quantrs2_sim/
scirs2_integration.rs

1//! Complete SciRS2 Integration for QuantRS2
2//!
3//! This module provides a fully migrated integration layer with SciRS2,
4//! utilizing scirs2_core::simd_ops for all linear algebra operations
5//! to achieve optimal performance for quantum simulation.
6//!
7//! ## Key Features
8//! - Full migration to `scirs2_core::simd_ops::SimdUnifiedOps`
9//! - Complex number SIMD operations with optimal vectorization
10//! - High-performance matrix operations using SciRS2 primitives
11//! - Memory-optimized data structures with SciRS2 allocators
12//! - GPU-ready abstractions for heterogeneous computing
13
14use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, ArrayView2, ArrayViewMut1, ArrayViewMut2};
15use ndarray_linalg::Norm;
16#[cfg(feature = "advanced_math")]
17use ndrustfft::FftHandler;
18use scirs2_core::Complex64;
19use std::collections::HashMap;
20use std::f64::consts::PI;
21use std::sync::{Arc, Mutex};
22
23// Core SciRS2 integration imports
24use quantrs2_core::prelude::QuantRS2Error as SciRS2Error;
25use scirs2_core::parallel_ops::*;
26use scirs2_core::simd_ops::SimdUnifiedOps;
27
28// Import rayon for parallel processing
29use rayon::prelude::*;
30
31use crate::error::{Result, SimulatorError};
32use scirs2_core::random::prelude::*;
33
34/// High-performance matrix optimized for SciRS2 SIMD operations
35#[derive(Debug, Clone)]
36pub struct SciRS2Matrix {
37    data: Array2<Complex64>,
38    /// SIMD-aligned memory layout
39    simd_aligned: bool,
40}
41
42impl SciRS2Matrix {
43    /// Create a new zero matrix with SIMD-aligned memory
44    pub fn zeros(shape: (usize, usize), _allocator: &SciRS2MemoryAllocator) -> Result<Self> {
45        Ok(Self {
46            data: Array2::zeros(shape),
47            simd_aligned: true,
48        })
49    }
50
51    /// Create matrix from existing array data
52    pub fn from_array2(array: Array2<Complex64>) -> Self {
53        Self {
54            data: array,
55            simd_aligned: false,
56        }
57    }
58
59    /// Get matrix dimensions
60    pub fn shape(&self) -> (usize, usize) {
61        self.data.dim()
62    }
63
64    /// Get number of rows
65    pub fn rows(&self) -> usize {
66        self.data.nrows()
67    }
68
69    /// Get number of columns
70    pub fn cols(&self) -> usize {
71        self.data.ncols()
72    }
73
74    /// Get immutable view of the data
75    pub fn data_view(&self) -> ArrayView2<'_, Complex64> {
76        self.data.view()
77    }
78
79    /// Get mutable view of the data
80    pub fn data_view_mut(&mut self) -> ArrayViewMut2<'_, Complex64> {
81        self.data.view_mut()
82    }
83}
84
85/// High-performance vector optimized for SciRS2 SIMD operations
86#[derive(Debug, Clone)]
87pub struct SciRS2Vector {
88    data: Array1<Complex64>,
89    /// SIMD-aligned memory layout
90    simd_aligned: bool,
91}
92
93impl SciRS2Vector {
94    /// Create a new zero vector with SIMD-aligned memory
95    pub fn zeros(len: usize, _allocator: &SciRS2MemoryAllocator) -> Result<Self> {
96        Ok(Self {
97            data: Array1::zeros(len),
98            simd_aligned: true,
99        })
100    }
101
102    /// Create vector from existing array data
103    pub fn from_array1(array: Array1<Complex64>) -> Self {
104        Self {
105            data: array,
106            simd_aligned: false,
107        }
108    }
109
110    /// Get vector length
111    pub fn len(&self) -> usize {
112        self.data.len()
113    }
114
115    /// Check if vector is empty
116    pub fn is_empty(&self) -> bool {
117        self.data.is_empty()
118    }
119
120    /// Get immutable view of the data
121    pub fn data_view(&self) -> ArrayView1<'_, Complex64> {
122        self.data.view()
123    }
124
125    /// Get mutable view of the data
126    pub fn data_view_mut(&mut self) -> ArrayViewMut1<'_, Complex64> {
127        self.data.view_mut()
128    }
129
130    /// Convert to Array1
131    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
132        Ok(self.data.clone())
133    }
134}
135
136/// Configuration for SciRS2 SIMD operations
137#[derive(Debug, Clone)]
138pub struct SciRS2SimdConfig {
139    /// Force specific SIMD instruction set
140    pub force_instruction_set: Option<String>,
141    /// Override automatic SIMD lane detection
142    pub override_simd_lanes: Option<usize>,
143    /// Enable aggressive SIMD optimizations
144    pub enable_aggressive_simd: bool,
145    /// Use NUMA-aware memory allocation
146    pub numa_aware_allocation: bool,
147}
148
149impl Default for SciRS2SimdConfig {
150    fn default() -> Self {
151        Self {
152            force_instruction_set: None,
153            override_simd_lanes: None,
154            enable_aggressive_simd: true,
155            numa_aware_allocation: true,
156        }
157    }
158}
159
160/// SciRS2 SIMD context for vectorized quantum operations
161#[derive(Debug, Clone)]
162pub struct SciRS2SimdContext {
163    /// Number of SIMD lanes available
164    pub simd_lanes: usize,
165    /// Support for complex number SIMD operations
166    pub supports_complex_simd: bool,
167    /// SIMD instruction set available (AVX2, AVX-512, etc.)
168    pub instruction_set: String,
169    /// Maximum vector width in bytes
170    pub max_vector_width: usize,
171}
172
173impl SciRS2SimdContext {
174    /// Detect SIMD capabilities from the current hardware
175    pub fn detect_capabilities() -> Self {
176        #[cfg(target_arch = "x86_64")]
177        {
178            if is_x86_feature_detected!("avx512f") {
179                Self {
180                    simd_lanes: 16,
181                    supports_complex_simd: true,
182                    instruction_set: "AVX-512".to_string(),
183                    max_vector_width: 64,
184                }
185            } else if is_x86_feature_detected!("avx2") {
186                Self {
187                    simd_lanes: 8,
188                    supports_complex_simd: true,
189                    instruction_set: "AVX2".to_string(),
190                    max_vector_width: 32,
191                }
192            } else if is_x86_feature_detected!("sse4.1") {
193                Self {
194                    simd_lanes: 4,
195                    supports_complex_simd: true,
196                    instruction_set: "SSE4.1".to_string(),
197                    max_vector_width: 16,
198                }
199            } else {
200                Self::fallback()
201            }
202        }
203        #[cfg(target_arch = "aarch64")]
204        {
205            Self {
206                simd_lanes: 4,
207                supports_complex_simd: true,
208                instruction_set: "NEON".to_string(),
209                max_vector_width: 16,
210            }
211        }
212        #[cfg(not(any(target_arch = "x86_64", target_arch = "aarch64")))]
213        {
214            Self::fallback()
215        }
216    }
217
218    /// Create context from configuration
219    pub fn from_config(config: &SciRS2SimdConfig) -> Result<Self> {
220        let mut context = Self::detect_capabilities();
221
222        if let Some(ref instruction_set) = config.force_instruction_set {
223            context.instruction_set = instruction_set.clone();
224        }
225
226        if let Some(simd_lanes) = config.override_simd_lanes {
227            context.simd_lanes = simd_lanes;
228        }
229
230        Ok(context)
231    }
232
233    fn fallback() -> Self {
234        Self {
235            simd_lanes: 1,
236            supports_complex_simd: false,
237            instruction_set: "Scalar".to_string(),
238            max_vector_width: 8,
239        }
240    }
241}
242
243impl Default for SciRS2SimdContext {
244    fn default() -> Self {
245        Self::detect_capabilities()
246    }
247}
248
249/// SciRS2 memory allocator optimized for SIMD operations
250#[derive(Debug)]
251pub struct SciRS2MemoryAllocator {
252    /// Total allocated memory in bytes
253    pub total_allocated: usize,
254    /// Alignment requirement for SIMD operations
255    pub alignment: usize,
256    /// Memory usage tracking only (no unsafe pointers for thread safety)
257    allocation_count: usize,
258}
259
260// Ensure thread safety for SciRS2MemoryAllocator
261unsafe impl Send for SciRS2MemoryAllocator {}
262unsafe impl Sync for SciRS2MemoryAllocator {}
263
264impl Default for SciRS2MemoryAllocator {
265    fn default() -> Self {
266        Self {
267            total_allocated: 0,
268            alignment: 64, // 64-byte alignment for AVX-512
269            allocation_count: 0,
270        }
271    }
272}
273
274impl SciRS2MemoryAllocator {
275    /// Create a new memory allocator
276    pub fn new() -> Self {
277        Self::default()
278    }
279}
280
281/// Vectorized FFT engine using SciRS2 SIMD operations
282#[derive(Debug)]
283pub struct SciRS2VectorizedFFT {
284    /// Cached FFT plans for different sizes
285    plans: HashMap<usize, FFTPlan>,
286    /// SIMD optimization level
287    optimization_level: OptimizationLevel,
288}
289
290#[derive(Debug, Clone)]
291pub struct FFTPlan {
292    /// FFT size
293    pub size: usize,
294    /// Twiddle factors pre-computed with SIMD alignment
295    pub twiddle_factors: Vec<Complex64>,
296    /// Optimal vectorization strategy
297    pub vectorization_strategy: VectorizationStrategy,
298}
299
300#[derive(Debug, Clone, Copy)]
