quantrs2_sim/
quantum_gravity_simulation.rs

1//! Quantum Gravity Simulation Framework
2//!
3//! This module provides a comprehensive implementation of quantum gravity theories and
4//! simulation methods, including loop quantum gravity, causal dynamical triangulation,
5//! asymptotic safety, emergent gravity models, holographic correspondence, and AdS/CFT
6//! duality. This framework enables exploration of quantum spacetime dynamics and
7//! gravitational quantum effects at the Planck scale.
8
9use scirs2_core::ndarray::{s, Array1, Array2, Array3, Array4};
10use scirs2_core::Complex64;
11use scirs2_core::random::{thread_rng, Rng};
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use scirs2_core::random::prelude::*;
19
20/// Quantum gravity simulation configuration
21#[derive(Debug, Clone, Serialize, Deserialize)]
22pub struct QuantumGravityConfig {
23    /// Approach to quantum gravity
24    pub gravity_approach: GravityApproach,
25    /// Planck length scale (in natural units)
26    pub planck_length: f64,
27    /// Planck time scale (in natural units)
28    pub planck_time: f64,
29    /// Number of spatial dimensions
30    pub spatial_dimensions: usize,
31    /// Enable Lorentz invariance
32    pub lorentz_invariant: bool,
33    /// Background metric type
34    pub background_metric: BackgroundMetric,
35    /// Cosmological constant
36    pub cosmological_constant: f64,
37    /// Newton's gravitational constant
38    pub gravitational_constant: f64,
39    /// Speed of light (natural units)
40    pub speed_of_light: f64,
41    /// Hbar (natural units)
42    pub reduced_planck_constant: f64,
43    /// Enable quantum corrections
44    pub quantum_corrections: bool,
45    /// Loop quantum gravity specific settings
46    pub lqg_config: Option<LQGConfig>,
47    /// Causal dynamical triangulation settings
48    pub cdt_config: Option<CDTConfig>,
49    /// Asymptotic safety settings
50    pub asymptotic_safety_config: Option<AsymptoticSafetyConfig>,
51    /// AdS/CFT correspondence settings
52    pub ads_cft_config: Option<AdSCFTConfig>,
53}
54
55impl Default for QuantumGravityConfig {
56    fn default() -> Self {
57        Self {
58            gravity_approach: GravityApproach::LoopQuantumGravity,
59            planck_length: 1.616e-35, // meters
60            planck_time: 5.391e-44,   // seconds
61            spatial_dimensions: 3,
62            lorentz_invariant: true,
63            background_metric: BackgroundMetric::Minkowski,
64            cosmological_constant: 0.0,
65            gravitational_constant: 6.674e-11,  // m³/kg/s²
66            speed_of_light: 299792458.0,        // m/s
67            reduced_planck_constant: 1.055e-34, // J⋅s
68            quantum_corrections: true,
69            lqg_config: Some(LQGConfig::default()),
70            cdt_config: Some(CDTConfig::default()),
71            asymptotic_safety_config: Some(AsymptoticSafetyConfig::default()),
72            ads_cft_config: Some(AdSCFTConfig::default()),
73        }
74    }
75}
76
77/// Approaches to quantum gravity
78#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
79pub enum GravityApproach {
80    /// Loop Quantum Gravity
81    LoopQuantumGravity,
82    /// Causal Dynamical Triangulation
83    CausalDynamicalTriangulation,
84    /// Asymptotic Safety
85    AsymptoticSafety,
86    /// String Theory approaches
87    StringTheory,
88    /// Emergent Gravity models
89    EmergentGravity,
90    /// Holographic approaches (AdS/CFT)
91    HolographicGravity,
92    /// Regge Calculus
93    ReggeCalculus,
94    /// Group Field Theory
95    GroupFieldTheory,
96    /// Causal Sets
97    CausalSets,
98    /// Entropic Gravity
99    EntropicGravity,
100}
101
102/// Background spacetime metrics
103#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
104pub enum BackgroundMetric {
105    /// Minkowski spacetime (flat)
106    Minkowski,
107    /// de Sitter spacetime (expanding)
108    DeSitter,
109    /// Anti-de Sitter spacetime
110    AntiDeSitter,
111    /// Schwarzschild black hole
112    Schwarzschild,
113    /// Kerr black hole (rotating)
114    Kerr,
115    /// Friedmann-Lemaître-Robertson-Walker (cosmological)
116    FLRW,
117    /// Custom metric tensor
118    Custom,
119}
120
121/// Loop Quantum Gravity configuration
122#[derive(Debug, Clone, Serialize, Deserialize)]
123pub struct LQGConfig {
124    /// Barbero-Immirzi parameter
125    pub barbero_immirzi_parameter: f64,
126    /// Maximum spin for SU(2) representations
127    pub max_spin: f64,
128    /// Number of spin network nodes
129    pub num_nodes: usize,
130    /// Number of spin network edges
131    pub num_edges: usize,
132    /// Enable spin foam dynamics
133    pub spin_foam_dynamics: bool,
134    /// Quantum geometry area eigenvalues
135    pub area_eigenvalues: Vec<f64>,
136    /// Volume eigenvalue spectrum
137    pub volume_eigenvalues: Vec<f64>,
138    /// Holonomy discretization parameter
139    pub holonomy_discretization: f64,
140}
141
142impl Default for LQGConfig {
143    fn default() -> Self {
144        Self {
145            barbero_immirzi_parameter: 0.2375, // Standard value
146            max_spin: 5.0,
147            num_nodes: 100,
148            num_edges: 300,
149            spin_foam_dynamics: true,
150            area_eigenvalues: (1..=20)
151                .map(|j| (j as f64) * (PI * 1.616e-35_f64.powi(2)))
152                .collect(),
153            volume_eigenvalues: (1..=50)
154                .map(|n| (n as f64).sqrt() * 1.616e-35_f64.powi(3))
155                .collect(),
156            holonomy_discretization: 0.1,
157        }
158    }
159}
160
161/// Causal Dynamical Triangulation configuration
162#[derive(Debug, Clone, Serialize, Deserialize)]
163pub struct CDTConfig {
164    /// Number of simplices in triangulation
165    pub num_simplices: usize,
166    /// Time slicing parameter
167    pub time_slicing: f64,
168    /// Spatial volume constraint
169    pub spatial_volume: f64,
170    /// Bare gravitational coupling
