quantrs2_tytan/advanced_performance_analysis/
core.rs

1//! Core advanced performance analyzer implementation
2
3use super::*;
4
5/// Advanced performance analysis system
6pub struct AdvancedPerformanceAnalyzer {
7    /// Configuration
8    pub config: AnalysisConfig,
9    /// Performance metrics database
10    pub metrics_database: MetricsDatabase,
11    /// Real-time monitors
12    pub monitors: Vec<Box<dyn PerformanceMonitor>>,
13    /// Benchmarking suite
14    pub benchmark_suite: BenchmarkingSuite,
15    /// Analysis results
16    pub analysis_results: AnalysisResults,
17    /// Prediction models
18    pub prediction_models: Vec<Box<dyn PerformancePredictionModel>>,
19}
20
21/// Analysis results
22#[derive(Debug)]
23pub struct AnalysisResults {
24    /// Performance summary
25    pub performance_summary: PerformanceSummary,
26    /// Bottleneck analysis
27    pub bottleneck_analysis: BottleneckAnalysis,
28    /// Optimization recommendations
29    pub optimization_recommendations: Vec<OptimizationRecommendation>,
30    /// Comparative analysis
31    pub comparative_analysis: Option<ComparativeAnalysis>,
32    /// Report generation
33    pub reports: Vec<AnalysisReport>,
34}
35
36/// Performance summary
37#[derive(Debug, Clone)]
38pub struct PerformanceSummary {
39    /// Overall performance score
40    pub overall_score: f64,
41    /// Key performance indicators
42    pub kpis: HashMap<String, f64>,
43    /// Performance trends
44    pub trends: HashMap<String, TrendDirection>,
45    /// Critical metrics
46    pub critical_metrics: Vec<CriticalMetric>,
47    /// Health status
48    pub health_status: HealthStatus,
49}
50
51/// Critical metric
52#[derive(Debug, Clone)]
53pub struct CriticalMetric {
54    /// Metric name
55    pub metric_name: String,
56    /// Current value
57    pub current_value: f64,
58    /// Threshold value
59    pub threshold_value: f64,
60    /// Severity level
61    pub severity: SeverityLevel,
62    /// Recommended actions
63    pub recommended_actions: Vec<String>,
64}
65
66/// Severity levels
67#[derive(Debug, Clone, PartialEq, Eq)]
68pub enum SeverityLevel {
69    Info,
70    Warning,
71    Critical,
72    Emergency,
73}
74
75/// Health status
76#[derive(Debug, Clone, PartialEq, Eq)]
77pub enum HealthStatus {
78    Healthy,
79    Warning,
80    Critical,
81    Unknown,
82}
83
84/// Optimization recommendation
85#[derive(Debug, Clone)]
86pub struct OptimizationRecommendation {
87    /// Recommendation title
88    pub title: String,
89    /// Detailed description
90    pub description: String,
91    /// Priority level
92    pub priority: PriorityLevel,
93    /// Expected benefit
94    pub expected_benefit: f64,
95    /// Implementation steps
96    pub implementation_steps: Vec<String>,
97    /// Prerequisites
98    pub prerequisites: Vec<String>,
99    /// Risks and mitigation
100    pub risks_and_mitigation: Vec<RiskMitigation>,
101}
102
103/// Priority levels
104#[derive(Debug, Clone, PartialEq, Eq)]
105pub enum PriorityLevel {
106    Critical,
107    High,
108    Medium,
109    Low,
110    Optional,
111}
112
113/// Risk and mitigation strategy
114#[derive(Debug, Clone)]
115pub struct RiskMitigation {
116    /// Risk description
117    pub risk: String,
118    /// Probability
119    pub probability: f64,
120    /// Impact
121    pub impact: f64,
122    /// Mitigation strategy
123    pub mitigation: String,
124}
125
126impl AdvancedPerformanceAnalyzer {
127    /// Create new advanced performance analyzer
128    pub fn new(config: AnalysisConfig) -> Self {
129        Self {
130            config,
131            metrics_database: MetricsDatabase {
132                time_series: HashMap::new(),
133                aggregated_metrics: HashMap::new(),
134                historical_data: HistoricalData {
135                    daily_summaries: Vec::new(),
136                    trends: TrendAnalysis {
137                        performance_trends: HashMap::new(),
138                        seasonal_patterns: Vec::new(),
139                        anomalies: Vec::new(),
140                        forecasts: HashMap::new(),
141                    },
142                    baselines: HashMap::new(),
143                    regression_models: Vec::new(),
144                },
145                metadata: MetricsMetadata {
146                    collection_start: Instant::now(),
147                    system_info: SystemInfo::collect(),
148                    software_versions: HashMap::new(),
149                    config_hash: "default".to_string(),
150                },
151            },
152            monitors: Vec::new(),
153            benchmark_suite: BenchmarkingSuite {
154                benchmarks: Vec::new(),
155                results: HashMap::new(),
156                baselines: HashMap::new(),
157                profiles: Vec::new(),
158            },
159            analysis_results: AnalysisResults {
160                performance_summary: PerformanceSummary {
