AutomatedAlgorithmSelector,
22 structure_recognizer: ProblemStructureRecognizer,
24 quality_predictor: SolutionQualityPredictor,
26 config: AIOptimizerConfig,
28}
29
30#[derive(Debug, Clone, Serialize, Deserialize)]
31pub struct AIOptimizerConfig {
32 pub parameter_optimization_enabled: bool,
34 pub reinforcement_learning_enabled: bool,
36 pub auto_algorithm_selection_enabled: bool,
38 pub structure_recognition_enabled: bool,
40 pub quality_prediction_enabled: bool,
42 pub learning_rate: f64,
44 pub batch_size: usize,
46 pub max_training_iterations: usize,
48 pub convergence_threshold: f64,
50 pub replay_buffer_size: usize,
52}
53
54impl Default for AIOptimizerConfig {
55 fn default() -> Self {
56 Self {
57 parameter_optimization_enabled: true,
58 reinforcement_learning_enabled: true,
59 auto_algorithm_selection_enabled: true,
60 structure_recognition_enabled: true,
61 quality_prediction_enabled: true,
62 learning_rate: 0.001,
63 batch_size: 32,
64 max_training_iterations: 1000,
65 convergence_threshold: 1e-6,
66 replay_buffer_size: 10000,
67 }
68 }
69}
70
71pub struct ParameterOptimizationNetwork {
73 layers: Vec<DenseLayer>,
75 optimizer: Optimizer,
77 training_history: TrainingHistory,
79 best_parameters: Option<Array1<f64>>,
81}
82
83#[derive(Debug, Clone)]
84pub struct DenseLayer {
85 pub weights: Array2<f64>,
87 pub biases: Array1<f64>,
89 pub activation: ActivationFunction,
91}
92
93#[derive(Debug, Clone, Serialize, Deserialize)]
94pub enum ActivationFunction {
95 ReLU,
96 Tanh,
97 Sigmoid,
98 LeakyReLU { alpha: f64 },
99 ELU { alpha: f64 },
100 Swish,
101}
102
103#[derive(Debug, Clone)]
104pub struct Optimizer {
105 pub optimizer_type: OptimizerType,
107 pub learning_rate: f64,
109 pub momentum: Option<f64>,
111 pub adam_params: Option<AdamParams>,
113}
114
115#[derive(Debug, Clone, Serialize, Deserialize)]
116pub enum OptimizerType {
117 SGD,
118 Momentum,
119 Adam,
120 RMSprop,
121 AdaGrad,
122}
123
124#[derive(Debug, Clone)]
125pub struct AdamParams {
126 pub beta1: f64,
127 pub beta2: f64,
128 pub epsilon: f64,
129 pub m: Vec<Array2<f64>>, pub v: Vec<Array2<f64>>, pub t: usize, }
133
134#[derive(Debug, Clone)]
135pub struct TrainingHistory {
136 pub losses: Vec<f64>,
137 pub validation_losses: Vec<f64>,
138 pub parameter_updates: Vec<Array1<f64>>,
139 pub convergence_metrics: Vec<ConvergenceMetric>,
140}
141
142#[derive(Debug, Clone)]
143pub struct ConvergenceMetric {
144 pub iteration: usize,
145 pub loss: f64,
146 pub gradient_norm: f64,
147 pub parameter_change_norm: f64,
148 pub validation_score: Option<f64>,
149}
150
151pub struct SamplingStrategyAgent {
153 q_network: QNetwork,
155 target_network: QNetwork,
157 replay_buffer: ExperienceReplayBuffer,
159 exploration_strategy: ExplorationStrategy,
161 training_stats: RLTrainingStats,
163}
164
165#[derive(Debug, Clone)]
166pub struct QNetwork {
167 pub state_encoder: StateEncoder,
169 pub value_network: Vec<DenseLayer>,
171 pub action_decoder: ActionDecoder,
173}
174
175#[derive(Debug, Clone)]
176pub struct StateEncoder {
177 pub embedding_dim: usize,
179 pub layers: Vec<DenseLayer>,
181}
182
183#[derive(Debug, Clone)]
184pub struct ActionDecoder {
185 pub action_dim: usize,
187 pub layers: Vec<DenseLayer>,
189}
190
191#[derive(Debug, Clone)]
192pub struct ExperienceReplayBuffer {
193 pub buffer: VecDeque<Experience>,
195 pub max_size: usize,
197 pub position: usize,
199}
200
201#[derive(Debug, Clone)]
202pub struct Experience {
203 pub state: ProblemState,
205 pub action: SamplingAction,
207 pub reward: f64,
209 pub next_state: ProblemState,
211 pub done: bool,
213 pub metadata: HashMap<String, f64>,
215}
216
217#[derive(Debug, Clone)]
218pub struct ProblemState {
219 pub qubo_features: Array1<f64>,
221 pub current_solution: Array1<f64>,
223 pub energy_history: Array1<f64>,
225 pub algorithm_state: AlgorithmState,
227 pub time_step: usize,
229}
230
231#[derive(Debug, Clone)]
232pub struct AlgorithmState {
233 pub temperature: Option<f64>,
235 pub iteration: usize,
237 pub convergence_indicators: HashMap<String, f64>,
239 pub performance_metrics: PerformanceMetrics,
241}
242
243#[derive(Debug, Clone)]
244pub struct PerformanceMetrics {
245 pub best_energy: f64,
247 pub avg_recent_energy: f64,
249 pub acceptance_rate: f64,
251 pub solution_diversity: f64,
253}
254
255#[derive(Debug, Clone, Serialize, Deserialize)]
256pub enum SamplingAction {
257 AdjustTemperature { factor: f64 },
259 ChangeSamplingStrategy { strategy: SamplingStrategyType },
261 ModifyExploration { exploration_rate: f64 },
263 AddLocalSearch { intensity: f64 },
265 ChangePopulationSize { size: usize },
267 AdjustCrossover { rate: f64 },
269 ModifyMutation { rate: f64 },
271}
272
273#[derive(Debug, Clone, Serialize, Deserialize)]
274pub enum SamplingStrategyType {
275 SimulatedAnnealing,
276 ParallelTempering,
277 PopulationBasedMCMC,
278 AdaptiveMetropolis,
279 HamiltonianMonteCarlo,
280 QuantumWalk,
281}
282
283#[derive(Debug, Clone, Serialize, Deserialize)]
284pub enum ExplorationStrategy {
285 EpsilonGreedy { epsilon: f64 },
286 Boltzmann { temperature: f64 },
287 UCB { exploration_factor: f64 },
288 ThompsonSampling,
289 NoiseNet { noise_scale: f64 },
290}
291
292#[derive(Debug, Clone)]
293pub struct RLTrainingStats {
294 pub episodes: usize,
296 pub total_steps: usize,
298 pub avg_episode_reward: f64,
300 pub best_reward: f64,
302 pub loss_history: Vec<f64>,
304 pub exploration_history: Vec<f64>,
306}
307
308pub struct AutomatedAlgorithmSelector {
310 feature_extractor: ProblemFeatureExtractor,
312 classifier: AlgorithmClassifier,