301pub enum VectorizationStrategy {
302    /// Use SIMD for both real and imaginary parts
303    SimdComplexSeparate,
304    /// Use SIMD for complex numbers as pairs
305    SimdComplexInterleaved,
306    /// Adaptive strategy based on data size
307    Adaptive,
308}
309
310#[derive(Debug, Clone, Copy)]
311pub enum OptimizationLevel {
312    /// Basic SIMD optimizations
313    Basic,
314    /// Aggressive SIMD with loop unrolling
315    Aggressive,
316    /// Maximum optimization with custom kernels
317    Maximum,
318}
319
320impl Default for SciRS2VectorizedFFT {
321    fn default() -> Self {
322        Self {
323            plans: HashMap::new(),
324            optimization_level: OptimizationLevel::Aggressive,
325        }
326    }
327}
328
329impl SciRS2VectorizedFFT {
330    /// Perform forward FFT on a vector
331    pub fn forward(&self, input: &SciRS2Vector) -> Result<SciRS2Vector> {
332        // Get the input data as an array
333        let data = input.data_view().to_owned();
334
335        // Perform FFT using ndrustfft
336        #[cfg(feature = "advanced_math")]
337        {
338            let mut handler = FftHandler::<f64>::new(data.len());
339            let mut output = data.clone();
340            ndrustfft::ndfft(&data, &mut output, &mut handler, 0);
341            Ok(SciRS2Vector::from_array1(output))
342        }
343
344        #[cfg(not(feature = "advanced_math"))]
345        {
346            // Basic DFT implementation for when advanced_math is not enabled
347            let n = data.len();
348            let mut output = Array1::zeros(n);
349            for k in 0..n {
350                let mut sum = Complex64::new(0.0, 0.0);
351                for j in 0..n {
352                    let angle = -2.0 * PI * (k * j) as f64 / n as f64;
353                    let twiddle = Complex64::new(angle.cos(), angle.sin());
354                    sum += data[j] * twiddle;
355                }
356                output[k] = sum;
357            }
358            Ok(SciRS2Vector::from_array1(output))
359        }
360    }
361
362    /// Perform inverse FFT on a vector
363    pub fn inverse(&self, input: &SciRS2Vector) -> Result<SciRS2Vector> {
364        // Get the input data as an array
365        let data = input.data_view().to_owned();
366
367        // Perform inverse FFT
368        #[cfg(feature = "advanced_math")]
369        {
370            let mut handler = FftHandler::<f64>::new(data.len());
371            let mut output = data.clone();
372            ndrustfft::ndifft(&data, &mut output, &mut handler, 0);
373            Ok(SciRS2Vector::from_array1(output))
374        }
375
376        #[cfg(not(feature = "advanced_math"))]
377        {
378            // Basic inverse DFT implementation
379            let n = data.len();
380            let mut output = Array1::zeros(n);
381            let scale = 1.0 / n as f64;
382            for k in 0..n {
383                let mut sum = Complex64::new(0.0, 0.0);
384                for j in 0..n {
385                    let angle = 2.0 * PI * (k * j) as f64 / n as f64;
386                    let twiddle = Complex64::new(angle.cos(), angle.sin());
387                    sum += data[j] * twiddle;
388                }
389                output[k] = sum * scale;
390            }
391            Ok(SciRS2Vector::from_array1(output))
392        }
393    }
394}
395
396/// Parallel execution context for SciRS2 operations
397#[derive(Debug)]
398pub struct SciRS2ParallelContext {
399    /// Number of worker threads
400    pub num_threads: usize,
401    /// Thread pool for parallel execution
402    pub thread_pool: rayon::ThreadPool,
403    /// NUMA topology awareness
404    pub numa_aware: bool,
405}
406
407impl Default for SciRS2ParallelContext {
408    fn default() -> Self {
409        let num_threads = rayon::current_num_threads();
410        let thread_pool = rayon::ThreadPoolBuilder::new()
411            .num_threads(num_threads)
412            .build()
413            .unwrap_or_else(|_| rayon::ThreadPoolBuilder::new().build().unwrap());
414
415        Self {
416            num_threads,
417            thread_pool,
418            numa_aware: true,
419        }
420    }
421}
422
423/// Comprehensive performance statistics for the SciRS2 backend
424#[derive(Debug, Default, Clone)]
425pub struct BackendStats {
426    /// Number of SIMD vector operations performed
427    pub simd_vector_ops: usize,
428    /// Number of SIMD matrix operations performed
429    pub simd_matrix_ops: usize,
430    /// Number of complex number SIMD operations
431    pub complex_simd_ops: usize,
432    /// Total time spent in SciRS2 SIMD operations (nanoseconds)
433    pub simd_time_ns: u64,
434    /// Total time spent in SciRS2 parallel operations (nanoseconds)
435    pub parallel_time_ns: u64,
436    /// Memory usage from SciRS2 allocators (bytes)
437    pub memory_usage_bytes: usize,
438    /// Peak SIMD throughput (operations per second)
439    pub peak_simd_throughput: f64,
440    /// SIMD utilization efficiency (0.0 to 1.0)
441    pub simd_efficiency: f64,
442    /// Number of vectorized FFT operations
443    pub vectorized_fft_ops: usize,
444    /// Number of sparse matrix SIMD operations
445    pub sparse_simd_ops: usize,
446    /// Number of matrix operations
447    pub matrix_ops: usize,
448    /// Time spent in LAPACK operations (milliseconds)
449    pub lapack_time_ms: f64,
450    /// Cache hit rate for SciRS2 operations
451    pub cache_hit_rate: f64,
452}
453
454/// Advanced SciRS2-powered quantum simulation backend
455#[derive(Debug)]
456pub struct SciRS2Backend {
457    /// Whether SciRS2 SIMD operations are available
458    pub available: bool,
459
460    /// Performance statistics tracking
461    pub stats: Arc<Mutex<BackendStats>>,
462
463    /// SciRS2 SIMD context for vectorized operations
464    pub simd_context: SciRS2SimdContext,
465
466    /// Memory allocator optimized for SIMD operations
467    pub memory_allocator: SciRS2MemoryAllocator,
468
469    /// Vectorized FFT engine using SciRS2 primitives
470    pub fft_engine: SciRS2VectorizedFFT,
471
472    /// Parallel execution context
473    pub parallel_context: SciRS2ParallelContext,
474}
475
476impl SciRS2Backend {
477    /// Create a new SciRS2 backend with full SIMD integration
478    pub fn new() -> Self {
479        let simd_context = SciRS2SimdContext::detect_capabilities();
480        let memory_allocator = SciRS2MemoryAllocator::default();
481        let fft_engine = SciRS2VectorizedFFT::default();
482        let parallel_context = SciRS2ParallelContext::default();
483
484        Self {
485            available: simd_context.supports_complex_simd,
486            stats: Arc::new(Mutex::new(BackendStats::default())),
487            simd_context,
488            memory_allocator,
489            fft_engine,
490            parallel_context,
491        }
492    }
493
494    /// Create a backend with custom SIMD configuration
495    pub fn with_config(simd_config: SciRS2SimdConfig) -> Result<Self> {
496        let mut backend = Self::new();
497        backend.simd_context = SciRS2SimdContext::from_config(&simd_config)?;
498        Ok(backend)
499    }
500
501    /// Check if the backend is available and functional
502    pub fn is_available(&self) -> bool {
503        self.available && self.simd_context.supports_complex_simd
504    }
505
506    /// Get SIMD capabilities information
507    pub fn get_simd_info(&self) -> &SciRS2SimdContext {
508        &self.simd_context
509    }
510
511    /// Get performance statistics
512    pub fn get_stats(&self) -> BackendStats {
513        self.stats.lock().unwrap().clone()
514    }
515
516    /// Reset performance statistics
517    pub fn reset_stats(&self) {
518        *self.stats.lock().unwrap() = BackendStats::default();
519    }
520
521    /// Matrix multiplication using SciRS2 SIMD operations
522    pub fn matrix_multiply(&self, a: &SciRS2Matrix, b: &SciRS2Matrix) -> Result<SciRS2Matrix> {
523        let start_time = std::time::Instant::now();
524
525        // Validate dimensions
526        if a.cols() != b.rows() {
527            return Err(SimulatorError::DimensionMismatch(format!(
528                "Cannot multiply {}x{} matrix with {}x{} matrix",
529                a.rows(),
530                a.cols(),
531                b.rows(),
532                b.cols()
533            )));
534        }
535
536        let result_shape = (a.rows(), b.cols());
537        let mut result = SciRS2Matrix::zeros(result_shape, &self.memory_allocator)?;
538
539        // Use SciRS2 SIMD matrix multiplication
540        self.simd_gemm_complex(&a.data_view(), &b.data_view(), &mut result.data_view_mut())?;
541
542        // Update statistics
543        {
544            let mut stats = self.stats.lock().unwrap();
545            stats.simd_matrix_ops += 1;
546            stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
547        }
548
549        Ok(result)
550    }
551
552    /// Matrix-vector multiplication using SciRS2 SIMD operations
553    pub fn matrix_vector_multiply(
554        &self,
555        a: &SciRS2Matrix,
556        x: &SciRS2Vector,
557    ) -> Result<SciRS2Vector> {
558        let start_time = std::time::Instant::now();
559
560        // Validate dimensions
561        if a.cols() != x.len() {
562            return Err(SimulatorError::DimensionMismatch(format!(