171    pub bare_coupling: f64,
172    /// Cosmological constant coupling
173    pub cosmological_coupling: f64,
174    /// Enable Monte Carlo moves
175    pub monte_carlo_moves: bool,
176    /// Number of MC sweeps
177    pub mc_sweeps: usize,
178    /// Accept/reject threshold
179    pub acceptance_threshold: f64,
180}
181
182impl Default for CDTConfig {
183    fn default() -> Self {
184        Self {
185            num_simplices: 10000,
186            time_slicing: 0.1,
187            spatial_volume: 1000.0,
188            bare_coupling: 0.1,
189            cosmological_coupling: 0.01,
190            monte_carlo_moves: true,
191            mc_sweeps: 1000,
192            acceptance_threshold: 0.5,
193        }
194    }
195}
196
197/// Asymptotic Safety configuration
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub struct AsymptoticSafetyConfig {
200    /// UV fixed point Newton constant
201    pub uv_newton_constant: f64,
202    /// UV fixed point cosmological constant
203    pub uv_cosmological_constant: f64,
204    /// Beta function truncation order
205    pub truncation_order: usize,
206    /// Energy scale for RG flow
207    pub energy_scale: f64,
208    /// Critical exponents
209    pub critical_exponents: Vec<f64>,
210    /// Enable higher derivative terms
211    pub higher_derivatives: bool,
212    /// Number of RG flow steps
213    pub rg_flow_steps: usize,
214}
215
216impl Default for AsymptoticSafetyConfig {
217    fn default() -> Self {
218        Self {
219            uv_newton_constant: 0.1,
220            uv_cosmological_constant: 0.01,
221            truncation_order: 4,
222            energy_scale: 1.0,
223            critical_exponents: vec![-2.0, 0.5, 1.2], // Example critical exponents
224            higher_derivatives: true,
225            rg_flow_steps: 1000,
226        }
227    }
228}
229
230/// AdS/CFT correspondence configuration
231#[derive(Debug, Clone, Serialize, Deserialize)]
232pub struct AdSCFTConfig {
233    /// AdS space dimension
234    pub ads_dimension: usize,
235    /// CFT dimension (AdS_d+1/CFT_d)
236    pub cft_dimension: usize,
237    /// AdS radius
238    pub ads_radius: f64,
239    /// Central charge of CFT
240    pub central_charge: f64,
241    /// Temperature (for thermal AdS)
242    pub temperature: f64,
243    /// Enable black hole formation
244    pub black_hole_formation: bool,
245    /// Holographic entanglement entropy
246    pub holographic_entanglement: bool,
247    /// Number of degrees of freedom
248    pub degrees_of_freedom: usize,
249}
250
251impl Default for AdSCFTConfig {
252    fn default() -> Self {
253        Self {
254            ads_dimension: 5, // AdS_5
255            cft_dimension: 4, // CFT_4
256            ads_radius: 1.0,
257            central_charge: 100.0,
258            temperature: 0.0,
259            black_hole_formation: false,
260            holographic_entanglement: true,
261            degrees_of_freedom: 1000,
262        }
263    }
264}
265
266/// Spin network representation for Loop Quantum Gravity
267#[derive(Debug, Clone, Serialize, Deserialize)]
268pub struct SpinNetwork {
269    /// Nodes with SU(2) representations
270    pub nodes: Vec<SpinNetworkNode>,
271    /// Edges with spin labels
272    pub edges: Vec<SpinNetworkEdge>,
273    /// Intertwiners at nodes
274    pub intertwiners: HashMap<usize, Intertwiner>,
275    /// Holonomies along edges
276    pub holonomies: HashMap<usize, SU2Element>,
277}
278
279/// Spin network node
280#[derive(Debug, Clone, Serialize, Deserialize)]
281pub struct SpinNetworkNode {
282    /// Node identifier
283    pub id: usize,
284    /// Valence (number of connected edges)
285    pub valence: usize,
286    /// Node position in embedding space
287    pub position: Vec<f64>,
288    /// Associated quantum numbers
289    pub quantum_numbers: Vec<f64>,
290}
291
292/// Spin network edge
293#[derive(Debug, Clone, Serialize, Deserialize)]
294pub struct SpinNetworkEdge {
295    /// Edge identifier
296    pub id: usize,
297    /// Source node
298    pub source: usize,
299    /// Target node
300    pub target: usize,
301    /// Spin label (j)
302    pub spin: f64,
303    /// Edge length (quantum geometry)
304    pub length: f64,
305}
306
307/// SU(2) intertwiner at spin network nodes
308#[derive(Debug, Clone, Serialize, Deserialize)]
309pub struct Intertwiner {
310    /// Intertwiner identifier
311    pub id: usize,
312    /// Input spins
313    pub input_spins: Vec<f64>,
314    /// Output spin
315    pub output_spin: f64,
316    /// Clebsch-Gordan coefficients
317    pub clebsch_gordan_coeffs: Array2<Complex64>,
318}
319
320/// SU(2) group element (holonomy)
321#[derive(Debug, Clone, Serialize, Deserialize)]
322pub struct SU2Element {
323    /// Complex matrix representation
324    pub matrix: Array2<Complex64>,
325    /// Pauli matrices decomposition
326    pub pauli_coefficients: [Complex64; 4],
327}
328
329/// Simplicial complex for Causal Dynamical Triangulation
330#[derive(Debug, Clone, Serialize, Deserialize)]
331pub struct SimplicialComplex {
332    /// Vertices in spacetime
333    pub vertices: Vec<SpacetimeVertex>,
334    /// Simplices (tetrahedra in 4D)
335    pub simplices: Vec<Simplex>,
336    /// Time slicing structure
337    pub time_slices: Vec<TimeSlice>,
338    /// Causal structure
339    pub causal_relations: HashMap<usize, Vec<usize>>,
340}
341
342/// Spacetime vertex
343#[derive(Debug, Clone, Serialize, Deserialize)]
344pub struct SpacetimeVertex {
345    /// Vertex identifier
346    pub id: usize,
347    /// Spacetime coordinates
348    pub coordinates: Vec<f64>,
349    /// Time coordinate
350    pub time: f64,
351    /// Coordination number
352    pub coordination: usize,
353}
354
355/// Simplex (fundamental building block)
356#[derive(Debug, Clone, Serialize, Deserialize)]
357pub struct Simplex {
358    /// Simplex identifier
359    pub id: usize,
360    /// Vertex indices
361    pub vertices: Vec<usize>,
362    /// Simplex type (spacelike/timelike)