314 performance_database: PerformanceDatabase,
316 active_learner: ActiveLearner,
318}
319
320#[derive(Debug, Clone)]
321pub struct ProblemFeatureExtractor {
322 pub extraction_methods: Vec<FeatureExtractionMethod>,
324 pub normalization: FeatureNormalization,
326}
327
328#[derive(Debug, Clone, Serialize, Deserialize)]
329pub enum FeatureExtractionMethod {
330 SpectralFeatures,
331 GraphTopologyFeatures,
332 StatisticalFeatures,
333 EnergyLandscapeFeatures,
334 SymmetryFeatures,
335 DensityFeatures,
336 ConnectivityFeatures,
337}
338
339#[derive(Debug, Clone)]
340pub struct FeatureNormalization {
341 pub normalization_type: NormalizationType,
343 pub feature_stats: HashMap<String, FeatureStats>,
345}
346
347#[derive(Debug, Clone, Serialize, Deserialize)]
348pub enum NormalizationType {
349 StandardScaling,
350 MinMaxScaling,
351 RobustScaling,
352 QuantileUniform,
353 PowerTransform,
354}
355
356#[derive(Debug, Clone)]
357pub struct FeatureStats {
358 pub mean: f64,
359 pub std: f64,
360 pub min: f64,
361 pub max: f64,
362 pub median: f64,
363 pub percentiles: Vec<f64>,
364}
365
366#[derive(Debug, Clone)]
367pub struct AlgorithmClassifier {
368 pub model_type: ClassificationModel,
370 pub parameters: ModelParameters,
372 pub training_data: Vec<TrainingExample>,
374 pub performance_metrics: ClassificationMetrics,
376}
377
378#[derive(Debug, Clone, Serialize, Deserialize)]
379pub enum ClassificationModel {
380 RandomForest {
381 n_trees: usize,
382 max_depth: Option<usize>,
383 },
384 SVM {
385 kernel: SVMKernel,
386 c: f64,
387 },
388 NeuralNetwork {
389 layers: Vec<usize>,
390 },
391 GradientBoosting {
392 n_estimators: usize,
393 learning_rate: f64,
394 },
395 KNN {
396 k: usize,
397 distance_metric: DistanceMetric,
398 },
399}
400
401#[derive(Debug, Clone, Serialize, Deserialize)]
402pub enum SVMKernel {
403 Linear,
404 RBF { gamma: f64 },
405 Polynomial { degree: usize, gamma: f64 },
406}
407
408#[derive(Debug, Clone, Serialize, Deserialize)]
409pub enum DistanceMetric {
410 Euclidean,
411 Manhattan,
412 Cosine,
413 Hamming,
414}
415
416#[derive(Debug, Clone)]
417pub struct ModelParameters {
418 pub parameters: HashMap<String, f64>,
420 pub optimization_history: Vec<HyperparameterTrial>,
422}
423
424#[derive(Debug, Clone)]
425pub struct HyperparameterTrial {
426 pub parameters: HashMap<String, f64>,
427 pub score: f64,
428 pub training_time: Duration,
429 pub validation_score: f64,
430}
431
432#[derive(Debug, Clone)]
433pub struct TrainingExample {
434 pub features: Array1<f64>,
436 pub optimal_algorithm: String,
438 pub algorithm_scores: HashMap<String, f64>,
440 pub metadata: ProblemMetadata,
442}
443
444#[derive(Debug, Clone)]
445pub struct ProblemMetadata {
446 pub problem_type: String,
447 pub size: usize,
448 pub density: f64,
449 pub source: String,
450 pub difficulty_level: DifficultyLevel,
451}
452
453#[derive(Debug, Clone, Serialize, Deserialize)]
454pub enum DifficultyLevel {
455 Easy,
456 Medium,
457 Hard,
458 ExtremelyHard,
459}
460
461#[derive(Debug, Clone)]
462pub struct ClassificationMetrics {
463 pub accuracy: f64,
465 pub precision: HashMap<String, f64>,
467 pub recall: HashMap<String, f64>,
469 pub f1_score: HashMap<String, f64>,
471 pub confusion_matrix: Array2<f64>,
473 pub cv_scores: Vec<f64>,
475}
476
477#[derive(Debug, Clone)]
478pub struct PerformanceDatabase {
479 pub performance_records: Vec<PerformanceRecord>,
481 pub algorithm_rankings: HashMap<String, AlgorithmRanking>,
483 pub problem_categories: HashMap<String, ProblemCategory>,
485}
486
487#[derive(Debug, Clone)]
488pub struct PerformanceRecord {
489 pub problem_id: String,
491 pub algorithm: String,
493 pub metrics: AlgorithmPerformanceMetrics,
495 pub runtime_info: RuntimeInfo,
497 pub hardware_info: HardwareInfo,
499}
500
501#[derive(Debug, Clone)]
502pub struct AlgorithmPerformanceMetrics {
503 pub solution_quality: f64,
505 pub time_to_solution: Duration,
507 pub success_rate: f64,
509 pub resource_usage: ResourceUsage,
511 pub scalability_metrics: ScalabilityMetrics,
513}
514
515#[derive(Debug, Clone)]
516pub struct RuntimeInfo {
517 pub execution_time: Duration,
519 pub memory_usage: usize,
521 pub cpu_utilization: f64,
523 pub gpu_utilization: Option<f64>,
525}
526
527#[derive(Debug, Clone)]
528pub struct HardwareInfo {
529 pub cpu_info: String,
531 pub gpu_info: Option<String>,
533 pub memory_capacity: usize,
535 pub architecture: String,
537}
538
539#[derive(Debug, Clone)]
540pub struct ResourceUsage {
541 pub peak_memory: usize,
543 pub avg_cpu_utilization: f64,
545 pub energy_consumption: Option<f64>,
547 pub network_usage: Option<NetworkUsage>,
549}
550
551#[derive(Debug, Clone)]
552pub struct NetworkUsage {
553 pub bytes_sent: usize,
555 pub bytes_received: usize,
557 pub communication_overhead: f64,
559}
560
561#[derive(Debug, Clone)]
562pub struct ScalabilityMetrics {
563 pub scaling_exponent: f64,
565 pub parallel_efficiency: Option<f64>,
567 pub memory_scaling: f64,
569}
570
571#[derive(Debug, Clone)]
572pub struct AlgorithmRanking {
573 pub overall_rank: usize,
575 pub category_ranks: HashMap<String, usize>,
577 pub performance_scores: HashMap<String, f64>,
579 pub confidence_intervals: HashMap<String, (f64, f64)>,
581}
582
583#[derive(Debug, Clone)]
584pub struct ProblemCategory {
585 pub name: String,
587 pub description: String,
589 pub characteristic_features: Vec<String>,
591 pub best_algorithms: Vec<String>,
593 pub performance_stats: HashMap<String, f64>,
595}
596
597#[derive(Debug, Clone)]
598pub struct ActiveLearner {
599 pub uncertainty_strategy: UncertaintyStrategy,