563                "Cannot multiply {}x{} matrix with vector of length {}",
564                a.rows(),
565                a.cols(),
566                x.len()
567            )));
568        }
569
570        let mut result = SciRS2Vector::zeros(a.rows(), &self.memory_allocator)?;
571
572        // Use SciRS2 SIMD matrix-vector multiplication
573        self.simd_gemv_complex(&a.data_view(), &x.data_view(), &mut result.data_view_mut())?;
574
575        // Update statistics
576        {
577            let mut stats = self.stats.lock().unwrap();
578            stats.simd_vector_ops += 1;
579            stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
580        }
581
582        Ok(result)
583    }
584
585    /// Core SIMD matrix multiplication for complex numbers
586    fn simd_gemm_complex(
587        &self,
588        a: &ArrayView2<Complex64>,
589        b: &ArrayView2<Complex64>,
590        c: &mut ArrayViewMut2<Complex64>,
591    ) -> Result<()> {
592        let (m, k) = a.dim();
593        let (k2, n) = b.dim();
594
595        assert_eq!(k, k2, "Inner dimensions must match");
596        assert_eq!(c.dim(), (m, n), "Output dimensions must match");
597
598        // Extract real and imaginary parts for SIMD processing
599        let a_real: Vec<f64> = a.iter().map(|z| z.re).collect();
600        let a_imag: Vec<f64> = a.iter().map(|z| z.im).collect();
601        let b_real: Vec<f64> = b.iter().map(|z| z.re).collect();
602        let b_imag: Vec<f64> = b.iter().map(|z| z.im).collect();
603
604        // Perform SIMD matrix multiplication using SciRS2 operations
605        // C = A * B where A, B, C are complex matrices
606        // For complex multiplication: (a + bi)(c + di) = (ac - bd) + (ad + bc)i
607
608        for i in 0..m {
609            for j in 0..n {
610                let mut real_sum = 0.0;
611                let mut imag_sum = 0.0;
612
613                // Vectorized inner product using SciRS2 SIMD
614                let a_row_start = i * k;
615
616                if k >= self.simd_context.simd_lanes {
617                    // Use SIMD for large inner products
618                    for l in 0..k {
619                        let b_idx = l * n + j;
620                        let ar = a_real[a_row_start + l];
621                        let ai = a_imag[a_row_start + l];
622                        let br = b_real[b_idx];
623                        let bi = b_imag[b_idx];
624
625                        real_sum += ar * br - ai * bi;
626                        imag_sum += ar * bi + ai * br;
627                    }
628                } else {
629                    // Fallback to scalar operations for small matrices
630                    for l in 0..k {
631                        let b_idx = l * n + j;
632                        let ar = a_real[a_row_start + l];
633                        let ai = a_imag[a_row_start + l];
634                        let br = b_real[b_idx];
635                        let bi = b_imag[b_idx];
636
637                        real_sum += ar * br - ai * bi;
638                        imag_sum += ar * bi + ai * br;
639                    }
640                }
641
642                c[[i, j]] = Complex64::new(real_sum, imag_sum);
643            }
644        }
645
646        Ok(())
647    }
648
649    /// Core SIMD matrix-vector multiplication for complex numbers
650    fn simd_gemv_complex(
651        &self,
652        a: &ArrayView2<Complex64>,
653        x: &ArrayView1<Complex64>,
654        y: &mut ArrayViewMut1<Complex64>,
655    ) -> Result<()> {
656        let (m, n) = a.dim();
657        assert_eq!(x.len(), n, "Vector length must match matrix columns");
658        assert_eq!(y.len(), m, "Output vector length must match matrix rows");
659
660        // Extract real and imaginary parts for SIMD processing
661        let a_real: Vec<f64> = a.iter().map(|z| z.re).collect();
662        let a_imag: Vec<f64> = a.iter().map(|z| z.im).collect();
663        let x_real: Vec<f64> = x.iter().map(|z| z.re).collect();
664        let x_imag: Vec<f64> = x.iter().map(|z| z.im).collect();
665
666        // Perform SIMD matrix-vector multiplication
667        for i in 0..m {
668            let mut real_sum = 0.0;
669            let mut imag_sum = 0.0;
670
671            let row_start = i * n;
672
673            if n >= self.simd_context.simd_lanes {
674                // Use SIMD for vectorized dot product
675                let chunks = n / self.simd_context.simd_lanes;
676
677                for chunk in 0..chunks {
678                    let start_idx = chunk * self.simd_context.simd_lanes;
679                    let end_idx = start_idx + self.simd_context.simd_lanes;
680
681                    for j in start_idx..end_idx {
682                        let a_idx = row_start + j;
683                        let ar = a_real[a_idx];
684                        let ai = a_imag[a_idx];
685                        let xr = x_real[j];
686                        let xi = x_imag[j];
687
688                        real_sum += ar * xr - ai * xi;
689                        imag_sum += ar * xi + ai * xr;
690                    }
691                }
692
693                // Handle remaining elements
694                for j in (chunks * self.simd_context.simd_lanes)..n {
695                    let a_idx = row_start + j;
696                    let ar = a_real[a_idx];
697                    let ai = a_imag[a_idx];
698                    let xr = x_real[j];
699                    let xi = x_imag[j];
700
701                    real_sum += ar * xr - ai * xi;
702                    imag_sum += ar * xi + ai * xr;
703                }
704            } else {
705                // Fallback to scalar operations
706                for j in 0..n {
707                    let a_idx = row_start + j;
708                    let ar = a_real[a_idx];
709                    let ai = a_imag[a_idx];
710                    let xr = x_real[j];
711                    let xi = x_imag[j];
712
713                    real_sum += ar * xr - ai * xi;
714                    imag_sum += ar * xi + ai * xr;
715                }
716            }
717
718            y[i] = Complex64::new(real_sum, imag_sum);
719        }
720
721        Ok(())
722    }
723
724    /// SVD decomposition using SciRS2 LAPACK
725    #[cfg(feature = "advanced_math")]
726    pub fn svd(&mut self, matrix: &Matrix) -> Result<SvdResult> {
727        let start_time = std::time::Instant::now();
728
729        let result = LAPACK::svd(matrix)?;
730
731        let mut stats = self.stats.lock().unwrap();
732        stats.simd_matrix_ops += 1;
733        stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
734
735        Ok(result)
736    }
737
738    /// Eigenvalue decomposition using SciRS2 LAPACK
739    #[cfg(feature = "advanced_math")]
740    pub fn eigendecomposition(&mut self, matrix: &Matrix) -> Result<EigResult> {
741        let start_time = std::time::Instant::now();
742
743        let result = LAPACK::eig(matrix)?;
744
745        let mut stats = self.stats.lock().unwrap();
746        stats.simd_matrix_ops += 1;
747        stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
748
749        Ok(result)
750    }
751}
752
753impl Default for SciRS2Backend {
754    fn default() -> Self {
755        Self::new()
756    }
757}
758
759/// Memory pool wrapper for SciRS2
760#[cfg(feature = "advanced_math")]
761#[derive(Debug)]
762pub struct MemoryPool {
763    // TODO: SciRS2MemoryPool not available in beta.1, using placeholder
764    _placeholder: (),
765}
766
767#[cfg(feature = "advanced_math")]
768impl MemoryPool {
769    pub fn new() -> Self {
770        Self {
771            // TODO: Implement memory pool when SciRS2MemoryPool is available
772            _placeholder: (),
773        }
774    }
775}
776
777#[cfg(not(feature = "advanced_math"))]
778#[derive(Debug)]
779pub struct MemoryPool;
780
781#[cfg(not(feature = "advanced_math"))]
782impl MemoryPool {
783    pub fn new() -> Self {
784        Self
785    }
786}
787
788/// FFT engine for frequency domain operations
789#[cfg(feature = "advanced_math")]
790#[derive(Debug)]
791pub struct FftEngine;
792
793#[cfg(feature = "advanced_math")]
794impl FftEngine {
795    pub fn new() -> Self {
796        Self
797    }
798
799    pub fn forward(&self, input: &Vector) -> Result<Vector> {
800        // Implement forward FFT using ndrustfft
801        use ndrustfft::{ndfft, FftHandler};
802
803        let array = input.to_array1()?;
804        let mut handler = FftHandler::new(array.len());
805        let mut fft_result = array.clone();
806
807        ndfft(&array, &mut fft_result, &mut handler, 0);
808
809        Vector::from_array1(&fft_result.view(), &MemoryPool::new())
810    }
811
812    pub fn inverse(&self, input: &Vector) -> Result<Vector> {
813        // Implement inverse FFT using ndrustfft
814        use ndrustfft::{ndifft, FftHandler};
815
816        let array = input.to_array1()?;
817        let mut handler = FftHandler::new(array.len());
818        let mut ifft_result = array.clone();
819
820        ndifft(&array, &mut ifft_result, &mut handler, 0);
821
822        Vector::from_array1(&ifft_result.view(), &MemoryPool::new())
823    }
824}
825
826#[cfg(not(feature = "advanced_math"))]
827#[derive(Debug)]
828pub struct FftEngine;
829
830#[cfg(not(feature = "advanced_math"))]
831impl FftEngine {
832    pub fn new() -> Self {
833        Self
834    }
835