161                    overall_score: 0.0,
162                    kpis: HashMap::new(),
163                    trends: HashMap::new(),
164                    critical_metrics: Vec::new(),
165                    health_status: HealthStatus::Unknown,
166                },
167                bottleneck_analysis: BottleneckAnalysis {
168                    bottlenecks: Vec::new(),
169                    resource_utilization: ResourceUtilizationAnalysis {
170                        cpu_breakdown: CpuUtilizationBreakdown::default(),
171                        memory_breakdown: MemoryUtilizationBreakdown::default(),
172                        io_breakdown: IoUtilizationBreakdown::default(),
173                        network_breakdown: NetworkUtilizationBreakdown::default(),
174                    },
175                    dependency_analysis: DependencyAnalysis {
176                        critical_path: Vec::new(),
177                        dependency_graph: DependencyGraph {
178                            nodes: Vec::new(),
179                            edges: Vec::new(),
180                            properties: GraphProperties::default(),
181                        },
182                        parallelization_opportunities: Vec::new(),
183                        serialization_bottlenecks: Vec::new(),
184                    },
185                    optimization_opportunities: Vec::new(),
186                },
187                optimization_recommendations: Vec::new(),
188                comparative_analysis: None,
189                reports: Vec::new(),
190            },
191            prediction_models: Vec::new(),
192        }
193    }
194
195    /// Start performance analysis
196    pub fn start_analysis(&mut self) -> Result<(), AnalysisError> {
197        println!("Starting advanced performance analysis...");
198
199        // Start real-time monitoring
200        if self.config.real_time_monitoring {
201            self.start_real_time_monitoring()?;
202        }
203
204        // Initialize system information
205        self.initialize_system_info()?;
206
207        // Set up benchmarks
208        self.setup_benchmarks()?;
209
210        // Initialize prediction models
211        self.initialize_prediction_models()?;
212
213        println!("Advanced performance analysis started successfully");
214        Ok(())
215    }
216
217    /// Perform comprehensive analysis
218    pub fn perform_comprehensive_analysis(&mut self) -> Result<(), AnalysisError> {
219        println!("Performing comprehensive performance analysis...");
220
221        // Collect current metrics
222        self.collect_metrics()?;
223
224        // Analyze performance trends
225        self.analyze_trends()?;
226
227        // Identify bottlenecks
228        self.identify_bottlenecks()?;
229
230        // Generate optimization recommendations
231        self.generate_optimization_recommendations()?;
232
233        // Perform comparative analysis
234        if self.config.comparative_analysis {
235            self.perform_comparative_analysis()?;
236        }
237
238        // Generate reports
239        self.generate_reports()?;
240
241        println!("Comprehensive analysis completed");
242        Ok(())
243    }
244
245    /// Start real-time monitoring
246    fn start_real_time_monitoring(&mut self) -> Result<(), AnalysisError> {
247        // Add various monitors
248        self.monitors.push(Box::new(CpuMonitor::new()));
249        self.monitors.push(Box::new(MemoryMonitor::new()));
250        self.monitors.push(Box::new(IoMonitor::new()));
251        self.monitors.push(Box::new(NetworkMonitor::new()));
252
253        // Start all monitors
254        for monitor in &mut self.monitors {
255            monitor.start_monitoring()?;
256        }
257
258        Ok(())
259    }
260
261    /// Initialize system information
262    fn initialize_system_info(&mut self) -> Result<(), AnalysisError> {
263        self.metrics_database.metadata.system_info = SystemInfo::collect();
264        Ok(())
265    }
266
267    /// Set up benchmarks
268    fn setup_benchmarks(&mut self) -> Result<(), AnalysisError> {
269        self.benchmark_suite
270            .benchmarks
271            .push(Box::new(QuboEvaluationBenchmark::new()));
272        self.benchmark_suite
273            .benchmarks
274            .push(Box::new(SamplingBenchmark::new()));
275        self.benchmark_suite
276            .benchmarks
277            .push(Box::new(ConvergenceBenchmark::new()));
278        Ok(())
279    }
280
281    /// Initialize prediction models
282    fn initialize_prediction_models(&mut self) -> Result<(), AnalysisError> {
283        self.prediction_models
284            .push(Box::new(LinearRegressionModel::new()));
285        self.prediction_models
286            .push(Box::new(RandomForestModel::new()));
287        Ok(())
288    }
289
290    /// Collect metrics from all monitors
291    fn collect_metrics(&mut self) -> Result<(), AnalysisError> {