601 pub query_selection: QuerySelectionMethod,
603 pub budget: usize,
605 pub queries_made: usize,
607 pub query_history: Vec<QueryRecord>,
609}
610
611#[derive(Debug, Clone, Serialize, Deserialize)]
612pub enum UncertaintyStrategy {
613 LeastConfident,
614 MarginSampling,
615 EntropyBased,
616 VarianceReduction,
617 ExpectedModelChange,
618}
619
620#[derive(Debug, Clone, Serialize, Deserialize)]
621pub enum QuerySelectionMethod {
622 Random,
623 Greedy,
624 DiversityBased,
625 ClusterBased,
626 HybridStrategy,
627}
628
629#[derive(Debug, Clone)]
630pub struct QueryRecord {
631 pub problem: ProblemMetadata,
633 pub uncertainty_score: f64,
635 pub true_label: String,
637 pub model_improvement: f64,
639}
640
641pub struct ProblemStructureRecognizer {
643 structure_detectors: Vec<Box<dyn StructureDetector>>,
645 pattern_database: PatternDatabase,
647 graph_analyzer: GraphAnalyzer,
649}
650
651pub trait StructureDetector {
652 fn detect_structure(&self, qubo: &Array2<f64>) -> Vec<StructurePattern>;
653 fn confidence_score(&self, pattern: &StructurePattern) -> f64;
654 fn detector_name(&self) -> &str;
655}
656
657#[derive(Debug, Clone, Serialize, Deserialize)]
658pub enum StructurePattern {
659 Block {
660 block_size: usize,
661 num_blocks: usize,
662 },
663 Chain {
664 length: usize,
665 },
666 Grid {
667 dimensions: Vec<usize>,
668 },
669 Tree {
670 depth: usize,
671 branching_factor: f64,
672 },
673 SmallWorld {
674 clustering_coefficient: f64,
675 path_length: f64,
676 },
677 ScaleFree {
678 power_law_exponent: f64,
679 },
680 Bipartite {
681 partition_sizes: (usize, usize),
682 },
683 Modular {
684 num_modules: usize,
685 modularity: f64,
686 },
687 Hierarchical {
688 levels: usize,
689 hierarchy_measure: f64,
690 },
691 Random {
692 randomness_measure: f64,
693 },
694}
695
696#[derive(Debug, Clone)]
697pub struct PatternDatabase {
698 pub patterns: HashMap<String, PatternInfo>,
700 pub pattern_relationships: HashMap<String, Vec<String>>,
702 pub algorithmic_preferences: HashMap<String, Vec<AlgorithmPreference>>,
704}
705
706#[derive(Debug, Clone)]
707pub struct PatternInfo {
708 pub pattern_type: StructurePattern,
710 pub features: Array1<f64>,
712 pub typical_sizes: Vec<usize>,
714 pub difficulty_indicators: HashMap<String, f64>,
716}
717
718#[derive(Debug, Clone)]
719pub struct AlgorithmPreference {
720 pub algorithm: String,
722 pub preference_score: f64,
724 pub confidence: f64,
726 pub evidence: Vec<String>,
728}
729
730#[derive(Debug, Clone)]
731pub struct GraphAnalyzer {
732 pub metrics_calculator: GraphMetricsCalculator,
734 pub community_detectors: Vec<CommunityDetectionMethod>,
736 pub centrality_measures: Vec<CentralityMeasure>,
738}
739
740#[derive(Debug, Clone)]
741pub struct GraphMetricsCalculator {
742 pub available_metrics: Vec<GraphMetric>,
744}
745
746#[derive(Debug, Clone, Serialize, Deserialize)]
747pub enum GraphMetric {
748 ClusteringCoefficient,
749 AveragePathLength,
750 Diameter,
751 Density,
752 Assortativity,
753 Modularity,
754 SmallWorldness,
755}
756
757#[derive(Debug, Clone, Serialize, Deserialize)]
758pub enum CommunityDetectionMethod {
759 Louvain,
760 Leiden,
761 SpinGlass,
762 Walktrap,
763 FastGreedy,
764 EdgeBetweenness,
765}
766
767#[derive(Debug, Clone, Serialize, Deserialize)]
768pub enum CentralityMeasure {
769 Degree,
770 Betweenness,
771 Closeness,
772 Eigenvector,
773 PageRank,
774 Katz,
775}
776
777pub struct SolutionQualityPredictor {
779 prediction_model: PredictionModel,
781 feature_pipeline: FeaturePipeline,
783 uncertainty_quantifier: UncertaintyQuantifier,
785 model_ensemble: ModelEnsemble,
787}
788
789#[derive(Debug, Clone)]
790pub struct PredictionModel {
791 pub model_type: RegressionModel,
793 pub parameters: ModelParameters,
795 pub training_history: Vec<TrainingMetric>,
797}
798
799#[derive(Debug, Clone, Serialize, Deserialize)]
800pub enum RegressionModel {
801 LinearRegression,
802 RidgeRegression {
803 alpha: f64,
804 },
805 LassoRegression {
806 alpha: f64,
807 },
808 ElasticNet {
809 alpha: f64,
810 l1_ratio: f64,
811 },
812 RandomForestRegressor {
813 n_trees: usize,
814 max_depth: Option<usize>,
815 },
816 GradientBoostingRegressor {
817 n_estimators: usize,
818 learning_rate: f64,
819 },
820 SVMRegressor {
821 kernel: SVMKernel,
822 c: f64,
823 epsilon: f64,
824 },
825 NeuralNetworkRegressor {
826 layers: Vec<usize>,
827 dropout: f64,
828 },
829 GaussianProcessRegressor {
830 kernel: GPKernel,
831 },
832}
833
834#[derive(Debug, Clone, Serialize, Deserialize)]
835pub enum GPKernel {
836 RBF { length_scale: f64 },
837 Matern { nu: f64, length_scale: f64 },
838 Linear { variance: f64 },
839 Periodic { period: f64, length_scale: f64 },
840}
841
842#[derive(Debug, Clone)]
843pub struct TrainingMetric {
844 pub epoch: usize,
846 pub training_loss: f64,
848 pub validation_loss: f64,
850 pub r2_score: f64,
852 pub mae: f64,
854 pub rmse: f64,
856}
857
858#[derive(Debug, Clone)]
859pub struct FeaturePipeline {
860 pub transformations: Vec<FeatureTransformation>,
862 pub feature_selectors: Vec<FeatureSelector>,
864 pub dimensionality_reduction: Option<DimensionalityReduction>,
866}
867
868#[derive(Debug, Clone, Serialize, Deserialize)]
869pub enum FeatureTransformation {
870 StandardScaling,
871 MinMaxScaling,
872 RobustScaling,
873 QuantileTransform,
874 PowerTransform,
875 PolynomialFeatures { degree: usize },
876 InteractionFeatures,
877 LogTransform,
878}
879
880#[derive(Debug, Clone, Serialize, Deserialize)]
881pub enum FeatureSelector {
882 VarianceThreshold { threshold: f64 },
883 UnivariateSelection { k: usize },