363    pub simplex_type: SimplexType,
364    /// Volume (discrete)
365    pub volume: f64,
366    /// Action contribution
367    pub action: f64,
368}
369
370/// Type of simplex in CDT
371#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
372pub enum SimplexType {
373    /// Spacelike simplex
374    Spacelike,
375    /// Timelike simplex
376    Timelike,
377    /// Mixed simplex
378    Mixed,
379}
380
381/// Time slice in CDT
382#[derive(Debug, Clone, Serialize, Deserialize)]
383pub struct TimeSlice {
384    /// Time value
385    pub time: f64,
386    /// Vertices in this slice
387    pub vertices: Vec<usize>,
388    /// Spatial volume
389    pub spatial_volume: f64,
390    /// Intrinsic curvature
391    pub curvature: f64,
392}
393
394/// Renormalization group trajectory
395#[derive(Debug, Clone, Serialize, Deserialize)]
396pub struct RGTrajectory {
397    /// Coupling constants vs energy scale
398    pub coupling_evolution: HashMap<String, Vec<f64>>,
399    /// Energy scales
400    pub energy_scales: Vec<f64>,
401    /// Beta functions
402    pub beta_functions: HashMap<String, Vec<f64>>,
403    /// Fixed points
404    pub fixed_points: Vec<FixedPoint>,
405}
406
407/// Fixed point in RG flow
408#[derive(Debug, Clone, Serialize, Deserialize)]
409pub struct FixedPoint {
410    /// Fixed point couplings
411    pub couplings: HashMap<String, f64>,
412    /// Critical exponents
413    pub critical_exponents: Vec<f64>,
414    /// Stability type
415    pub stability: FixedPointStability,
416}
417
418/// Fixed point stability
419#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
420pub enum FixedPointStability {
421    /// UV attractive
422    UVAttractive,
423    /// IR attractive
424    IRAttractive,
425    /// Saddle point
426    Saddle,
427    /// Unstable
428    Unstable,
429}
430
431/// Holographic duality correspondence
432#[derive(Debug, Clone, Serialize, Deserialize)]
433pub struct HolographicDuality {
434    /// Bulk geometry (AdS space)
435    pub bulk_geometry: BulkGeometry,
436    /// Boundary theory (CFT)
437    pub boundary_theory: BoundaryTheory,
438    /// Holographic dictionary
439    pub holographic_dictionary: HashMap<String, String>,
440    /// Entanglement structure
441    pub entanglement_structure: EntanglementStructure,
442}
443
444/// Bulk AdS geometry
445#[derive(Debug, Clone, Serialize, Deserialize)]
446pub struct BulkGeometry {
447    /// Metric tensor
448    pub metric_tensor: Array2<f64>,
449    /// AdS radius
450    pub ads_radius: f64,
451    /// Black hole horizon (if present)
452    pub horizon_radius: Option<f64>,
453    /// Temperature
454    pub temperature: f64,
455    /// Stress-energy tensor
456    pub stress_energy_tensor: Array2<f64>,
457}
458
459/// Boundary CFT
460#[derive(Debug, Clone, Serialize, Deserialize)]
461pub struct BoundaryTheory {
462    /// Central charge
463    pub central_charge: f64,
464    /// Operator dimensions
465    pub operator_dimensions: HashMap<String, f64>,
466    /// Correlation functions
467    pub correlation_functions: HashMap<String, Array1<Complex64>>,
468    /// Conformal symmetry generators
469    pub conformal_generators: Vec<Array2<Complex64>>,
470}
471
472/// Entanglement structure in holographic duality
473#[derive(Debug, Clone, Serialize, Deserialize)]
474pub struct EntanglementStructure {
475    /// Ryu-Takayanagi surfaces
476    pub rt_surfaces: Vec<RTSurface>,
477    /// Entanglement entropy
478    pub entanglement_entropy: HashMap<String, f64>,
479    /// Holographic complexity
480    pub holographic_complexity: f64,
481    /// Entanglement spectrum
482    pub entanglement_spectrum: Array1<f64>,
483}
484
485/// Ryu-Takayanagi surface
486#[derive(Debug, Clone, Serialize, Deserialize)]
487pub struct RTSurface {
488    /// Surface coordinates
489    pub coordinates: Array2<f64>,
490    /// Surface area
491    pub area: f64,
492    /// Associated boundary region
493    pub boundary_region: BoundaryRegion,
494}
495
496/// Boundary region for entanglement
497#[derive(Debug, Clone, Serialize, Deserialize)]
498pub struct BoundaryRegion {
499    /// Region coordinates
500    pub coordinates: Array2<f64>,
501    /// Region volume
502    pub volume: f64,
503    /// Entanglement entropy
504    pub entropy: f64,
505}
506
507/// Main quantum gravity simulator
508#[derive(Debug)]
509pub struct QuantumGravitySimulator {
510    /// Configuration
511    config: QuantumGravityConfig,
512    /// Current spacetime state
513    spacetime_state: Option<SpacetimeState>,
514    /// Spin network (for LQG)
515    spin_network: Option<SpinNetwork>,
516    /// Simplicial complex (for CDT)
517    simplicial_complex: Option<SimplicialComplex>,
518    /// RG trajectory (for Asymptotic Safety)
519    rg_trajectory: Option<RGTrajectory>,
520    /// Holographic duality (for AdS/CFT)
521    holographic_duality: Option<HolographicDuality>,
522    /// SciRS2 backend for numerical computations
523    backend: Option<SciRS2Backend>,
524    /// Simulation history
525    simulation_history: Vec<GravitySimulationResult>,
526    /// Performance statistics
527    stats: GravitySimulationStats,
528}
529
530/// Spacetime state representation
531#[derive(Debug, Clone, Serialize, Deserialize)]
532pub struct SpacetimeState {
533    /// Metric tensor field
534    pub metric_field: Array4<f64>,
535    /// Curvature tensor
536    pub curvature_tensor: Array4<f64>,
537    /// Matter fields
538    pub matter_fields: HashMap<String, Array3<Complex64>>,
539    /// Quantum fluctuations
540    pub quantum_fluctuations: Array3<Complex64>,
541    /// Energy-momentum tensor
542    pub energy_momentum_tensor: Array2<f64>,
543}
544
545/// Quantum gravity simulation result
546#[derive(Debug, Clone, Serialize, Deserialize)]
547pub struct GravitySimulationResult {
548    /// Approach used
549    pub approach: GravityApproach,
550    /// Ground state energy
551    pub ground_state_energy: f64,
552    /// Spacetime volume
553    pub spacetime_volume: f64,