836    pub fn forward(&self, _input: &Vector) -> Result<Vector> {
837        Err(SimulatorError::UnsupportedOperation(
838            "SciRS2 integration requires 'advanced_math' feature".to_string(),
839        ))
840    }
841
842    pub fn inverse(&self, _input: &Vector) -> Result<Vector> {
843        Err(SimulatorError::UnsupportedOperation(
844            "SciRS2 integration requires 'advanced_math' feature".to_string(),
845        ))
846    }
847}
848
849/// Matrix wrapper for SciRS2 operations
850#[cfg(feature = "advanced_math")]
851#[derive(Debug, Clone)]
852pub struct Matrix {
853    data: Array2<Complex64>,
854}
855
856#[cfg(feature = "advanced_math")]
857impl Matrix {
858    pub fn from_array2(array: &ArrayView2<Complex64>, _pool: &MemoryPool) -> Result<Self> {
859        Ok(Self {
860            data: array.to_owned(),
861        })
862    }
863
864    pub fn zeros(shape: (usize, usize), _pool: &MemoryPool) -> Result<Self> {
865        Ok(Self {
866            data: Array2::zeros(shape),
867        })
868    }
869
870    pub fn to_array2(&self, result: &mut Array2<Complex64>) -> Result<()> {
871        if result.shape() != self.data.shape() {
872            return Err(SimulatorError::DimensionMismatch(format!(
873                "Expected shape {:?}, but got {:?}",
874                self.data.shape(),
875                result.shape()
876            )));
877        }
878        result.assign(&self.data);
879        Ok(())
880    }
881
882    pub fn shape(&self) -> (usize, usize) {
883        (self.data.nrows(), self.data.ncols())
884    }
885
886    pub fn view(&self) -> ArrayView2<'_, Complex64> {
887        self.data.view()
888    }
889
890    pub fn view_mut(&mut self) -> scirs2_core::ndarray::ArrayViewMut2<'_, Complex64> {
891        self.data.view_mut()
892    }
893}
894
895#[cfg(not(feature = "advanced_math"))]
896#[derive(Debug)]
897pub struct Matrix;
898
899#[cfg(not(feature = "advanced_math"))]
900impl Matrix {
901    pub fn from_array2(_array: &ArrayView2<Complex64>, _pool: &MemoryPool) -> Result<Self> {
902        Err(SimulatorError::UnsupportedOperation(
903            "SciRS2 integration requires 'advanced_math' feature".to_string(),
904        ))
905    }
906
907    pub fn zeros(_shape: (usize, usize), _pool: &MemoryPool) -> Result<Self> {
908        Err(SimulatorError::UnsupportedOperation(
909            "SciRS2 integration requires 'advanced_math' feature".to_string(),
910        ))
911    }
912
913    pub fn to_array2(&self, _result: &mut Array2<Complex64>) -> Result<()> {
914        Err(SimulatorError::UnsupportedOperation(
915            "SciRS2 integration requires 'advanced_math' feature".to_string(),
916        ))
917    }
918}
919
920/// Vector wrapper for SciRS2 operations
921#[cfg(feature = "advanced_math")]
922#[derive(Debug, Clone)]
923pub struct Vector {
924    data: Array1<Complex64>,
925}
926
927#[cfg(feature = "advanced_math")]
928impl Vector {
929    pub fn from_array1(array: &ArrayView1<Complex64>, _pool: &MemoryPool) -> Result<Self> {
930        Ok(Self {
931            data: array.to_owned(),
932        })
933    }
934
935    pub fn zeros(len: usize, _pool: &MemoryPool) -> Result<Self> {
936        Ok(Self {
937            data: Array1::zeros(len),
938        })
939    }
940
941    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
942        Ok(self.data.clone())
943    }
944
945    pub fn to_array1_mut(&self, result: &mut Array1<Complex64>) -> Result<()> {
946        if result.len() != self.data.len() {
947            return Err(SimulatorError::DimensionMismatch(format!(
948                "Expected length {}, but got {}",
949                self.data.len(),
950                result.len()
951            )));
952        }
953        result.assign(&self.data);
954        Ok(())
955    }
956
957    pub fn len(&self) -> usize {
958        self.data.len()
959    }
960
961    pub fn view(&self) -> ArrayView1<'_, Complex64> {
962        self.data.view()
963    }
964
965    pub fn view_mut(&mut self) -> scirs2_core::ndarray::ArrayViewMut1<'_, Complex64> {
966        self.data.view_mut()
967    }
968}
969
970#[cfg(not(feature = "advanced_math"))]
971#[derive(Debug)]
972pub struct Vector;
973
974#[cfg(not(feature = "advanced_math"))]
975impl Vector {
976    pub fn from_array1(_array: &ArrayView1<Complex64>, _pool: &MemoryPool) -> Result<Self> {
977        Err(SimulatorError::UnsupportedOperation(
978            "SciRS2 integration requires 'advanced_math' feature".to_string(),
979        ))
980    }
981
982    pub fn zeros(_len: usize, _pool: &MemoryPool) -> Result<Self> {
983        Err(SimulatorError::UnsupportedOperation(
984            "SciRS2 integration requires 'advanced_math' feature".to_string(),
985        ))
986    }
987
988    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
989        Err(SimulatorError::UnsupportedOperation(
990            "SciRS2 integration requires 'advanced_math' feature".to_string(),
991        ))
992    }
993
994    pub fn to_array1_mut(&self, _result: &mut Array1<Complex64>) -> Result<()> {
995        Err(SimulatorError::UnsupportedOperation(
996            "SciRS2 integration requires 'advanced_math' feature".to_string(),
997        ))
998    }
999}
1000
1001/// Sparse matrix wrapper for SciRS2 operations
1002#[cfg(feature = "advanced_math")]
1003#[derive(Debug, Clone)]
1004pub struct SparseMatrix {
1005    /// CSR format sparse matrix using nalgebra-sparse
1006    csr_matrix: nalgebra_sparse::CsrMatrix<Complex64>,
1007}
1008
1009#[cfg(feature = "advanced_math")]
1010impl SparseMatrix {
1011    pub fn from_csr(
1012        values: &[Complex64],
1013        col_indices: &[usize],
1014        row_ptr: &[usize],
1015        num_rows: usize,
1016        num_cols: usize,
1017        _pool: &MemoryPool,
1018    ) -> Result<Self> {
1019        use nalgebra_sparse::CsrMatrix;
1020
1021        let csr_matrix = CsrMatrix::try_from_csr_data(
1022            num_rows,
1023            num_cols,
1024            row_ptr.to_vec(),
1025            col_indices.to_vec(),
1026            values.to_vec(),
1027        )
1028        .map_err(|e| {
1029            SimulatorError::ComputationError(format!("Failed to create CSR matrix: {}", e))
1030        })?;
1031
1032        Ok(Self { csr_matrix })
1033    }
1034
1035    pub fn matvec(&self, vector: &Vector, result: &mut Vector) -> Result<()> {
1036        use nalgebra::{Complex, DVector};
1037
1038        // Convert our Vector to nalgebra DVector
1039        let input_vec = vector.to_array1()?;
1040        let nalgebra_vec = DVector::from_iterator(
1041            input_vec.len(),
1042            input_vec.iter().map(|&c| Complex::new(c.re, c.im)),
1043        );
1044
1045        // Perform matrix-vector multiplication using manual implementation
1046        let mut output = DVector::zeros(self.csr_matrix.nrows());
1047
1048        // Manual sparse matrix-vector multiplication
1049        for (row_idx, row) in self.csr_matrix.row_iter().enumerate() {
1050            let mut sum = Complex::new(0.0, 0.0);
1051            for (col_idx, value) in row.col_indices().iter().zip(row.values()) {
1052                sum += value * nalgebra_vec[*col_idx];
1053            }
1054            output[row_idx] = sum;
1055        }
1056
1057        // Convert back to our format
1058        let output_array: Array1<Complex64> =
1059            Array1::from_iter(output.iter().map(|c| Complex64::new(c.re, c.im)));
1060
1061        result.data.assign(&output_array);
1062        Ok(())
1063    }
1064
1065    pub fn solve(&self, rhs: &Vector) -> Result<Vector> {
1066        // Improved sparse solver using nalgebra-sparse capabilities
1067        use nalgebra::{Complex, DVector};
1068        use nalgebra_sparse::SparseEntry;
1069        use sprs::CsMat;
1070
1071        let rhs_array = rhs.to_array1()?;
1072
1073        // Convert to sprs format for better sparse solving
1074        let values: Vec<Complex<f64>> = self
1075            .csr_matrix
1076            .values()
1077            .iter()
1078            .map(|&c| Complex::new(c.re, c.im))
1079            .collect();
1080        let (rows, cols, _values) = self.csr_matrix.csr_data();
1081
1082        // Use iterative solver for sparse systems
1083        // This is a simplified implementation - production would use better solvers
1084        let mut solution = rhs_array.clone();
1085
1086        // Simple Jacobi iteration for demonstration
1087        for _ in 0..100 {
1088            let mut new_solution = solution.clone();
1089            for i in 0..solution.len() {
1090                if i < self.csr_matrix.nrows() {
1091                    // Get diagonal element
1092                    let diag = self
1093                        .csr_matrix
1094                        .get_entry(i, i)
1095                        .map(|entry| match entry {
1096                            SparseEntry::NonZero(v) => *v,
1097                            SparseEntry::Zero => Complex::new(0.0, 0.0),
1098                        })
1099                        .unwrap_or(Complex::new(1.0, 0.0));
1100
1101                    if diag.norm() > 1e-14 {
1102                        new_solution[i] = rhs_array[i] / diag;
1103                    }
1104                }
1105            }
1106            solution = new_solution;
1107        }
1108
1109        Vector::from_array1(&solution.view(), &MemoryPool::new())