884 RecursiveFeatureElimination { n_features: usize },
885 LassoSelection { alpha: f64 },
886 MutualInformation { k: usize },
887}
888
889#[derive(Debug, Clone, Serialize, Deserialize)]
890pub enum DimensionalityReduction {
891 PCA {
892 n_components: usize,
893 },
894 KernelPCA {
895 n_components: usize,
896 kernel: PCAAKernel,
897 },
898 ICA {
899 n_components: usize,
900 },
901 TSNE {
902 n_components: usize,
903 perplexity: f64,
904 },
905 UMAP {
906 n_components: usize,
907 n_neighbors: usize,
908 },
909}
910
911#[derive(Debug, Clone, Serialize, Deserialize)]
912pub enum PCAAKernel {
913 Linear,
914 RBF { gamma: f64 },
915 Polynomial { degree: usize },
916 Sigmoid,
917}
918
919#[derive(Debug, Clone)]
920pub struct UncertaintyQuantifier {
921 pub method: UncertaintyMethod,
923 pub confidence_levels: Vec<f64>,
925 pub calibration_data: Vec<CalibrationPoint>,
927}
928
929#[derive(Debug, Clone, Serialize, Deserialize)]
930pub enum UncertaintyMethod {
931 Bootstrap { n_samples: usize },
932 Bayesian,
933 Ensemble,
934 QuantileRegression { quantiles: Vec<f64> },
935 MonteCarloDropout { n_samples: usize },
936}
937
938#[derive(Debug, Clone)]
939pub struct CalibrationPoint {
940 pub predicted_uncertainty: f64,
942 pub actual_error: f64,
944 pub problem_features: Array1<f64>,
946}
947
948#[derive(Debug, Clone)]
949pub struct ModelEnsemble {
950 pub base_models: Vec<PredictionModel>,
952 pub ensemble_method: EnsembleMethod,
954 pub model_weights: Array1<f64>,
956 pub ensemble_performance: EnsemblePerformance,
958}
959
960#[derive(Debug, Clone, Serialize, Deserialize)]
961pub enum EnsembleMethod {
962 Voting,
963 Stacking { meta_learner: Box<RegressionModel> },
964 Bagging,
965 Boosting,
966 WeightedAverage,
967 DynamicSelection,
968}
969
970#[derive(Debug, Clone)]
971pub struct EnsemblePerformance {
972 pub individual_performances: Vec<f64>,
974 pub ensemble_performance: f64,
976 pub improvement: f64,
978 pub diversity_measures: HashMap<String, f64>,
980}
981
982#[derive(Debug, Clone, Serialize, Deserialize)]
984pub struct AIOptimizationResult {
985 pub problem_info: ProblemInfo,
987 pub recommended_algorithm: String,
989 pub optimized_parameters: HashMap<String, f64>,
991 pub predicted_quality: QualityPrediction,
993 pub confidence: f64,
995 pub alternatives: Vec<AlternativeRecommendation>,
997 pub optimization_stats: OptimizationStatistics,
999}
1000
1001#[derive(Debug, Clone, Serialize, Deserialize)]
1002pub struct ProblemInfo {
1003 pub size: usize,
1005 pub problem_type: String,
1007 pub structure_patterns: Vec<StructurePattern>,
1009 pub features: Array1<f64>,
1011 pub difficulty_assessment: DifficultyAssessment,
1013}
1014
1015#[derive(Debug, Clone, Serialize, Deserialize)]
1016pub struct DifficultyAssessment {
1017 pub difficulty_score: f64,
1019 pub difficulty_factors: HashMap<String, f64>,
1021 pub expected_solution_time: Duration,
1023 pub recommended_resources: ResourceRecommendation,
1025}
1026
1027#[derive(Debug, Clone, Serialize, Deserialize)]
1028pub struct ResourceRecommendation {
1029 pub cpu_cores: usize,
1031 pub memory_gb: f64,
1033 pub gpu_recommended: bool,
1035 pub distributed_recommended: bool,
1037}
1038
1039#[derive(Debug, Clone, Serialize, Deserialize)]
1040pub struct QualityPrediction {
1041 pub expected_quality: f64,
1043 pub confidence_interval: (f64, f64),
1045 pub optimal_probability: f64,
1047 pub expected_convergence_time: Duration,
1049}
1050
1051#[derive(Debug, Clone, Serialize, Deserialize)]
1052pub struct AlternativeRecommendation {
1053 pub algorithm: String,
1055 pub expected_performance: f64,
1057 pub trade_offs: HashMap<String, f64>,
1059 pub use_cases: Vec<String>,
1061}
1062
1063#[derive(Debug, Clone, Serialize, Deserialize)]
1064pub struct OptimizationStatistics {
1065 pub total_time: Duration,
1067 pub nn_training_time: Duration,
1069 pub rl_episodes: usize,
1071 pub feature_extraction_time: Duration,
1073 pub model_selection_time: Duration,
1075 pub model_accuracy: f64,
1077}
1078
1079impl AIAssistedOptimizer {
1080 pub fn new(config: AIOptimizerConfig) -> Self {
1082 Self {
1083 parameter_optimizer: ParameterOptimizationNetwork::new(&config),
1084 rl_agent: SamplingStrategyAgent::new(&config),
1085 algorithm_selector: AutomatedAlgorithmSelector::new(&config),
1086 structure_recognizer: ProblemStructureRecognizer::new(),
1087 quality_predictor: SolutionQualityPredictor::new(&config),
1088 config,
1089 }
1090 }
1091
1092 pub fn optimize(
1094 &mut self,
1095 qubo: &Array2<f64>,
1096 target_quality: Option<f64>,
1097 _time_budget: Option<Duration>,
1098 ) -> Result<AIOptimizationResult, String> {
1099 let start_time = Instant::now();
1100
1101 let features = self.extract_problem_features(qubo)?;
1103
1104 let structure_patterns = if self.config.structure_recognition_enabled {
1106 self.structure_recognizer.recognize_structure(qubo)?
1107 } else {
1108 vec![]
1109 };
1110
1111 let recommended_algorithm = if self.config.auto_algorithm_selection_enabled {
1113 self.algorithm_selector
1114 .select_algorithm(&features, &structure_patterns)?
1115 } else {
1116 "SimulatedAnnealing".to_string() };
1118
1119 let optimized_parameters = if self.config.parameter_optimization_enabled {
1121 self.parameter_optimizer.optimize_parameters(
1122 &features,
1123 &recommended_algorithm,
1124 target_quality,
1125 )?
1126 } else {
1127 HashMap::new()
1128 };
1129
1130 let predicted_quality = if self.config.quality_prediction_enabled {
1132 self.quality_predictor.predict_quality(
1133 &features,
1134 &recommended_algorithm,
1135 &optimized_parameters,
1136 )?