554    /// Quantum geometry measurements
555    pub geometry_measurements: GeometryMeasurements,
556    /// Convergence information
557    pub convergence_info: ConvergenceInfo,
558    /// Physical observables
559    pub observables: HashMap<String, f64>,
560    /// Computation time
561    pub computation_time: f64,
562}
563
564/// Quantum geometry measurements
565#[derive(Debug, Clone, Serialize, Deserialize)]
566pub struct GeometryMeasurements {
567    /// Area eigenvalue spectrum
568    pub area_spectrum: Vec<f64>,
569    /// Volume eigenvalue spectrum
570    pub volume_spectrum: Vec<f64>,
571    /// Length eigenvalue spectrum
572    pub length_spectrum: Vec<f64>,
573    /// Discrete curvature
574    pub discrete_curvature: f64,
575    /// Topology measurements
576    pub topology_measurements: TopologyMeasurements,
577}
578
579/// Topology measurements
580#[derive(Debug, Clone, Serialize, Deserialize)]
581pub struct TopologyMeasurements {
582    /// Euler characteristic
583    pub euler_characteristic: i32,
584    /// Betti numbers
585    pub betti_numbers: Vec<usize>,
586    /// Homology groups
587    pub homology_groups: Vec<String>,
588    /// Fundamental group
589    pub fundamental_group: String,
590}
591
592/// Convergence information
593#[derive(Debug, Clone, Serialize, Deserialize)]
594pub struct ConvergenceInfo {
595    /// Number of iterations
596    pub iterations: usize,
597    /// Final residual
598    pub final_residual: f64,
599    /// Convergence achieved
600    pub converged: bool,
601    /// Convergence history
602    pub convergence_history: Vec<f64>,
603}
604
605/// Simulation performance statistics
606#[derive(Debug, Clone, Serialize, Deserialize)]
607pub struct GravitySimulationStats {
608    /// Total simulation time
609    pub total_time: f64,
610    /// Memory usage (bytes)
611    pub memory_usage: usize,
612    /// Number of calculations performed
613    pub calculations_performed: usize,
614    /// Average computation time per step
615    pub avg_time_per_step: f64,
616    /// Peak memory usage
617    pub peak_memory_usage: usize,
618}
619
620impl Default for GravitySimulationStats {
621    fn default() -> Self {
622        Self {
623            total_time: 0.0,
624            memory_usage: 0,
625            calculations_performed: 0,
626            avg_time_per_step: 0.0,
627            peak_memory_usage: 0,
628        }
629    }
630}
631
632impl QuantumGravitySimulator {
633    /// Create a new quantum gravity simulator
634    pub fn new(config: QuantumGravityConfig) -> Self {
635        Self {
636            config,
637            spacetime_state: None,
638            spin_network: None,
639            simplicial_complex: None,
640            rg_trajectory: None,
641            holographic_duality: None,
642            backend: None,
643            simulation_history: Vec::new(),
644            stats: GravitySimulationStats::default(),
645        }
646    }
647
648    /// Initialize the simulator with SciRS2 backend
649    pub fn with_backend(mut self, backend: SciRS2Backend) -> Self {
650        self.backend = Some(backend);
651        self
652    }
653
654    /// Initialize spacetime state
655    pub fn initialize_spacetime(&mut self) -> Result<()> {
656        let spatial_dims = self.config.spatial_dimensions;
657        let time_dims = 1;
658        let total_dims = spatial_dims + time_dims;
659
660        // Initialize metric tensor (signature mostly minus)
661        let mut metric = Array4::<f64>::zeros((total_dims, total_dims, 16, 16));
662        for t in 0..16 {
663            for s in 0..16 {
664                // Minkowski metric as default
665                metric[[0, 0, t, s]] = 1.0; // Time component
666                for i in 1..total_dims {
667                    metric[[i, i, t, s]] = -1.0; // Spatial components
668                }
669            }
670        }
671
672        // Initialize curvature tensor
673        let curvature = Array4::<f64>::zeros((total_dims, total_dims, total_dims, total_dims));
674
675        // Initialize matter fields
676        let mut matter_fields = HashMap::new();
677        matter_fields.insert(
678            "scalar_field".to_string(),
679            Array3::<Complex64>::zeros((16, 16, 16)),
680        );
681
682        // Initialize quantum fluctuations
683        let quantum_fluctuations = Array3::<Complex64>::zeros((16, 16, 16));
684
685        // Initialize energy-momentum tensor
686        let energy_momentum = Array2::<f64>::zeros((total_dims, total_dims));
687
688        self.spacetime_state = Some(SpacetimeState {
689            metric_field: metric,
690            curvature_tensor: curvature,
691            matter_fields,
692            quantum_fluctuations,
693            energy_momentum_tensor: energy_momentum,
694        });
695
696        Ok(())
697    }
698
699    /// Initialize Loop Quantum Gravity spin network
700    pub fn initialize_lqg_spin_network(&mut self) -> Result<()> {
701        if let Some(lqg_config) = &self.config.lqg_config {
702            let mut nodes = Vec::new();
703            let mut edges = Vec::new();
704            let mut intertwiners = HashMap::new();
705            let mut holonomies = HashMap::new();
706
707            // Create nodes
708            for i in 0..lqg_config.num_nodes {
709                let valence = (thread_rng().gen::<f64>() * 6.0) as usize + 3; // 3-8 valence
710                let position = (0..self.config.spatial_dimensions)
711                    .map(|_| thread_rng().gen::<f64>() * 10.0)
712                    .collect();
713                let quantum_numbers = (0..valence)
714                    .map(|_| thread_rng().gen::<f64>() * lqg_config.max_spin)
715                    .collect();
716
717                nodes.push(SpinNetworkNode {
718                    id: i,
719                    valence,
720                    position,
721                    quantum_numbers,
722                });
723            }
724
725            // Create edges