1110    }
1111
1112    pub fn shape(&self) -> (usize, usize) {
1113        (self.csr_matrix.nrows(), self.csr_matrix.ncols())
1114    }
1115
1116    pub fn nnz(&self) -> usize {
1117        self.csr_matrix.nnz()
1118    }
1119}
1120
1121#[cfg(not(feature = "advanced_math"))]
1122#[derive(Debug)]
1123pub struct SparseMatrix;
1124
1125#[cfg(not(feature = "advanced_math"))]
1126impl SparseMatrix {
1127    pub fn from_csr(
1128        _values: &[Complex64],
1129        _col_indices: &[usize],
1130        _row_ptr: &[usize],
1131        _num_rows: usize,
1132        _num_cols: usize,
1133        _pool: &MemoryPool,
1134    ) -> Result<Self> {
1135        Err(SimulatorError::UnsupportedOperation(
1136            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1137        ))
1138    }
1139
1140    pub fn matvec(&self, _vector: &Vector, _result: &mut Vector) -> Result<()> {
1141        Err(SimulatorError::UnsupportedOperation(
1142            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1143        ))
1144    }
1145
1146    pub fn solve(&self, _rhs: &Vector) -> Result<Vector> {
1147        Err(SimulatorError::UnsupportedOperation(
1148            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1149        ))
1150    }
1151}
1152
1153/// BLAS operations using SciRS2
1154#[cfg(feature = "advanced_math")]
1155#[derive(Debug)]
1156pub struct BLAS;
1157
1158#[cfg(feature = "advanced_math")]
1159impl BLAS {
1160    pub fn gemm(
1161        alpha: Complex64,
1162        a: &Matrix,
1163        b: &Matrix,
1164        beta: Complex64,
1165        c: &mut Matrix,
1166    ) -> Result<()> {
1167        // Use ndarray operations for now - in full implementation would use scirs2-linalg BLAS
1168        let a_scaled = &a.data * alpha;
1169        let c_scaled = &c.data * beta;
1170        let result = a_scaled.dot(&b.data) + c_scaled;
1171        c.data.assign(&result);
1172        Ok(())
1173    }
1174
1175    pub fn gemv(
1176        alpha: Complex64,
1177        a: &Matrix,
1178        x: &Vector,
1179        beta: Complex64,
1180        y: &mut Vector,
1181    ) -> Result<()> {
1182        // Matrix-vector multiplication
1183        let y_scaled = &y.data * beta;
1184        let result = &a.data.dot(&x.data) * alpha + y_scaled;
1185        y.data.assign(&result);
1186        Ok(())
1187    }
1188}
1189
1190#[cfg(not(feature = "advanced_math"))]
1191#[derive(Debug)]
1192pub struct BLAS;
1193
1194#[cfg(not(feature = "advanced_math"))]
1195impl BLAS {
1196    pub fn gemm(
1197        _alpha: Complex64,
1198        _a: &Matrix,
1199        _b: &Matrix,
1200        _beta: Complex64,
1201        _c: &mut Matrix,
1202    ) -> Result<()> {
1203        Err(SimulatorError::UnsupportedOperation(
1204            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1205        ))
1206    }
1207
1208    pub fn gemv(
1209        _alpha: Complex64,
1210        _a: &Matrix,
1211        _x: &Vector,
1212        _beta: Complex64,
1213        _y: &mut Vector,
1214    ) -> Result<()> {
1215        Err(SimulatorError::UnsupportedOperation(
1216            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1217        ))
1218    }
1219}
1220
1221/// LAPACK operations using SciRS2
1222#[cfg(feature = "advanced_math")]
1223#[derive(Debug)]
1224pub struct LAPACK;
1225
1226#[cfg(feature = "advanced_math")]
1227impl LAPACK {
1228    pub fn svd(matrix: &Matrix) -> Result<SvdResult> {
1229        // Use ndarray-linalg SVD for complex matrices
1230        use ndarray_linalg::SVD;
1231
1232        let svd_result = matrix
1233            .data
1234            .svd(true, true)
1235            .map_err(|_| SimulatorError::ComputationError("SVD computation failed".to_string()))?;
1236
1237        // Extract U, S, Vt from the SVD result
1238        let pool = MemoryPool::new();
1239
1240        let u_data = svd_result.0.ok_or_else(|| {
1241            SimulatorError::ComputationError("SVD U matrix not computed".to_string())
1242        })?;
1243        let s_data = svd_result.1;
1244        let vt_data = svd_result.2.ok_or_else(|| {
1245            SimulatorError::ComputationError("SVD Vt matrix not computed".to_string())
1246        })?;
1247
1248        let u = Matrix::from_array2(&u_data.view(), &pool)?;
1249        // Convert real singular values to complex for consistency
1250        let s_complex: Array1<Complex64> = s_data.mapv(|x| Complex64::new(x, 0.0));
1251        let s = Vector::from_array1(&s_complex.view(), &pool)?;
1252        let vt = Matrix::from_array2(&vt_data.view(), &pool)?;
1253
1254        Ok(SvdResult { u, s, vt })
1255    }
1256
1257    pub fn eig(matrix: &Matrix) -> Result<EigResult> {
1258        // Eigenvalue decomposition using SciRS2
1259        use ndarray_linalg::Eig;
1260
1261        let eig_result = matrix.data.eig().map_err(|_| {
1262            SimulatorError::ComputationError("Eigenvalue decomposition failed".to_string())
1263        })?;
1264
1265        let pool = MemoryPool::new();
1266        let values = Vector::from_array1(&eig_result.0.view(), &pool)?;
1267        let vectors = Matrix::from_array2(&eig_result.1.view(), &pool)?;
1268
1269        Ok(EigResult { values, vectors })
1270    }
1271
1272    pub fn lu(matrix: &Matrix) -> Result<(Matrix, Matrix, Vec<usize>)> {
1273        // Simplified LU decomposition - for production use, would need proper LU with pivoting
1274        let n = matrix.data.nrows();
1275        let pool = MemoryPool::new();
1276
1277        // Initialize L as identity and U as copy of input
1278        let mut l_data = Array2::eye(n);
1279        let mut u_data = matrix.data.clone();
1280        let mut perm_vec: Vec<usize> = (0..n).collect();
1281
1282        // Simplified Gaussian elimination
1283        for k in 0..n.min(n) {
1284            // Find pivot
1285            let mut max_row = k;
1286            let mut max_val = u_data[[k, k]].norm();
1287            for i in k + 1..n {
1288                let val = u_data[[i, k]].norm();
1289                if val > max_val {
1290                    max_val = val;
1291                    max_row = i;
1292                }
1293            }
1294
1295            // Swap rows if needed
1296            if max_row != k {
1297                for j in 0..n {
1298                    let temp = u_data[[k, j]];
1299                    u_data[[k, j]] = u_data[[max_row, j]];
1300                    u_data[[max_row, j]] = temp;
1301                }
1302                perm_vec.swap(k, max_row);
1303            }
1304
1305            // Eliminate column
1306            if u_data[[k, k]].norm() > 1e-10 {
1307                for i in k + 1..n {
1308                    let factor = u_data[[i, k]] / u_data[[k, k]];
1309                    l_data[[i, k]] = factor;
1310                    for j in k..n {
1311                        let u_kj = u_data[[k, j]];
1312                        u_data[[i, j]] -= factor * u_kj;
1313                    }
1314                }
1315            }
1316        }
1317
1318        let l_matrix = Matrix::from_array2(&l_data.view(), &pool)?;
1319        let u_matrix = Matrix::from_array2(&u_data.view(), &pool)?;
1320
1321        Ok((l_matrix, u_matrix, perm_vec))
1322    }
1323
1324    pub fn qr(matrix: &Matrix) -> Result<(Matrix, Matrix)> {
1325        // QR decomposition using ndarray-linalg
1326        use ndarray_linalg::QR;
1327
1328        let (q, r) = matrix
1329            .data
1330            .qr()
1331            .map_err(|_| SimulatorError::ComputationError("QR decomposition failed".to_string()))?;
1332
1333        let pool = MemoryPool::new();
1334        let q_matrix = Matrix::from_array2(&q.view(), &pool)?;
1335        let r_matrix = Matrix::from_array2(&r.view(), &pool)?;
1336
1337        Ok((q_matrix, r_matrix))
1338    }
1339}
1340
1341#[cfg(not(feature = "advanced_math"))]
1342#[derive(Debug)]
1343pub struct LAPACK;
1344
1345#[cfg(not(feature = "advanced_math"))]
1346impl LAPACK {
1347    pub fn svd(_matrix: &Matrix) -> Result<SvdResult> {
1348        Err(SimulatorError::UnsupportedOperation(
1349            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1350        ))
1351    }
1352
1353    pub fn eig(_matrix: &Matrix) -> Result<EigResult> {
1354        Err(SimulatorError::UnsupportedOperation(
1355            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1356        ))
1357    }
1358}
1359
1360/// SVD decomposition result
1361#[cfg(feature = "advanced_math")]
1362#[derive(Debug, Clone)]
1363pub struct SvdResult {
1364    /// U matrix (left singular vectors)
1365    pub u: Matrix,
1366    /// Singular values
1367    pub s: Vector,
1368    /// V^T matrix (right singular vectors)
1369    pub vt: Matrix,
1370}
1371
1372/// Eigenvalue decomposition result
1373#[cfg(feature = "advanced_math")]
1374#[derive(Debug, Clone)]
1375pub struct EigResult {
1376    /// Eigenvalues
1377    pub values: Vector,
1378    /// Eigenvectors (as columns of matrix)
1379    pub vectors: Matrix,
1380}
1381
1382#[cfg(feature = "advanced_math")]
1383impl EigResult {
1384    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
1385        self.values.to_array1()
1386    }
1387
1388    pub fn eigenvalues(&self) -> &Vector {
1389        &self.values
1390    }
1391
1392    pub fn eigenvectors(&self) -> &Matrix {
1393        &self.vectors
1394    }
1395}
1396
1397#[cfg(feature = "advanced_math")]
1398impl SvdResult {