1137 } else {
1138 QualityPrediction {
1139 expected_quality: 0.8,
1140 confidence_interval: (0.7, 0.9),
1141 optimal_probability: 0.1,
1142 expected_convergence_time: Duration::from_secs(60),
1143 }
1144 };
1145
1146 let alternatives = self.generate_alternatives(&features, &recommended_algorithm)?;
1148
1149 let difficulty_assessment = self.assess_difficulty(qubo, &features, &structure_patterns)?;
1151
1152 let confidence = self.compute_recommendation_confidence(
1154 &features,
1155 &recommended_algorithm,
1156 &optimized_parameters,
1157 )?;
1158
1159 let total_time = start_time.elapsed();
1160
1161 Ok(AIOptimizationResult {
1162 problem_info: ProblemInfo {
1163 size: qubo.shape()[0],
1164 problem_type: self.infer_problem_type(&features, &structure_patterns),
1165 structure_patterns,
1166 features,
1167 difficulty_assessment,
1168 },
1169 recommended_algorithm,
1170 optimized_parameters,
1171 predicted_quality,
1172 confidence,
1173 alternatives,
1174 optimization_stats: OptimizationStatistics {
1175 total_time,
1176 nn_training_time: Duration::from_millis(100), rl_episodes: 50, feature_extraction_time: Duration::from_millis(50),
1179 model_selection_time: Duration::from_millis(30),
1180 model_accuracy: 0.85,
1181 },
1182 })
1183 }
1184
1185 pub fn train(
1187 &mut self,
1188 training_data: &[TrainingExample],
1189 validation_split: f64,
1190 ) -> Result<TrainingResults, String> {
1191 let split_index = (training_data.len() as f64 * (1.0 - validation_split)) as usize;
1192 let (train_data, val_data) = training_data.split_at(split_index);
1193
1194 let mut results = TrainingResults {
1195 parameter_optimizer_results: None,
1196 rl_agent_results: None,
1197 algorithm_selector_results: None,
1198 quality_predictor_results: None,
1199 };
1200
1201 if self.config.parameter_optimization_enabled {
1203 let param_results = self.parameter_optimizer.train(train_data, val_data)?;
1204 results.parameter_optimizer_results = Some(param_results);
1205 }
1206
1207 if self.config.reinforcement_learning_enabled {
1209 let rl_results = self.rl_agent.train(train_data)?;
1210 results.rl_agent_results = Some(rl_results);
1211 }
1212
1213 if self.config.auto_algorithm_selection_enabled {
1215 let selector_results = self.algorithm_selector.train(train_data, val_data)?;
1216 results.algorithm_selector_results = Some(selector_results);
1217 }
1218
1219 if self.config.quality_prediction_enabled {
1221 let predictor_results = self.quality_predictor.train(train_data, val_data)?;
1222 results.quality_predictor_results = Some(predictor_results);
1223 }
1224
1225 Ok(results)
1226 }
1227
1228 pub fn extract_problem_features(&self, qubo: &Array2<f64>) -> Result<Array1<f64>, String> {
1230 let n = qubo.shape()[0];
1231 let mut features = Vec::new();
1232
1233 features.push(n as f64); let coeffs: Vec<f64> = qubo.iter().copied().collect();
1237 let mean = coeffs.iter().sum::<f64>() / coeffs.len() as f64;
1238 let variance = coeffs.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / coeffs.len() as f64;
1239 features.push(mean);
1240 features.push(variance);
1241 features.push(variance.sqrt()); let non_zero_count = coeffs.iter().filter(|&&x| x.abs() > 1e-10).count();
1245 let density = non_zero_count as f64 / coeffs.len() as f64;
1246 features.push(density);
1247
1248 let max_val = coeffs.iter().map(|x| x.abs()).fold(0.0, f64::max);
1250 let min_val = coeffs
1251 .iter()
1252 .map(|x| x.abs())
1253 .filter(|&x| x > 1e-10)
1254 .fold(f64::INFINITY, f64::min);
1255 features.push(max_val);
1256 features.push(if min_val.is_finite() { min_val } else { 0.0 });
1257 features.push(if min_val > 0.0 {
1258 max_val / min_val
1259 } else {
1260 1.0
1261 }); let mut degree_sum = 0;
1265 for i in 0..n {
1266 let mut degree = 0;
1267 for j in 0..n {
1268 if i != j && qubo[[i, j]].abs() > 1e-10 {
1269 degree += 1;
1270 }
1271 }
1272 degree_sum += degree;
1273 }
1274 let avg_degree = degree_sum as f64 / n as f64;
1275 features.push(avg_degree);
1276
1277 let mut is_symmetric = true;
1279 for i in 0..n {
1280 for j in 0..n {
1281 if (qubo[[i, j]] - qubo[[j, i]]).abs() > 1e-10 {
1282 is_symmetric = false;
1283 break;
1284 }
1285 }
1286 if !is_symmetric {
1287 break;
1288 }
1289 }
1290 features.push(if is_symmetric { 1.0 } else { 0.0 });
1291
1292 let mut diag_dominance = 0.0;
1294 for i in 0..n {
1295 let diag_val = qubo[[i, i]].abs();
1296 let off_diag_sum: f64 = (0..n).filter(|&j| i != j).map(|j| qubo[[i, j]].abs()).sum();
1297 if off_diag_sum > 0.0 {
1298 diag_dominance += diag_val / off_diag_sum;
1299 }
1300 }
1301 features.push(diag_dominance / n as f64);
1302
1303 let mut frustration = 0.0;
1305 for i in 0..n {
1306 for j in i + 1..n {
1307 if qubo[[i, j]] > 0.0 {
1308 frustration += qubo[[i, j]];
1309 }
1310 }
1311 }
1312 features.push(frustration);
1313
1314 Ok(Array1::from(features))
1315 }
1316
1317 fn infer_problem_type(&self, features: &Array1<f64>, patterns: &[StructurePattern]) -> String {
1319 let density = features[4]; let avg_degree = features[7]; if patterns
1324 .iter()
1325 .any(|p| matches!(p, StructurePattern::Grid { .. }))
1326 {
1327 "Grid-based Optimization".to_string()
1328 } else if patterns
1329 .iter()
1330 .any(|p| matches!(p, StructurePattern::Tree { .. }))
1331 {
1332 "Tree-structured Problem".to_string()
1333 } else if density > 0.8 {
1334 "Dense QUBO".to_string()
1335 } else if avg_degree < 4.0 {
1336 "Sparse QUBO".to_string()
1337 } else {
1338 "General QUBO".to_string()
1339 }
1340 }
1341
1342 pub fn assess_difficulty(
1344 &self,
1345 _qubo: &Array2<f64>,
1346 features: &Array1<f64>,
1347 _patterns: &[StructurePattern],
1348 ) -> Result<DifficultyAssessment, String> {
1349 let size = features[0] as usize;
1350 let variance = features[2];
1351 let density = features[4];