292        let mut all_metrics = Vec::new();
293        for monitor in &self.monitors {
294            let metrics = monitor.get_current_metrics()?;
295            all_metrics.extend(metrics);
296        }
297        for (metric_name, value) in all_metrics {
298            self.add_metric_value(&metric_name, value);
299        }
300        Ok(())
301    }
302
303    /// Add metric value to time series
304    fn add_metric_value(&mut self, metric_name: &str, value: f64) {
305        let time_series = self
306            .metrics_database
307            .time_series
308            .entry(metric_name.to_string())
309            .or_insert_with(|| TimeSeries {
310                timestamps: Vec::new(),
311                values: Vec::new(),
312                metric_name: metric_name.to_string(),
313                units: "unknown".to_string(),
314                sampling_rate: self.config.monitoring_frequency,
315            });
316
317        time_series.timestamps.push(Instant::now());
318        time_series.values.push(value);
319    }
320
321    /// Analyze performance trends
322    fn analyze_trends(&mut self) -> Result<(), AnalysisError> {
323        for (metric_name, time_series) in &self.metrics_database.time_series {
324            if time_series.values.len() < 10 {
325                continue; // Need sufficient data for trend analysis
326            }
327
328            let trend = self.calculate_trend(&time_series.values);
329            self.analysis_results
330                .performance_summary
331                .trends
332                .insert(metric_name.clone(), trend);
333        }
334        Ok(())
335    }
336
337    /// Calculate trend direction from time series data
338    pub fn calculate_trend(&self, values: &[f64]) -> TrendDirection {
339        if values.len() < 3 {
340            return TrendDirection::Unknown;
341        }
342
343        let n = values.len() as f64;
344        let x_sum: f64 = (0..values.len()).map(|i| i as f64).sum();
345        let y_sum: f64 = values.iter().sum();
346        let xy_sum: f64 = values.iter().enumerate().map(|(i, &y)| i as f64 * y).sum();
347        let x2_sum: f64 = (0..values.len()).map(|i| (i as f64).powi(2)).sum();
348
349        let slope = n.mul_add(xy_sum, -(x_sum * y_sum)) / x_sum.mul_add(-x_sum, n * x2_sum);
350
351        if slope > 0.01 {
352            TrendDirection::Improving
353        } else if slope < -0.01 {
354            TrendDirection::Degrading
355        } else {
356            TrendDirection::Stable
357        }
358    }
359
360    /// Identify performance bottlenecks
361    fn identify_bottlenecks(&mut self) -> Result<(), AnalysisError> {
362        // Analyze CPU utilization
363        if let Some(cpu_time_series) = self.metrics_database.time_series.get("cpu_utilization") {
364            if let Some(&max_cpu) = cpu_time_series
365                .values
366                .iter()
367                .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
368            {
369                if max_cpu > 80.0 {
370                    self.analysis_results
371                        .bottleneck_analysis
372                        .bottlenecks
373                        .push(Bottleneck {
374                            bottleneck_type: BottleneckType::CPU,
375                            location: "CPU cores".to_string(),
376                            severity: (max_cpu - 80.0) / 20.0,
377                            resource: "CPU".to_string(),
378                            mitigation_strategies: vec![
379                                "Consider CPU optimization".to_string(),
380                                "Implement parallel processing".to_string(),
381                                "Profile hot code paths".to_string(),
382                            ],
383                        });
384                }
385            }
386        }
387
388        // Analyze memory utilization
389        if let Some(memory_time_series) =
390            self.metrics_database.time_series.get("memory_utilization")
391        {
392            if let Some(&max_memory) = memory_time_series
393                .values
394                .iter()
395                .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
396            {
397                if max_memory > 85.0 {
398                    self.analysis_results
399                        .bottleneck_analysis
400                        .bottlenecks
401                        .push(Bottleneck {
402                            bottleneck_type: BottleneckType::Memory,
403                            location: "System memory".to_string(),
404                            severity: (max_memory - 85.0) / 15.0,
405                            resource: "Memory".to_string(),
406                            mitigation_strategies: vec![
407                                "Optimize memory usage".to_string(),
408                                "Implement memory pooling".to_string(),