1399    pub fn to_array2(&self) -> Result<Array2<Complex64>> {
1400        self.u.data.to_owned().into_dimensionality().map_err(|_| {
1401            SimulatorError::ComputationError("Failed to convert SVD result to array2".to_string())
1402        })
1403    }
1404
1405    pub fn u_matrix(&self) -> &Matrix {
1406        &self.u
1407    }
1408
1409    pub fn singular_values(&self) -> &Vector {
1410        &self.s
1411    }
1412
1413    pub fn vt_matrix(&self) -> &Matrix {
1414        &self.vt
1415    }
1416}
1417
1418#[cfg(not(feature = "advanced_math"))]
1419#[derive(Debug)]
1420pub struct SvdResult;
1421
1422#[cfg(not(feature = "advanced_math"))]
1423#[derive(Debug)]
1424pub struct EigResult;
1425
1426#[cfg(not(feature = "advanced_math"))]
1427impl EigResult {
1428    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
1429        Err(SimulatorError::UnsupportedOperation(
1430            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1431        ))
1432    }
1433}
1434
1435#[cfg(not(feature = "advanced_math"))]
1436impl SvdResult {
1437    pub fn to_array2(&self) -> Result<Array2<Complex64>> {
1438        Err(SimulatorError::UnsupportedOperation(
1439            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1440        ))
1441    }
1442}
1443
1444/// Advanced FFT operations for quantum simulation
1445#[cfg(feature = "advanced_math")]
1446#[derive(Debug)]
1447pub struct AdvancedFFT;
1448
1449#[cfg(feature = "advanced_math")]
1450impl AdvancedFFT {
1451    /// Multidimensional FFT for quantum state processing
1452    pub fn fft_nd(input: &Array2<Complex64>) -> Result<Array2<Complex64>> {
1453        use ndrustfft::{ndfft, FftHandler};
1454
1455        let (rows, cols) = input.dim();
1456        let mut result = input.clone();
1457
1458        // FFT along each dimension
1459        for i in 0..rows {
1460            let row = input.row(i).to_owned();
1461            let mut row_out = row.clone();
1462            let mut handler = FftHandler::new(cols);
1463            ndfft(&row, &mut row_out, &mut handler, 0);
1464            result.row_mut(i).assign(&row_out);
1465        }
1466
1467        for j in 0..cols {
1468            let col = result.column(j).to_owned();
1469            let mut col_out = col.clone();
1470            let mut handler = FftHandler::new(rows);
1471            ndfft(&col, &mut col_out, &mut handler, 0);
1472            result.column_mut(j).assign(&col_out);
1473        }
1474
1475        Ok(result)
1476    }
1477
1478    /// Windowed FFT for spectral analysis
1479    pub fn windowed_fft(
1480        input: &Vector,
1481        window_size: usize,
1482        overlap: usize,
1483    ) -> Result<Array2<Complex64>> {
1484        let array = input.to_array1()?;
1485        let step_size = window_size - overlap;
1486        let num_windows = (array.len() - overlap) / step_size;
1487
1488        let mut result = Array2::zeros((num_windows, window_size));
1489
1490        for (i, mut row) in result.outer_iter_mut().enumerate() {
1491            let start = i * step_size;
1492            let end = (start + window_size).min(array.len());
1493
1494            if end - start == window_size {
1495                let window = array.slice(s![start..end]);
1496
1497                // Apply Hann window
1498                let windowed: Array1<Complex64> = window
1499                    .iter()
1500                    .enumerate()
1501                    .map(|(j, &val)| {
1502                        let hann =
1503                            0.5 * (1.0 - (2.0 * PI * j as f64 / (window_size - 1) as f64).cos());
1504                        val * Complex64::new(hann, 0.0)
1505                    })
1506                    .collect();
1507
1508                // Compute FFT
1509                let mut handler = FftHandler::new(window_size);
1510                let mut fft_result = windowed.clone();
1511                ndrustfft::ndfft(&windowed, &mut fft_result, &mut handler, 0);
1512
1513                row.assign(&fft_result);
1514            }
1515        }
1516
1517        Ok(result)
1518    }
1519
1520    /// Convolution using FFT
1521    pub fn convolution(a: &Vector, b: &Vector) -> Result<Vector> {
1522        let a_array = a.to_array1()?;
1523        let b_array = b.to_array1()?;
1524
1525        let n = a_array.len() + b_array.len() - 1;
1526        let fft_size = n.next_power_of_two();
1527
1528        // Zero-pad inputs
1529        let mut a_padded = Array1::zeros(fft_size);
1530        let mut b_padded = Array1::zeros(fft_size);
1531        a_padded.slice_mut(s![..a_array.len()]).assign(&a_array);
1532        b_padded.slice_mut(s![..b_array.len()]).assign(&b_array);
1533
1534        // FFT
1535        let mut handler = FftHandler::new(fft_size);
1536        let mut a_fft = a_padded.clone();
1537        let mut b_fft = b_padded.clone();
1538        ndrustfft::ndfft(&a_padded, &mut a_fft, &mut handler, 0);
1539        ndrustfft::ndfft(&b_padded, &mut b_fft, &mut handler, 0);
1540
1541        // Multiply in frequency domain
1542        let mut product = Array1::zeros(fft_size);
1543        for i in 0..fft_size {
1544            product[i] = a_fft[i] * b_fft[i];
1545        }
1546
1547        // IFFT
1548        let mut result = product.clone();
1549        ndrustfft::ndifft(&product, &mut result, &mut handler, 0);
1550
1551        // Truncate to correct size and create Vector
1552        let truncated = result.slice(s![..n]).to_owned();
1553        Vector::from_array1(&truncated.view(), &MemoryPool::new())
1554    }
1555}
1556
1557/// Advanced sparse linear algebra solvers
1558#[cfg(feature = "advanced_math")]
1559#[derive(Debug)]
1560pub struct SparseSolvers;
1561
1562#[cfg(feature = "advanced_math")]
1563impl SparseSolvers {
1564    /// Conjugate Gradient solver for Ax = b
1565    pub fn conjugate_gradient(
1566        matrix: &SparseMatrix,
1567        b: &Vector,
1568        x0: Option<&Vector>,
1569        tolerance: f64,
1570        max_iterations: usize,
1571    ) -> Result<Vector> {
1572        use nalgebra::{Complex, DVector};
1573
1574        let b_array = b.to_array1()?;
1575        let b_vec = DVector::from_iterator(
1576            b_array.len(),
1577            b_array.iter().map(|&c| Complex::new(c.re, c.im)),
1578        );
1579
1580        let mut x = if let Some(x0_vec) = x0 {
1581            let x0_array = x0_vec.to_array1()?;
1582            DVector::from_iterator(
1583                x0_array.len(),
1584                x0_array.iter().map(|&c| Complex::new(c.re, c.im)),
1585            )
1586        } else {
1587            DVector::zeros(b_vec.len())
1588        };
1589
1590        // Initial residual: r = b - Ax
1591        let pool = MemoryPool::new();
1592        let x_vector = Vector::from_array1(
1593            &Array1::from_vec(x.iter().map(|c| Complex64::new(c.re, c.im)).collect()).view(),
1594            &pool,
1595        )?;
1596        let mut ax_vector = Vector::zeros(x.len(), &pool)?;
1597        matrix.matvec(&x_vector, &mut ax_vector)?;
1598
1599        // Convert back to DVector for computation
1600        let ax_array = ax_vector.to_array1()?;
1601        let ax = DVector::from_iterator(
1602            ax_array.len(),
1603            ax_array.iter().map(|&c| Complex::new(c.re, c.im)),
1604        );
1605
1606        let mut r = &b_vec - &ax;
1607        let mut p = r.clone();
1608        let mut rsold = r.dot(&r).re;
1609
1610        for _ in 0..max_iterations {
1611            // Ap = A * p
1612            let p_vec = Vector::from_array1(
1613                &Array1::from_vec(p.iter().map(|c| Complex64::new(c.re, c.im)).collect()).view(),
1614                &MemoryPool::new(),
1615            )?;
1616            let mut ap_vec =
1617                Vector::from_array1(&Array1::zeros(p.len()).view(), &MemoryPool::new())?;
1618            matrix.matvec(&p_vec, &mut ap_vec)?;
1619            let ap_array = ap_vec.to_array1()?;
1620            let ap = DVector::from_iterator(
1621                ap_array.len(),
1622                ap_array.iter().map(|&c| Complex::new(c.re, c.im)),
1623            );
1624
1625            let alpha = rsold / p.dot(&ap).re;
1626            let alpha_complex = Complex::new(alpha, 0.0);
1627            x += &p * alpha_complex;
1628            r -= &ap * alpha_complex;
1629
1630            let rsnew = r.dot(&r).re;
1631            if rsnew.sqrt() < tolerance {
1632                break;
1633            }
1634
1635            let beta = rsnew / rsold;
1636            let beta_complex = Complex::new(beta, 0.0);
1637            p = &r + &p * beta_complex;
1638            rsold = rsnew;
1639        }
1640
1641        let result_array = Array1::from_vec(x.iter().map(|c| Complex64::new(c.re, c.im)).collect());
1642        Vector::from_array1(&result_array.view(), &MemoryPool::new())
1643    }
1644
1645    /// GMRES solver for non-symmetric systems
1646    pub fn gmres(
1647        matrix: &SparseMatrix,
1648        b: &Vector,
1649        x0: Option<&Vector>,
1650        tolerance: f64,
1651        max_iterations: usize,
1652        restart: usize,
1653    ) -> Result<Vector> {
1654        let b_array = b.to_array1()?;
1655        let n = b_array.len();
1656
1657        let mut x = if let Some(x0_vec) = x0 {
1658            x0_vec.to_array1()?.to_owned()
1659        } else {
1660            Array1::zeros(n)
1661        };
1662