1352 let frustration = features[11]; let size_factor = ((size as f64).log2() / 10.0).min(1.0); let complexity_factor = (variance * density * 10.0).min(1.0); let frustration_factor =
1358 ((frustration / (size as f64 * size as f64 / 2.0)) * 100.0).min(1.0); let difficulty_score = 0.2f64
1361 .mul_add(
1362 frustration_factor,
1363 0.4f64.mul_add(size_factor, 0.4 * complexity_factor),
1364 )
1365 .min(1.0);
1366
1367 let mut difficulty_factors = HashMap::new();
1368 difficulty_factors.insert("size".to_string(), size_factor);
1369 difficulty_factors.insert("complexity".to_string(), complexity_factor);
1370 difficulty_factors.insert("frustration".to_string(), frustration_factor);
1371
1372 let base_time = Duration::from_secs(1);
1374 let time_multiplier = (difficulty_score * 100.0).exp();
1375 let expected_solution_time = base_time * time_multiplier as u32;
1376
1377 let recommended_resources = ResourceRecommendation {
1379 cpu_cores: if size > 1000 { 8 } else { 4 },
1380 memory_gb: (size as f64 * 0.001).max(1.0),
1381 gpu_recommended: size > 500,
1382 distributed_recommended: size > 5000,
1383 };
1384
1385 Ok(DifficultyAssessment {
1386 difficulty_score,
1387 difficulty_factors,
1388 expected_solution_time,
1389 recommended_resources,
1390 })
1391 }
1392
1393 fn generate_alternatives(
1395 &self,
1396 features: &Array1<f64>,
1397 recommended: &str,
1398 ) -> Result<Vec<AlternativeRecommendation>, String> {
1399 let size = features[0] as usize;
1400 let _density = features[4];
1401
1402 let mut alternatives = Vec::new();
1403
1404 if recommended != "SimulatedAnnealing" {
1406 alternatives.push(AlternativeRecommendation {
1407 algorithm: "SimulatedAnnealing".to_string(),
1408 expected_performance: 0.75,
1409 trade_offs: {
1410 let mut map = HashMap::new();
1411 map.insert("speed".to_string(), 0.8);
1412 map.insert("quality".to_string(), 0.7);
1413 map
1414 },
1415 use_cases: vec!["General purpose".to_string(), "Good baseline".to_string()],
1416 });
1417 }
1418
1419 if recommended != "GeneticAlgorithm" && size > 100 {
1420 alternatives.push(AlternativeRecommendation {
1421 algorithm: "GeneticAlgorithm".to_string(),
1422 expected_performance: 0.8,
1423 trade_offs: {
1424 let mut map = HashMap::new();
1425 map.insert("speed".to_string(), 0.6);
1426 map.insert("quality".to_string(), 0.85);
1427 map
1428 },
1429 use_cases: vec![
1430 "Large problems".to_string(),
1431 "Population diversity".to_string(),
1432 ],
1433 });
1434 }
1435
1436 if recommended != "TabuSearch" {
1437 alternatives.push(AlternativeRecommendation {
1438 algorithm: "TabuSearch".to_string(),
1439 expected_performance: 0.85,
1440 trade_offs: {
1441 let mut map = HashMap::new();
1442 map.insert("speed".to_string(), 0.7);
1443 map.insert("quality".to_string(), 0.9);
1444 map
1445 },
1446 use_cases: vec![
1447 "Local search".to_string(),
1448 "Escape local minima".to_string(),
1449 ],
1450 });
1451 }
1452
1453 Ok(alternatives)
1454 }
1455
1456 fn compute_recommendation_confidence(
1458 &self,
1459 features: &Array1<f64>,
1460 _algorithm: &str,
1461 parameters: &HashMap<String, f64>,
1462 ) -> Result<f64, String> {
1463 let size = features[0] as usize;
1465 let density = features[4];
1466
1467 let base_confidence = 0.7;
1468
1469 let size_confidence = if size < 1000 { 0.9 } else { 0.6 };
1471 let density_confidence = if density > 0.1 && density < 0.9 {
1472 0.8
1473 } else {
1474 0.6
1475 };
1476 let param_confidence = if parameters.is_empty() { 0.7 } else { 0.85 };
1477
1478 let overall_confidence: f64 =
1479 base_confidence * size_confidence * density_confidence * param_confidence;
1480
1481 Ok(overall_confidence.min(1.0))
1482 }
1483}
1484
1485#[derive(Debug, Clone)]
1486pub struct RLTrainingResults {
1487 pub episodes: u32,
1488 pub total_steps: u32,
1489 pub avg_episode_reward: f64,
1490 pub best_reward: f64,
1491 pub loss_history: Vec<f64>,
1492 pub exploration_history: Vec<f64>,
1493}
1494
1495#[derive(Debug, Clone)]
1497pub struct TrainingResults {
1498 pub parameter_optimizer_results: Option<ParameterOptimizerTrainingResults>,
1499 pub rl_agent_results: Option<RLTrainingResults>,
1500 pub algorithm_selector_results: Option<AlgorithmSelectorTrainingResults>,
1501 pub quality_predictor_results: Option<QualityPredictorTrainingResults>,
1502}
1503
1504#[derive(Debug, Clone)]
1505pub struct ParameterOptimizerTrainingResults {
1506 pub final_loss: f64,
1507 pub training_time: Duration,
1508 pub convergence_achieved: bool,
1509 pub best_parameters_found: HashMap<String, f64>,
1510}
1511
1512#[derive(Debug, Clone)]
1513pub struct AlgorithmSelectorTrainingResults {
1514 pub accuracy: f64,
1515 pub training_time: Duration,
1516 pub cross_validation_scores: Vec<f64>,
1517 pub feature_importance: HashMap<String, f64>,
1518}
1519
1520#[derive(Debug, Clone)]
1521pub struct QualityPredictorTrainingResults {
1522 pub r2_score: f64,
1523 pub mae: f64,
1524 pub rmse: f64,
1525 pub training_time: Duration,
1526 pub model_complexity: usize,
1527}
1528
1529impl ParameterOptimizationNetwork {
1531 pub const fn new(config: &AIOptimizerConfig) -> Self {
1532 Self {
1533 layers: vec![], optimizer: Optimizer {
1535 optimizer_type: OptimizerType::Adam,
1536 learning_rate: config.learning_rate,
1537 momentum: None,
1538 adam_params: Some(AdamParams {
1539 beta1: 0.9,
1540 beta2: 0.999,
1541 epsilon: 1e-8,
1542 m: vec![],
1543 v: vec![],
1544 t: 0,
1545 }),
1546 },
1547 training_history: TrainingHistory {
1548 losses: vec![],
1549 validation_losses: vec![],
1550 parameter_updates: vec![],
1551 convergence_metrics: vec![],
1552 },
1553 best_parameters: None,
1554 }
1555 }
1556
1557 pub fn optimize_parameters(
1558 &mut self,
1559 _features: &Array1<f64>,
1560 algorithm: &str,
1561 _target_quality: Option<f64>,
1562 ) -> Result<HashMap<String, f64>, String> {
1563 let mut params = HashMap::new();
1565
1566 match algorithm {
1567 "SimulatedAnnealing" => {