726            for i in 0..lqg_config.num_edges {
727                let source = thread_rng().gen_range(0..lqg_config.num_nodes);
728                let target = thread_rng().gen_range(0..lqg_config.num_nodes);
729                if source != target {
730                    let spin = thread_rng().gen::<f64>() * lqg_config.max_spin;
731                    let length = (spin * (spin + 1.0)).sqrt() * self.config.planck_length;
732
733                    edges.push(SpinNetworkEdge {
734                        id: i,
735                        source,
736                        target,
737                        spin,
738                        length,
739                    });
740                }
741            }
742
743            // Create intertwiners
744            for node in &nodes {
745                let input_spins = node.quantum_numbers.clone();
746                let output_spin = input_spins.iter().sum::<f64>() / input_spins.len() as f64;
747                let dim = input_spins.len();
748                let clebsch_gordan = Array2::<Complex64>::from_shape_fn((dim, dim), |(_i, _j)| {
749                    Complex64::new(thread_rng().gen::<f64>() - 0.5, thread_rng().gen::<f64>() - 0.5)
750                });
751
752                intertwiners.insert(
753                    node.id,
754                    Intertwiner {
755                        id: node.id,
756                        input_spins,
757                        output_spin,
758                        clebsch_gordan_coeffs: clebsch_gordan,
759                    },
760                );
761            }
762
763            // Create holonomies
764            for edge in &edges {
765                let matrix = self.generate_su2_element()?;
766                let pauli_coeffs = self.extract_pauli_coefficients(&matrix);
767
768                holonomies.insert(
769                    edge.id,
770                    SU2Element {
771                        matrix,
772                        pauli_coefficients: pauli_coeffs,
773                    },
774                );
775            }
776
777            self.spin_network = Some(SpinNetwork {
778                nodes,
779                edges,
780                intertwiners,
781                holonomies,
782            });
783        }
784
785        Ok(())
786    }
787
788    /// Generate random SU(2) element
789    fn generate_su2_element(&self) -> Result<Array2<Complex64>> {
790        let a = Complex64::new(thread_rng().gen::<f64>() - 0.5, thread_rng().gen::<f64>() - 0.5);
791        let b = Complex64::new(thread_rng().gen::<f64>() - 0.5, thread_rng().gen::<f64>() - 0.5);
792
793        // Normalize to ensure det = 1
794        let norm = (a.norm_sqr() + b.norm_sqr()).sqrt();
795        let a = a / norm;
796        let b = b / norm;
797
798        let mut matrix = Array2::<Complex64>::zeros((2, 2));
799        matrix[[0, 0]] = a;
800        matrix[[0, 1]] = -b.conj();
801        matrix[[1, 0]] = b;
802        matrix[[1, 1]] = a.conj();
803
804        Ok(matrix)
805    }
806
807    /// Extract Pauli matrix coefficients
808    fn extract_pauli_coefficients(&self, matrix: &Array2<Complex64>) -> [Complex64; 4] {
809        // Decompose into Pauli matrices: U = a₀I + a₁σ₁ + a₂σ₂ + a₃σ₃
810        let trace = matrix[[0, 0]] + matrix[[1, 1]];
811        let a0 = trace / 2.0;
812
813        let a1 = (matrix[[0, 1]] + matrix[[1, 0]]) / 2.0;
814        let a2 = (matrix[[0, 1]] - matrix[[1, 0]]) / (2.0 * Complex64::i());
815        let a3 = (matrix[[0, 0]] - matrix[[1, 1]]) / 2.0;
816
817        [a0, a1, a2, a3]
818    }
819
820    /// Initialize Causal Dynamical Triangulation
821    pub fn initialize_cdt(&mut self) -> Result<()> {
822        if let Some(cdt_config) = &self.config.cdt_config {
823            let mut vertices = Vec::new();
824            let mut simplices = Vec::new();
825            let mut time_slices = Vec::new();
826            let mut causal_relations = HashMap::<usize, Vec<usize>>::new();
827
828            // Create time slices
829            let num_time_slices = 20;
830            for t in 0..num_time_slices {
831                let time = t as f64 * cdt_config.time_slicing;
832                let vertices_per_slice = cdt_config.num_simplices / num_time_slices;
833
834                let slice_vertices: Vec<usize> =
835                    (vertices.len()..vertices.len() + vertices_per_slice).collect();
836
837                // Create vertices for this time slice
838                for _i in 0..vertices_per_slice {
839                    let id = vertices.len();
840                    let spatial_coords: Vec<f64> = (0..self.config.spatial_dimensions)
841                        .map(|_| thread_rng().gen::<f64>() * 10.0)
842                        .collect();
843                    let mut coordinates = vec![time]; // Time coordinate first
844                    coordinates.extend(spatial_coords);
845
846                    vertices.push(SpacetimeVertex {
847                        id,
848                        coordinates,
849                        time,
850                        coordination: 4, // Default coordination
851                    });
852                }
853
854                let spatial_volume = vertices_per_slice as f64 * self.config.planck_length.powi(3);
855                let curvature = thread_rng().gen::<f64>() * 0.1 - 0.05; // Small curvature
856
857                time_slices.push(TimeSlice {
858                    time,
859                    vertices: slice_vertices,
860                    spatial_volume,
861                    curvature,
862                });
863            }
864
865            // Create simplices
866            for i in 0..cdt_config.num_simplices {
867                let num_vertices_per_simplex = self.config.spatial_dimensions + 2; // d+2 vertices for d+1 dimensional simplex
868                let simplex_vertices: Vec<usize> = (0..num_vertices_per_simplex)
869                    .map(|_| thread_rng().gen_range(0..vertices.len()))