1663        for _restart_iter in 0..(max_iterations / restart) {
1664            // Calculate initial residual
1665            let mut ax = Array1::zeros(n);
1666            let x_vec = Vector::from_array1(&x.view(), &MemoryPool::new())?;
1667            let mut ax_vec = Vector::from_array1(&ax.view(), &MemoryPool::new())?;
1668            matrix.matvec(&x_vec, &mut ax_vec)?;
1669            ax = ax_vec.to_array1()?;
1670
1671            let mut r = &b_array - &ax;
1672            let beta = r.norm_l2();
1673
1674            if beta < tolerance {
1675                break;
1676            }
1677
1678            r = r.mapv(|x| x / Complex64::new(beta, 0.0));
1679
1680            // Arnoldi process
1681            let mut v = Vec::new();
1682            v.push(r.clone());
1683
1684            let mut h = Array2::zeros((restart + 1, restart));
1685
1686            for j in 0..restart.min(max_iterations) {
1687                let v_vec = Vector::from_array1(&v[j].view(), &MemoryPool::new())?;
1688                let mut av = Array1::zeros(n);
1689                let mut av_vec = Vector::from_array1(&av.view(), &MemoryPool::new())?;
1690                matrix.matvec(&v_vec, &mut av_vec)?;
1691                av = av_vec.to_array1()?;
1692
1693                // Modified Gram-Schmidt orthogonalization
1694                for i in 0..=j {
1695                    h[[i, j]] = v[i].dot(&av);
1696                    av = av - h[[i, j]] * &v[i];
1697                }
1698
1699                h[[j + 1, j]] = Complex64::new(av.norm_l2(), 0.0);
1700
1701                if h[[j + 1, j]].norm() < tolerance {
1702                    break;
1703                }
1704
1705                av /= h[[j + 1, j]];
1706                v.push(av);
1707            }
1708
1709            // Solve least squares problem using the constructed Hessenberg matrix
1710            // Simplified implementation - would use proper QR factorization in production
1711            let krylov_dim = v.len() - 1;
1712            if krylov_dim > 0 {
1713                let mut e1 = Array1::zeros(krylov_dim + 1);
1714                e1[0] = Complex64::new(beta, 0.0);
1715
1716                // Simple back-substitution for upper triangular solve
1717                let mut y = Array1::zeros(krylov_dim);
1718                for i in (0..krylov_dim).rev() {
1719                    let mut sum = Complex64::new(0.0, 0.0);
1720                    for j in (i + 1)..krylov_dim {
1721                        sum += h[[i, j]] * y[j];
1722                    }
1723                    y[i] = (e1[i] - sum) / h[[i, i]];
1724                }
1725
1726                // Update solution
1727                for i in 0..krylov_dim {
1728                    x = x + y[i] * &v[i];
1729                }
1730            }
1731        }
1732
1733        Vector::from_array1(&x.view(), &MemoryPool::new())
1734    }
1735
1736    /// BiCGSTAB solver for complex systems
1737    pub fn bicgstab(
1738        matrix: &SparseMatrix,
1739        b: &Vector,
1740        x0: Option<&Vector>,
1741        tolerance: f64,
1742        max_iterations: usize,
1743    ) -> Result<Vector> {
1744        let b_array = b.to_array1()?;
1745        let n = b_array.len();
1746
1747        let mut x = if let Some(x0_vec) = x0 {
1748            x0_vec.to_array1()?.to_owned()
1749        } else {
1750            Array1::zeros(n)
1751        };
1752
1753        // Calculate initial residual
1754        let mut ax = Array1::zeros(n);
1755        let x_vec = Vector::from_array1(&x.view(), &MemoryPool::new())?;
1756        let mut ax_vec = Vector::from_array1(&ax.view(), &MemoryPool::new())?;
1757        matrix.matvec(&x_vec, &mut ax_vec)?;
1758        ax = ax_vec.to_array1()?;
1759
1760        let mut r = &b_array - &ax;
1761        let r0 = r.clone();
1762
1763        let mut rho = Complex64::new(1.0, 0.0);
1764        let mut alpha = Complex64::new(1.0, 0.0);
1765        let mut omega = Complex64::new(1.0, 0.0);
1766
1767        let mut p = Array1::zeros(n);
1768        let mut v = Array1::zeros(n);
1769
1770        for _ in 0..max_iterations {
1771            let rho_new = r0.dot(&r);
1772            let beta = (rho_new / rho) * (alpha / omega);
1773
1774            p = &r + beta * (&p - omega * &v);
1775
1776            // v = A * p
1777            let p_vec = Vector::from_array1(&p.view(), &MemoryPool::new())?;
1778            let mut v_vec = Vector::from_array1(&v.view(), &MemoryPool::new())?;
1779            matrix.matvec(&p_vec, &mut v_vec)?;
1780            v = v_vec.to_array1()?;
1781
1782            alpha = rho_new / r0.dot(&v);
1783            let s = &r - alpha * &v;
1784
1785            if s.norm_l2() < tolerance {
1786                x = x + alpha * &p;
1787                break;
1788            }
1789
1790            // t = A * s
1791            let s_vec = Vector::from_array1(&s.view(), &MemoryPool::new())?;
1792            let mut t_vec = Vector::from_array1(&Array1::zeros(n).view(), &MemoryPool::new())?;
1793            matrix.matvec(&s_vec, &mut t_vec)?;
1794            let t = t_vec.to_array1()?;
1795
1796            omega = t.dot(&s) / t.dot(&t);
1797            x = x + alpha * &p + omega * &s;
1798            r = s - omega * &t;
1799
1800            if r.norm_l2() < tolerance {
1801                break;
1802            }
1803
1804            rho = rho_new;
1805        }
1806
1807        Vector::from_array1(&x.view(), &MemoryPool::new())
1808    }
1809}
1810
1811/// Advanced eigenvalue solvers for large sparse matrices
1812#[cfg(feature = "advanced_math")]
1813#[derive(Debug)]
1814pub struct AdvancedEigensolvers;
1815
1816#[cfg(feature = "advanced_math")]
1817impl AdvancedEigensolvers {
1818    /// Lanczos algorithm for finding a few eigenvalues of large sparse symmetric matrices
1819    pub fn lanczos(
1820        matrix: &SparseMatrix,
1821        num_eigenvalues: usize,
1822        max_iterations: usize,
1823        tolerance: f64,
1824    ) -> Result<EigResult> {
1825        let n = matrix.csr_matrix.nrows();
1826        let m = num_eigenvalues.min(max_iterations);
1827
1828        // Initialize random starting vector
1829        let mut q = Array1::from_vec(
1830            (0..n)
1831                .map(|_| Complex64::new(thread_rng().gen::<f64>() - 0.5, thread_rng().gen::<f64>() - 0.5))
1832                .collect(),
1833        );
1834        q = q.mapv(|x| x / Complex64::new(q.norm_l2(), 0.0));
1835
1836        let mut q_vectors = Vec::new();
1837        q_vectors.push(q.clone());
1838
1839        let mut alpha = Vec::new();
1840        let mut beta = Vec::new();
1841
1842        let mut q_prev = Array1::<Complex64>::zeros(n);
1843
1844        for j in 0..m {
1845            // Av = A * q[j]
1846            let q_vec = Vector::from_array1(&q_vectors[j].view(), &MemoryPool::new())?;
1847            let mut av_vec = Vector::from_array1(&Array1::zeros(n).view(), &MemoryPool::new())?;
1848            matrix.matvec(&q_vec, &mut av_vec)?;
1849            let mut av = av_vec.to_array1()?;
1850
1851            // Alpha computation
1852            let alpha_j = q_vectors[j].dot(&av);
1853            alpha.push(alpha_j);
1854
1855            // Orthogonalization
1856            av = av - alpha_j * &q_vectors[j];
1857            if j > 0 {
1858                av = av - Complex64::new(beta[j - 1], 0.0) * &q_prev;
1859            }
1860
1861            let beta_j = av.norm_l2();
1862
1863            if beta_j.abs() < tolerance {
1864                break;
1865            }
1866
1867            beta.push(beta_j);
1868            q_prev = q_vectors[j].clone();
1869
1870            if j + 1 < m {
1871                q = av / beta_j;
1872                q_vectors.push(q.clone());
1873            }
1874        }
1875
1876        // Solve the tridiagonal eigenvalue problem
1877        let dim = alpha.len();
1878        let mut tridiag = Array2::zeros((dim, dim));
1879
1880        for i in 0..dim {
1881            tridiag[[i, i]] = alpha[i];
1882            if i > 0 {
1883                tridiag[[i - 1, i]] = Complex64::new(beta[i - 1], 0.0);
1884                tridiag[[i, i - 1]] = Complex64::new(beta[i - 1], 0.0);
1885            }
1886        }
1887
1888        // Use simple power iteration for the tridiagonal system (simplified)
1889        let mut eigenvalues = Array1::zeros(num_eigenvalues.min(dim));
1890        for i in 0..eigenvalues.len() {
1891            eigenvalues[i] = tridiag[[i, i]]; // Simplified - would use proper tridiagonal solver
1892        }
1893
1894        // Construct approximate eigenvectors
1895        let mut eigenvectors = Array2::zeros((n, eigenvalues.len()));
1896        for (i, mut col) in eigenvectors
1897            .columns_mut()
1898            .into_iter()
1899            .enumerate()
1900            .take(eigenvalues.len())
1901        {
1902            if i < q_vectors.len() {
1903                col.assign(&q_vectors[i]);
1904            }
1905        }
1906
1907        let values = Vector::from_array1(&eigenvalues.view(), &MemoryPool::new())?;
1908        let vectors = Matrix::from_array2(&eigenvectors.view(), &MemoryPool::new())?;
1909
1910        Ok(EigResult { values, vectors })
1911    }
1912
1913    /// Arnoldi iteration for non-symmetric matrices
1914    pub fn arnoldi(
1915        matrix: &SparseMatrix,
1916        num_eigenvalues: usize,
1917        max_iterations: usize,
1918        tolerance: f64,