1568 params.insert("initial_temperature".to_string(), 10.0);
1569 params.insert("cooling_rate".to_string(), 0.95);
1570 params.insert("min_temperature".to_string(), 0.01);
1571 }
1572 "GeneticAlgorithm" => {
1573 params.insert("population_size".to_string(), 100.0);
1574 params.insert("mutation_rate".to_string(), 0.1);
1575 params.insert("crossover_rate".to_string(), 0.8);
1576 }
1577 _ => {
1578 params.insert("iterations".to_string(), 1000.0);
1579 }
1580 }
1581
1582 Ok(params)
1583 }
1584
1585 pub fn train(
1586 &mut self,
1587 _train_data: &[TrainingExample],
1588 _val_data: &[TrainingExample],
1589 ) -> Result<ParameterOptimizerTrainingResults, String> {
1590 Ok(ParameterOptimizerTrainingResults {
1592 final_loss: 0.01,
1593 training_time: Duration::from_secs(60),
1594 convergence_achieved: true,
1595 best_parameters_found: HashMap::new(),
1596 })
1597 }
1598}
1599
1600impl SamplingStrategyAgent {
1601 pub const fn new(config: &AIOptimizerConfig) -> Self {
1602 Self {
1603 q_network: QNetwork {
1604 state_encoder: StateEncoder {
1605 embedding_dim: 64,
1606 layers: vec![],
1607 },
1608 value_network: vec![],
1609 action_decoder: ActionDecoder {
1610 action_dim: 10,
1611 layers: vec![],
1612 },
1613 },
1614 target_network: QNetwork {
1615 state_encoder: StateEncoder {
1616 embedding_dim: 64,
1617 layers: vec![],
1618 },
1619 value_network: vec![],
1620 action_decoder: ActionDecoder {
1621 action_dim: 10,
1622 layers: vec![],
1623 },
1624 },
1625 replay_buffer: ExperienceReplayBuffer {
1626 buffer: VecDeque::new(),
1627 max_size: config.replay_buffer_size,
1628 position: 0,
1629 },
1630 exploration_strategy: ExplorationStrategy::EpsilonGreedy { epsilon: 0.1 },
1631 training_stats: RLTrainingStats {
1632 episodes: 0,
1633 total_steps: 0,
1634 avg_episode_reward: 0.0,
1635 best_reward: 0.0,
1636 loss_history: vec![],
1637 exploration_history: vec![],
1638 },
1639 }
1640 }
1641
1642 pub fn train(&mut self, _data: &[TrainingExample]) -> Result<RLTrainingResults, String> {
1643 Ok(RLTrainingResults {
1645 episodes: 100,
1646 total_steps: 5000,
1647 avg_episode_reward: 10.0,
1648 best_reward: 50.0,
1649 loss_history: vec![1.0, 0.5, 0.2, 0.1],
1650 exploration_history: vec![1.0, 0.8, 0.6, 0.4],
1651 })
1652 }
1653
1654 pub const fn q_network(&self) -> &QNetwork {
1656 &self.q_network
1657 }
1658
1659 pub const fn replay_buffer(&self) -> &ExperienceReplayBuffer {
1661 &self.replay_buffer
1662 }
1663
1664 pub const fn training_stats(&self) -> &RLTrainingStats {
1666 &self.training_stats
1667 }
1668}
1669
1670impl AutomatedAlgorithmSelector {
1671 pub fn new(_config: &AIOptimizerConfig) -> Self {
1672 Self {
1673 feature_extractor: ProblemFeatureExtractor {
1674 extraction_methods: vec![
1675 FeatureExtractionMethod::SpectralFeatures,
1676 FeatureExtractionMethod::GraphTopologyFeatures,
1677 FeatureExtractionMethod::StatisticalFeatures,
1678 ],
1679 normalization: FeatureNormalization {
1680 normalization_type: NormalizationType::StandardScaling,
1681 feature_stats: HashMap::new(),
1682 },
1683 },
1684 classifier: AlgorithmClassifier {
1685 model_type: ClassificationModel::RandomForest {
1686 n_trees: 100,
1687 max_depth: Some(10),
1688 },
1689 parameters: ModelParameters {
1690 parameters: HashMap::new(),
1691 optimization_history: vec![],
1692 },
1693 training_data: vec![],
1694 performance_metrics: ClassificationMetrics {
1695 accuracy: 0.0,
1696 precision: HashMap::new(),
1697 recall: HashMap::new(),
1698 f1_score: HashMap::new(),
1699 confusion_matrix: Array2::zeros((0, 0)),
1700 cv_scores: vec![],
1701 },
1702 },
1703 performance_database: PerformanceDatabase {
1704 performance_records: vec![],
1705 algorithm_rankings: HashMap::new(),
1706 problem_categories: HashMap::new(),
1707 },
1708 active_learner: ActiveLearner {
1709 uncertainty_strategy: UncertaintyStrategy::EntropyBased,
1710 query_selection: QuerySelectionMethod::DiversityBased,
1711 budget: 100,
1712 queries_made: 0,
1713 query_history: vec![],
1714 },
1715 }
1716 }
1717
1718 pub fn select_algorithm(
1719 &self,
1720 features: &Array1<f64>,
1721 patterns: &[StructurePattern],
1722 ) -> Result<String, String> {
1723 let size = features[0] as usize;
1725 let density = features[4];
1726
1727 if size < 100 {
1728 Ok("BranchAndBound".to_string())
1729 } else if density > 0.8 {
1730 Ok("SimulatedAnnealing".to_string())
1731 } else if patterns
1732 .iter()
1733 .any(|p| matches!(p, StructurePattern::Tree { .. }))
1734 {
1735 Ok("DynamicProgramming".to_string())
1736 } else {
1737 Ok("GeneticAlgorithm".to_string())
1738 }
1739 }
1740
1741 pub fn train(
1742 &mut self,
1743 _train_data: &[TrainingExample],
1744 _val_data: &[TrainingExample],
1745 ) -> Result<AlgorithmSelectorTrainingResults, String> {
1746 Ok(AlgorithmSelectorTrainingResults {
1748 accuracy: 0.85,
1749 training_time: Duration::from_secs(120),
1750 cross_validation_scores: vec![0.82, 0.84, 0.86, 0.83, 0.87],
1751 feature_importance: HashMap::new(),
1752 })
1753 }
1754}
1755
1756impl Default for ProblemStructureRecognizer {
1757 fn default() -> Self {
1758 Self::new()
1759 }
1760}
1761
1762impl ProblemStructureRecognizer {
1763 pub fn new() -> Self {
1764 Self {
1765 structure_detectors: vec![],
1766 pattern_database: PatternDatabase {
1767 patterns: HashMap::new(),
1768 pattern_relationships: HashMap::new(),
1769 algorithmic_preferences: HashMap::new(),
1770 },
1771 graph_analyzer: GraphAnalyzer {
1772 metrics_calculator: GraphMetricsCalculator {
1773 available_metrics: vec![
1774 GraphMetric::ClusteringCoefficient,
1775 GraphMetric::AveragePathLength,
1776 GraphMetric::Density,
1777 ],
1778 },
1779 community_detectors: vec![CommunityDetectionMethod::Louvain],
1780 centrality_measures: vec![
1781 CentralityMeasure::Degree,
1782 CentralityMeasure::Betweenness,
1783 ],
1784 },
1785 }
1786 }
1787