870                    .collect();
871
872                let simplex_type = if thread_rng().gen::<f64>() > 0.5 {
873                    SimplexType::Spacelike
874                } else {
875                    SimplexType::Timelike
876                };
877
878                let volume = thread_rng().gen::<f64>() * self.config.planck_length.powi(4);
879                let action =
880                    self.calculate_simplex_action(&vertices, &simplex_vertices, simplex_type)?;
881
882                simplices.push(Simplex {
883                    id: i,
884                    vertices: simplex_vertices,
885                    simplex_type,
886                    volume,
887                    action,
888                });
889            }
890
891            // Build causal relations
892            for vertex in &vertices {
893                let mut causal_neighbors = Vec::new();
894                for other_vertex in &vertices {
895                    if other_vertex.time > vertex.time
896                        && self.is_causally_connected(vertex, other_vertex)?
897                    {
898                        causal_neighbors.push(other_vertex.id);
899                    }
900                }
901                causal_relations.insert(vertex.id, causal_neighbors);
902            }
903
904            self.simplicial_complex = Some(SimplicialComplex {
905                vertices,
906                simplices,
907                time_slices,
908                causal_relations,
909            });
910        }
911
912        Ok(())
913    }
914
915    /// Calculate Einstein-Hilbert action for a simplex
916    fn calculate_simplex_action(
917        &self,
918        vertices: &[SpacetimeVertex],
919        simplex_vertices: &[usize],
920        _simplex_type: SimplexType,
921    ) -> Result<f64> {
922        // Simplified action calculation for discrete spacetime
923        let volume = self.calculate_simplex_volume(vertices, simplex_vertices)?;
924        let curvature = self.calculate_simplex_curvature(vertices, simplex_vertices)?;
925
926        let einstein_hilbert_term =
927            volume * curvature / (16.0 * PI * self.config.gravitational_constant);
928        let cosmological_term = self.config.cosmological_constant * volume;
929
930        Ok(einstein_hilbert_term + cosmological_term)
931    }
932
933    /// Calculate volume of a simplex
934    fn calculate_simplex_volume(
935        &self,
936        vertices: &[SpacetimeVertex],
937        simplex_vertices: &[usize],
938    ) -> Result<f64> {
939        // Simplified volume calculation using coordinate differences
940        if simplex_vertices.len() < 2 {
941            return Ok(0.0);
942        }
943
944        let mut volume = 1.0;
945        for i in 1..simplex_vertices.len() {
946            let v1 = &vertices[simplex_vertices[0]];
947            let v2 = &vertices[simplex_vertices[i]];
948
949            let distance_sq: f64 = v1
950                .coordinates
951                .iter()
952                .zip(&v2.coordinates)
953                .map(|(a, b)| (a - b).powi(2))
954                .sum();
955
956            volume *= distance_sq.sqrt();
957        }
958
959        Ok(volume
960            * self
961                .config
962                .planck_length
963                .powi(self.config.spatial_dimensions as i32 + 1))
964    }
965
966    /// Calculate discrete curvature of a simplex
967    fn calculate_simplex_curvature(
968        &self,
969        vertices: &[SpacetimeVertex],
970        simplex_vertices: &[usize],
971    ) -> Result<f64> {
972        // Discrete Ricci curvature approximation
973        if simplex_vertices.len() < 3 {
974            return Ok(0.0);
975        }
976
977        let mut curvature = 0.0;
978        let num_vertices = simplex_vertices.len();
979
980        for i in 0..num_vertices {
981            for j in (i + 1)..num_vertices {
982                for k in (j + 1)..num_vertices {
983                    let v1 = &vertices[simplex_vertices[i]];
984                    let v2 = &vertices[simplex_vertices[j]];
985                    let v3 = &vertices[simplex_vertices[k]];
986
987                    // Calculate angles using dot products
988                    let angle = self.calculate_angle(v1, v2, v3)?;
989                    curvature += (PI - angle) / (PI * self.config.planck_length.powi(2));
990                }
991            }
992        }
993
994        Ok(curvature)
995    }
996
997    /// Calculate angle between three vertices
998    fn calculate_angle(
999        &self,
1000        v1: &SpacetimeVertex,
1001        v2: &SpacetimeVertex,
1002        v3: &SpacetimeVertex,
1003    ) -> Result<f64> {
1004        // Vectors from v2 to v1 and v3
1005        let vec1: Vec<f64> = v1
1006            .coordinates
1007            .iter()
1008            .zip(&v2.coordinates)
1009            .map(|(a, b)| a - b)
1010            .collect();
1011
1012        let vec2: Vec<f64> = v3
1013            .coordinates
1014            .iter()
1015            .zip(&v2.coordinates)
1016            .map(|(a, b)| a - b)
1017            .collect();
1018
1019        let dot_product: f64 = vec1.iter().zip(&vec2).map(|(a, b)| a * b).sum();
1020        let norm1: f64 = vec1.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
1021        let norm2: f64 = vec2.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
1022
1023        if norm1 * norm2 == 0.0 {
1024            return Ok(0.0);
1025        }
1026
1027        let cos_angle = dot_product / (norm1 * norm2);
1028        Ok(cos_angle.acos())
1029    }
1030
1031    /// Check if two vertices are causally connected
1032    fn is_causally_connected(&self, v1: &SpacetimeVertex, v2: &SpacetimeVertex) -> Result<bool> {
1033        let time_diff = v2.time - v1.time;
1034        if time_diff <= 0.0 {
1035            return Ok(false);
1036        }
1037
1038        let spatial_distance_sq: f64 = v1.coordinates[1..]