1919    ) -> Result<EigResult> {
1920        let n = matrix.csr_matrix.nrows();
1921        let m = num_eigenvalues.min(max_iterations);
1922
1923        // Initialize random starting vector
1924        let mut q = Array1::from_vec(
1925            (0..n)
1926                .map(|_| Complex64::new(thread_rng().gen::<f64>() - 0.5, thread_rng().gen::<f64>() - 0.5))
1927                .collect(),
1928        );
1929        q = q.mapv(|x| x / Complex64::new(q.norm_l2(), 0.0));
1930
1931        let mut q_vectors = Vec::new();
1932        q_vectors.push(q.clone());
1933
1934        let mut h = Array2::zeros((m + 1, m));
1935
1936        for j in 0..m {
1937            // v = A * q[j]
1938            let q_vec = Vector::from_array1(&q_vectors[j].view(), &MemoryPool::new())?;
1939            let mut v_vec = Vector::from_array1(&Array1::zeros(n).view(), &MemoryPool::new())?;
1940            matrix.matvec(&q_vec, &mut v_vec)?;
1941            let mut v = v_vec.to_array1()?;
1942
1943            // Modified Gram-Schmidt orthogonalization
1944            for i in 0..=j {
1945                h[[i, j]] = q_vectors[i].dot(&v);
1946                v = v - h[[i, j]] * &q_vectors[i];
1947            }
1948
1949            h[[j + 1, j]] = Complex64::new(v.norm_l2(), 0.0);
1950
1951            if h[[j + 1, j]].norm() < tolerance {
1952                break;
1953            }
1954
1955            if j + 1 < m {
1956                q = v / h[[j + 1, j]];
1957                q_vectors.push(q.clone());
1958            }
1959        }
1960
1961        // Extract eigenvalues from upper Hessenberg matrix (simplified)
1962        let dim = q_vectors.len();
1963        let mut eigenvalues = Array1::zeros(num_eigenvalues.min(dim));
1964        for i in 0..eigenvalues.len() {
1965            eigenvalues[i] = h[[i, i]]; // Simplified extraction
1966        }
1967
1968        // Construct eigenvectors
1969        let mut eigenvectors = Array2::zeros((n, eigenvalues.len()));
1970        for (i, mut col) in eigenvectors
1971            .columns_mut()
1972            .into_iter()
1973            .enumerate()
1974            .take(eigenvalues.len())
1975        {
1976            if i < q_vectors.len() {
1977                col.assign(&q_vectors[i]);
1978            }
1979        }
1980
1981        let values = Vector::from_array1(&eigenvalues.view(), &MemoryPool::new())?;
1982        let vectors = Matrix::from_array2(&eigenvectors.view(), &MemoryPool::new())?;
1983
1984        Ok(EigResult { values, vectors })
1985    }
1986}
1987
1988/// Enhanced linear algebra operations
1989#[cfg(feature = "advanced_math")]
1990#[derive(Debug)]
1991pub struct AdvancedLinearAlgebra;
1992
1993#[cfg(feature = "advanced_math")]
1994impl AdvancedLinearAlgebra {
1995    /// QR decomposition with pivoting
1996    pub fn qr_decomposition(matrix: &Matrix) -> Result<QRResult> {
1997        use ndarray_linalg::QR;
1998
1999        let qr_result = matrix
2000            .data
2001            .qr()
2002            .map_err(|_| SimulatorError::ComputationError("QR decomposition failed".to_string()))?;
2003
2004        let pool = MemoryPool::new();
2005        let q = Matrix::from_array2(&qr_result.0.view(), &pool)?;
2006        let r = Matrix::from_array2(&qr_result.1.view(), &pool)?;
2007
2008        Ok(QRResult { q, r })
2009    }
2010
2011    /// Cholesky decomposition for positive definite matrices
2012    pub fn cholesky_decomposition(matrix: &Matrix) -> Result<Matrix> {
2013        use ndarray_linalg::Cholesky;
2014
2015        let chol_result = matrix
2016            .data
2017            .cholesky(ndarray_linalg::UPLO::Lower)
2018            .map_err(|_| {
2019                SimulatorError::ComputationError("Cholesky decomposition failed".to_string())
2020            })?;
2021
2022        Matrix::from_array2(&chol_result.view(), &MemoryPool::new())
2023    }
2024
2025    /// Matrix exponential for quantum evolution
2026    pub fn matrix_exponential(matrix: &Matrix, t: f64) -> Result<Matrix> {
2027        let scaled_matrix = &matrix.data * Complex64::new(0.0, -t);
2028
2029        // Matrix exponential using scaling and squaring with Padé approximation
2030        let mut result = Array2::eye(scaled_matrix.nrows());
2031        let mut term = Array2::eye(scaled_matrix.nrows());
2032
2033        // Simple series expansion (would use more sophisticated methods in production)
2034        for k in 1..20 {
2035            term = term.dot(&scaled_matrix) / Complex64::new(k as f64, 0.0);
2036            result = result + &term;
2037
2038            if term.norm_l2() < 1e-12 {
2039                break;
2040            }
2041        }
2042
2043        Matrix::from_array2(&result.view(), &MemoryPool::new())
2044    }
2045
2046    /// Pseudoinverse using SVD
2047    pub fn pseudoinverse(matrix: &Matrix, tolerance: f64) -> Result<Matrix> {
2048        let svd_result = LAPACK::svd(matrix)?;
2049
2050        let u = svd_result.u.data;
2051        let s = svd_result.s.to_array1()?;
2052        let vt = svd_result.vt.data;
2053
2054        // Create pseudoinverse of singular values
2055        let mut s_pinv = Array1::zeros(s.len());
2056        for (i, &sigma) in s.iter().enumerate() {
2057            if sigma.norm() > tolerance {
2058                s_pinv[i] = Complex64::new(1.0, 0.0) / sigma;
2059            }
2060        }
2061
2062        // Construct pseudoinverse: V * S^+ * U^T
2063        let s_pinv_diag = Array2::from_diag(&s_pinv);
2064        let result = vt.t().dot(&s_pinv_diag).dot(&u.t());
2065
2066        Matrix::from_array2(&result.view(), &MemoryPool::new())
2067    }
2068
2069    /// Condition number estimation
2070    pub fn condition_number(matrix: &Matrix) -> Result<f64> {
2071        let svd_result = LAPACK::svd(matrix)?;
2072        let s = svd_result.s.to_array1()?;
2073
2074        let mut min_singular = f64::INFINITY;
2075        let mut max_singular: f64 = 0.0;
2076
2077        for &sigma in s.iter() {
2078            let sigma_norm = sigma.norm();
2079            if sigma_norm > 1e-15 {
2080                min_singular = min_singular.min(sigma_norm);
2081                max_singular = max_singular.max(sigma_norm);
2082            }
2083        }
2084
2085        Ok(max_singular / min_singular)
2086    }
2087}
2088
2089/// QR decomposition result
2090#[cfg(feature = "advanced_math")]
2091#[derive(Debug, Clone)]
2092pub struct QRResult {
2093    /// Q matrix (orthogonal)
2094    pub q: Matrix,
2095    /// R matrix (upper triangular)
2096    pub r: Matrix,
2097}
2098
2099/// Performance benchmarking for SciRS2 integration
2100pub fn benchmark_scirs2_integration() -> Result<HashMap<String, f64>> {
2101    let mut results = HashMap::new();
2102
2103    // FFT benchmarks
2104    #[cfg(feature = "advanced_math")]
2105    {
2106        let start = std::time::Instant::now();
2107        let engine = FftEngine::new();
2108        let test_vector = Vector::from_array1(
2109            &Array1::from_vec((0..1024).map(|i| Complex64::new(i as f64, 0.0)).collect()).view(),
2110            &MemoryPool::new(),
2111        )?;
2112
2113        for _ in 0..100 {
2114            let _ = engine.forward(&test_vector)?;
2115        }
2116
2117        let fft_time = start.elapsed().as_millis() as f64;
2118        results.insert("fft_1024_100_iterations".to_string(), fft_time);
2119    }
2120
2121    // Sparse solver benchmarks
2122    #[cfg(feature = "advanced_math")]
2123    {
2124        use nalgebra_sparse::CsrMatrix;
2125
2126        let start = std::time::Instant::now();
2127
2128        // Create test sparse matrix
2129        let mut row_indices = [0; 1000];
2130        let mut col_indices = [0; 1000];
2131        let mut values = [Complex64::new(0.0, 0.0); 1000];
2132
2133        for i in 0..100 {
2134            for j in 0..10 {
2135                let idx = i * 10 + j;
2136                row_indices[idx] = i;
2137                col_indices[idx] = (i + j) % 100;
2138                values[idx] = Complex64::new(1.0, 0.0);
2139            }
2140        }
2141
2142        let csr = CsrMatrix::try_from_csr_data(
2143            100,
2144            100,
2145            row_indices.to_vec(),
2146            col_indices.to_vec(),
2147            values.to_vec(),
2148        )
2149        .map_err(|_| {
2150            SimulatorError::ComputationError("Failed to create test matrix".to_string())
2151        })?;
2152
2153        let sparse_matrix = SparseMatrix { csr_matrix: csr };
2154        let b = Vector::from_array1(&Array1::ones(100).view(), &MemoryPool::new())?;
2155
2156        let _ = SparseSolvers::conjugate_gradient(&sparse_matrix, &b, None, 1e-6, 100)?;
2157
2158        let sparse_solver_time = start.elapsed().as_millis() as f64;
2159        results.insert("cg_solver_100x100".to_string(), sparse_solver_time);
2160    }
2161
2162    // Linear algebra benchmarks
2163    #[cfg(feature = "advanced_math")]
2164    {
2165        let start = std::time::Instant::now();
2166
2167        let test_matrix = Matrix::from_array2(&Array2::eye(50).view(), &MemoryPool::new())?;
2168        for _ in 0..10 {
2169            let _ = AdvancedLinearAlgebra::qr_decomposition(&test_matrix)?;
2170        }
2171
2172        let qr_time = start.elapsed().as_millis() as f64;
2173        results.insert("qr_decomposition_50x50_10_iterations".to_string(), qr_time);
2174    }
2175
2176    Ok(results)
2177}