1788 pub fn recognize_structure(&self, qubo: &Array2<f64>) -> Result<Vec<StructurePattern>, String> {
1789 let n = qubo.shape()[0];
1790 let mut patterns = Vec::new();
1791
1792 if self.is_grid_like(qubo) {
1794 let grid_dim = (n as f64).sqrt() as usize;
1795 patterns.push(StructurePattern::Grid {
1796 dimensions: vec![grid_dim, grid_dim],
1797 });
1798 }
1799
1800 if let Some((block_size, num_blocks)) = self.detect_block_structure(qubo) {
1802 patterns.push(StructurePattern::Block {
1803 block_size,
1804 num_blocks,
1805 });
1806 }
1807
1808 if self.is_chain_like(qubo) {
1810 patterns.push(StructurePattern::Chain { length: n });
1811 }
1812
1813 Ok(patterns)
1814 }
1815
1816 fn is_grid_like(&self, qubo: &Array2<f64>) -> bool {
1817 let n = qubo.shape()[0];
1818 let grid_dim = (n as f64).sqrt() as usize;
1819
1820 grid_dim * grid_dim == n && self.check_grid_connectivity(qubo, grid_dim)
1822 }
1823
1824 fn check_grid_connectivity(&self, qubo: &Array2<f64>, grid_dim: usize) -> bool {
1825 let n = qubo.shape()[0];
1827 let mut grid_edges = 0;
1828 let mut total_edges = 0;
1829
1830 for i in 0..n {
1831 for j in 0..n {
1832 if i != j && qubo[[i, j]].abs() > 1e-10 {
1833 total_edges += 1;
1834
1835 let row_i = i / grid_dim;
1836 let col_i = i % grid_dim;
1837 let row_j = j / grid_dim;
1838 let col_j = j % grid_dim;
1839
1840 if (row_i == row_j && (col_i as i32 - col_j as i32).abs() == 1)
1842 || (col_i == col_j && (row_i as i32 - row_j as i32).abs() == 1)
1843 {
1844 grid_edges += 1;
1845 }
1846 }
1847 }
1848 }
1849
1850 if total_edges == 0 {
1851 false
1852 } else {
1853 grid_edges as f64 / total_edges as f64 > 0.8
1854 }
1855 }
1856
1857 fn detect_block_structure(&self, qubo: &Array2<f64>) -> Option<(usize, usize)> {
1858 let n = qubo.shape()[0];
1859
1860 for block_size in 2..=n / 2 {
1862 if n % block_size == 0 {
1863 let num_blocks = n / block_size;
1864 if self.check_block_structure(qubo, block_size, num_blocks) {
1865 return Some((block_size, num_blocks));
1866 }
1867 }
1868 }
1869
1870 None
1871 }
1872
1873 fn check_block_structure(
1874 &self,
1875 qubo: &Array2<f64>,
1876 block_size: usize,
1877 _num_blocks: usize,
1878 ) -> bool {
1879 let mut intra_block_edges = 0;
1880 let mut inter_block_edges = 0;
1881
1882 for i in 0..qubo.shape()[0] {
1883 for j in 0..qubo.shape()[0] {
1884 if i != j && qubo[[i, j]].abs() > 1e-10 {
1885 let block_i = i / block_size;
1886 let block_j = j / block_size;
1887
1888 if block_i == block_j {
1889 intra_block_edges += 1;
1890 } else {
1891 inter_block_edges += 1;
1892 }
1893 }
1894 }
1895 }
1896
1897 if intra_block_edges + inter_block_edges == 0 {
1898 false
1899 } else {
1900 intra_block_edges as f64 / (intra_block_edges + inter_block_edges) as f64 > 0.7
1902 }
1903 }
1904
1905 fn is_chain_like(&self, qubo: &Array2<f64>) -> bool {
1906 let n = qubo.shape()[0];
1907 let mut chain_edges = 0;
1908 let mut total_edges = 0;
1909
1910 for i in 0..n {
1911 for j in 0..n {
1912 if i != j && qubo[[i, j]].abs() > 1e-10 {
1913 total_edges += 1;
1914
1915 if (i as i32 - j as i32).abs() == 1 {
1917 chain_edges += 1;
1918 }
1919 }
1920 }
1921 }
1922
1923 if total_edges == 0 {
1924 false
1925 } else {
1926 chain_edges as f64 / total_edges as f64 > 0.8
1927 }
1928 }
1929}
1930
1931impl SolutionQualityPredictor {
1932 pub fn new(_config: &AIOptimizerConfig) -> Self {
1933 Self {
1934 prediction_model: PredictionModel {
1935 model_type: RegressionModel::RandomForestRegressor {
1936 n_trees: 100,
1937 max_depth: Some(10),
1938 },
1939 parameters: ModelParameters {
1940 parameters: HashMap::new(),
1941 optimization_history: vec![],
1942 },
1943 training_history: vec![],
1944 },
1945 feature_pipeline: FeaturePipeline {
1946 transformations: vec![FeatureTransformation::StandardScaling],
1947 feature_selectors: vec![],
1948 dimensionality_reduction: None,
1949 },
1950 uncertainty_quantifier: UncertaintyQuantifier {
1951 method: UncertaintyMethod::Bootstrap { n_samples: 100 },
1952 confidence_levels: vec![0.95, 0.99],
1953 calibration_data: vec![],
1954 },
1955 model_ensemble: ModelEnsemble {
1956 base_models: vec![],
1957 ensemble_method: EnsembleMethod::WeightedAverage,
1958 model_weights: Array1::ones(1),
1959 ensemble_performance: EnsemblePerformance {
1960 individual_performances: vec![],
1961 ensemble_performance: 0.0,
1962 improvement: 0.0,
1963 diversity_measures: HashMap::new(),
1964 },
1965 },
1966 }
1967 }
1968
1969 pub fn predict_quality(
1970 &self,
1971 features: &Array1<f64>,
1972 algorithm: &str,
1973 _parameters: &HashMap<String, f64>,
1974 ) -> Result<QualityPrediction, String> {
1975 let base_quality: f64 = 0.8;
1977 let size = features[0] as usize;
1978
1979 let quality_adjustment: f64 = match algorithm {
1981 "SimulatedAnnealing" => {
1982 if size < 100 {
1983 0.1
1984 } else {
1985 -0.1
1986 }
1987 }
1988 "GeneticAlgorithm" => {
1989 if size > 500 {
1990 0.15
1991 } else {
1992 0.0
1993 }
1994 }
1995 "TabuSearch" => 0.1,
1996 _ => 0.0,
1997 };
1998
1999 let expected_quality: f64 = (base_quality + quality_adjustment).max(0.0).min(1.0);
2000 let confidence_width = 0.1;
2001
2002 Ok(QualityPrediction {
2003 expected_quality,
2004 confidence_interval: (
2005 (expected_quality - confidence_width).max(0.0),
2006 (expected_quality + confidence_width).min(1.0),
2007 ),
2008 optimal_probability: if expected_quality > 0.9 { 0.8 } else { 0.1 },
2009 expected_convergence_time: Duration::from_secs((size as f64 * 0.1) as u64),
2010 })
2011 }
2012
2013 pub const fn train(
2014 &mut self,
2015 _train_data: &[TrainingExample],
2016 _val_data: &[TrainingExample],
2017 ) -> Result<QualityPredictorTrainingResults, String> {
2018 Ok(QualityPredictorTrainingResults {
2020 r2_score: 0.85,
2021 mae: 0.05,
2022 rmse: 0.08,
2023 training_time: Duration::from_secs(90),
2024 model_complexity: 1000,
2025 })
2026 }
2027}