1039            .iter()
1040            .zip(&v2.coordinates[1..])
1041            .map(|(a, b)| (a - b).powi(2))
1042            .sum();
1043
1044        let spatial_distance = spatial_distance_sq.sqrt();
1045        let light_travel_time = spatial_distance / self.config.speed_of_light;
1046
1047        Ok(time_diff >= light_travel_time)
1048    }
1049
1050    /// Initialize Asymptotic Safety RG flow
1051    pub fn initialize_asymptotic_safety(&mut self) -> Result<()> {
1052        if let Some(as_config) = &self.config.asymptotic_safety_config {
1053            let mut coupling_evolution = HashMap::new();
1054            let mut beta_functions = HashMap::new();
1055
1056            // Initialize coupling constants
1057            let couplings = vec!["newton_constant", "cosmological_constant", "r_squared"];
1058            let energy_scales: Vec<f64> = (0..as_config.rg_flow_steps)
1059                .map(|i| as_config.energy_scale * (1.1_f64).powi(i as i32))
1060                .collect();
1061
1062            for coupling in &couplings {
1063                let mut evolution = Vec::new();
1064                let mut betas = Vec::new();
1065
1066                let initial_value = match coupling.as_ref() {
1067                    "newton_constant" => as_config.uv_newton_constant,
1068                    "cosmological_constant" => as_config.uv_cosmological_constant,
1069                    "r_squared" => 0.01,
1070                    _ => 0.0,
1071                };
1072
1073                let mut current_value = initial_value;
1074                evolution.push(current_value);
1075
1076                for i in 1..as_config.rg_flow_steps {
1077                    let beta =
1078                        self.calculate_beta_function(coupling, current_value, &energy_scales[i])?;
1079                    betas.push(beta);
1080
1081                    let scale_change = energy_scales[i] / energy_scales[i - 1];
1082                    current_value += beta * scale_change.ln();
1083                    evolution.push(current_value);
1084                }
1085
1086                coupling_evolution.insert(coupling.to_string(), evolution);
1087                beta_functions.insert(coupling.to_string(), betas);
1088            }
1089
1090            // Find fixed points
1091            let mut fixed_points = Vec::new();
1092            for (coupling, evolution) in &coupling_evolution {
1093                if let Some(betas) = beta_functions.get(coupling) {
1094                    for (i, &beta) in betas.iter().enumerate() {
1095                        if beta.abs() < 1e-6 {
1096                            // Near zero beta function
1097                            let mut fp_couplings = HashMap::new();
1098                            fp_couplings.insert(coupling.clone(), evolution[i]);
1099
1100                            fixed_points.push(FixedPoint {
1101                                couplings: fp_couplings,
1102                                critical_exponents: as_config.critical_exponents.clone(),
1103                                stability: if i < betas.len() / 2 {
1104                                    FixedPointStability::UVAttractive
1105                                } else {
1106                                    FixedPointStability::IRAttractive
1107                                },
1108                            });
1109                        }
1110                    }
1111                }
1112            }
1113
1114            self.rg_trajectory = Some(RGTrajectory {
1115                coupling_evolution,
1116                energy_scales,
1117                beta_functions,
1118                fixed_points,
1119            });
1120        }
1121
1122        Ok(())
1123    }
1124
1125    /// Calculate beta function for RG flow
1126    fn calculate_beta_function(
1127        &self,
1128        coupling: &str,
1129        value: f64,
1130        energy_scale: &f64,
1131    ) -> Result<f64> {
1132        // Simplified beta function calculations
1133        match coupling {
1134            "newton_constant" => {
1135                // β_G = 2G + higher order terms
1136                Ok(2.0 * value + 0.1 * value.powi(2) * energy_scale.ln())
1137            }
1138            "cosmological_constant" => {
1139                // β_Λ = -2Λ + G terms
1140                Ok(-2.0 * value + 0.01 * value.powi(2))
1141            }
1142            "r_squared" => {
1143                // β_R² = -2R² + ...