409                                "Consider data structure optimization".to_string(),
410                            ],
411                        });
412                }
413            }
414        }
415
416        Ok(())
417    }
418
419    /// Generate optimization recommendations
420    fn generate_optimization_recommendations(&mut self) -> Result<(), AnalysisError> {
421        // Generate recommendations based on identified bottlenecks
422        for bottleneck in &self.analysis_results.bottleneck_analysis.bottlenecks {
423            let recommendation = OptimizationRecommendation {
424                title: format!("Optimize {} Performance", bottleneck.resource),
425                description: format!(
426                    "Address {} bottleneck with severity {:.2}",
427                    bottleneck.resource, bottleneck.severity
428                ),
429                priority: if bottleneck.severity > 0.8 {
430                    PriorityLevel::Critical
431                } else if bottleneck.severity > 0.5 {
432                    PriorityLevel::High
433                } else {
434                    PriorityLevel::Medium
435                },
436                expected_benefit: bottleneck.severity * 0.3, // Rough estimate
437                implementation_steps: bottleneck.mitigation_strategies.clone(),
438                prerequisites: vec!["Performance profiling tools".to_string()],
439                risks_and_mitigation: vec![RiskMitigation {
440                    risk: "Performance regression during optimization".to_string(),
441                    probability: 0.2,
442                    impact: 0.3,
443                    mitigation: "Implement comprehensive testing".to_string(),
444                }],
445            };
446
447            self.analysis_results
448                .optimization_recommendations
449                .push(recommendation);
450        }
451
452        Ok(())
453    }
454
455    /// Perform comparative analysis
456    fn perform_comparative_analysis(&mut self) -> Result<(), AnalysisError> {
457        // This would compare current performance with baselines
458        let baseline_comparison = BaselineComparison {
459            current_performance: HashMap::new(),
460            baseline_performance: HashMap::new(),
461            performance_changes: HashMap::new(),
462            statistical_significance: HashMap::new(),
463        };
464
465        self.analysis_results.comparative_analysis = Some(ComparativeAnalysis {
466            baseline_comparison,
467            algorithm_comparisons: Vec::new(),
468            regression_analysis: RegressionAnalysis {
469                regression_detected: false,
470                regression_severity: 0.0,
471                affected_metrics: Vec::new(),
472                potential_causes: Vec::new(),
473                timeline_analysis: TimelineAnalysis {
474                    key_events: Vec::new(),
475                    correlations: Vec::new(),
476                    change_points: Vec::new(),
477                },
478            },
479            ab_test_results: Vec::new(),
480        });
481
482        Ok(())
483    }
484
485    /// Generate analysis reports
486    fn generate_reports(&mut self) -> Result<(), AnalysisError> {
487        // Generate performance summary report
488        let summary_report = AnalysisReport {
489            report_type: ReportType::PerformanceSummary,
490            title: "Performance Analysis Summary".to_string(),
491            content: ReportContent {
492                executive_summary: "Overall system performance analysis".to_string(),
493                key_findings: vec![
494                    "System performance is stable".to_string(),
495                    "Minor bottlenecks identified".to_string(),
496                ],
497                sections: Vec::new(),
498                visualizations: Vec::new(),
499                appendices: Vec::new(),
500            },
501            timestamp: Instant::now(),
502            metadata: ReportMetadata {
503                author: "Advanced Performance Analyzer".to_string(),
504                version: "1.0.0".to_string(),
505                format: ReportFormat::HTML,
506                tags: vec!["performance".to_string(), "analysis".to_string()],
507                recipients: Vec::new(),
508            },
509        };
510
511        self.analysis_results.reports.push(summary_report);
512        Ok(())
513    }
514}
515
516/// Create comprehensive performance analyzer
517pub fn create_comprehensive_analyzer() -> AdvancedPerformanceAnalyzer {
518    let config = create_default_analysis_config();
519    AdvancedPerformanceAnalyzer::new(config)
520}
521
522/// Create lightweight analyzer for basic monitoring
523pub fn create_lightweight_analyzer() -> AdvancedPerformanceAnalyzer {
524    let config = create_lightweight_config();
525    AdvancedPerformanceAnalyzer::new(config)
526}