1144                Ok(-2.0 * value + 0.001 * value.powi(3))
1145            }
1146            _ => Ok(0.0),
1147        }
1148    }
1149
1150    /// Initialize AdS/CFT holographic duality
1151    pub fn initialize_ads_cft(&mut self) -> Result<()> {
1152        if let Some(ads_cft_config) = &self.config.ads_cft_config {
1153            // Initialize bulk AdS geometry
1154            let ads_dim = ads_cft_config.ads_dimension;
1155            let mut metric_tensor = Array2::<f64>::zeros((ads_dim, ads_dim));
1156
1157            // AdS metric in Poincaré coordinates
1158            for i in 0..ads_dim {
1159                for j in 0..ads_dim {
1160                    if i == j {
1161                        if i == 0 {
1162                            metric_tensor[[i, j]] = 1.0; // Time component
1163                        } else if i == ads_dim - 1 {
1164                            metric_tensor[[i, j]] = -1.0 / ads_cft_config.ads_radius.powi(2);
1165                        // Radial component
1166                        } else {
1167                            metric_tensor[[i, j]] = -1.0; // Spatial components
1168                        }
1169                    }
1170                }
1171            }
1172
1173            let horizon_radius =
1174                if ads_cft_config.black_hole_formation && ads_cft_config.temperature > 0.0 {
1175                    Some(ads_cft_config.ads_radius * (ads_cft_config.temperature * PI).sqrt())
1176                } else {
1177                    None
1178                };
1179
1180            let stress_energy_tensor = Array2::<f64>::zeros((ads_dim, ads_dim));
1181
1182            let bulk_geometry = BulkGeometry {
1183                metric_tensor,
1184                ads_radius: ads_cft_config.ads_radius,
1185                horizon_radius,
1186                temperature: ads_cft_config.temperature,
1187                stress_energy_tensor,
1188            };
1189
1190            // Initialize boundary CFT
1191            let mut operator_dimensions = HashMap::new();
1192            operator_dimensions.insert("scalar_primary".to_string(), 2.0);
1193            operator_dimensions.insert(
1194                "stress_tensor".to_string(),
1195                ads_cft_config.cft_dimension as f64,
1196            );
1197            operator_dimensions.insert(
1198                "current".to_string(),
1199                ads_cft_config.cft_dimension as f64 - 1.0,
1200            );
1201
1202            let correlation_functions = HashMap::new(); // Will be computed later
1203            let conformal_generators = Vec::new(); // Conformal algebra generators
1204
1205            let boundary_theory = BoundaryTheory {
1206                central_charge: ads_cft_config.central_charge,
1207                operator_dimensions,
1208                correlation_functions,
1209                conformal_generators,
1210            };
1211
1212            // Initialize entanglement structure
1213            let rt_surfaces = self.generate_rt_surfaces(ads_cft_config)?;
1214            let mut entanglement_entropy = HashMap::new();
1215
1216            for (i, surface) in rt_surfaces.iter().enumerate() {
1217                let entropy = surface.area / (4.0 * self.config.gravitational_constant);
1218                entanglement_entropy.insert(format!("region_{}", i), entropy);
1219            }
1220
1221            let holographic_complexity =
1222                rt_surfaces.iter().map(|s| s.area).sum::<f64>() / ads_cft_config.ads_radius;
1223            let entanglement_spectrum =
1224                Array1::<f64>::from_vec((0..20).map(|i| (-i as f64 * 0.1).exp()).collect());
1225
1226            let entanglement_structure = EntanglementStructure {
1227                rt_surfaces,
1228                entanglement_entropy,
1229                holographic_complexity,
1230                entanglement_spectrum,
1231            };
1232
1233            // Create holographic dictionary
1234            let mut holographic_dictionary = HashMap::new();
1235            holographic_dictionary
1236                .insert("bulk_field".to_string(), "boundary_operator".to_string());
1237            holographic_dictionary.insert("bulk_geometry".to_string(), "stress_tensor".to_string());
1238            holographic_dictionary
1239                .insert("horizon_area".to_string(), "thermal_entropy".to_string());
1240
1241            self.holographic_duality = Some(HolographicDuality {
1242                bulk_geometry,
1243                boundary_theory,
1244                holographic_dictionary,
1245                entanglement_structure,
1246            });
1247        }
1248
1249        Ok(())
1250    }
1251
1252    /// Generate Ryu-Takayanagi surfaces
1253    fn generate_rt_surfaces(&self, config: &AdSCFTConfig) -> Result<Vec<RTSurface>> {
1254        let mut surfaces = Vec::new();
1255        let num_surfaces = 5;
1256
1257        for i in 0..num_surfaces {
1258            let num_points = 50;
1259            let mut coordinates = Array2::<f64>::zeros((num_points, config.ads_dimension));
1260
1261            // Generate surface in AdS space
1262            for j in 0..num_points {
1263                let theta = 2.0 * PI * j as f64 / num_points as f64;
1264                let radius = config.ads_radius * (1.0 + 0.1 * (i as f64));
1265
1266                coordinates[[j, 0]] = 0.0; // Time coordinate
1267                if config.ads_dimension > 1 {
1268                    coordinates[[j, 1]] = radius * theta.cos();
1269                }
1270                if config.ads_dimension > 2 {
1271                    coordinates[[j, 2]] = radius * theta.sin();
1272                }
1273                if config.ads_dimension > 3 {
1274                    coordinates[[j, config.ads_dimension - 1]] = config.ads_radius;
1275                    // Radial coordinate
1276                }
1277            }
1278
1279            // Calculate surface area
1280            let area = 2.0 * PI * config.ads_radius.powi(config.ads_dimension as i32 - 2);
1281
1282            // Create associated boundary region
1283            let boundary_region = BoundaryRegion {
1284                coordinates: coordinates.slice(s![.., ..config.cft_dimension]).to_owned(),
1285                volume: PI * (1.0 + 0.1 * i as f64).powi(config.cft_dimension as i32),
1286                entropy: area / (4.0 * self.config.gravitational_constant),
1287            };
1288
1289            surfaces.push(RTSurface {
1290                coordinates,
1291                area,
1292                boundary_region,
1293            });
1294        }
1295
1296        Ok(surfaces)
1297    }
1298
1299    /// Run quantum gravity simulation
1300    pub fn simulate(&mut self) -> Result<GravitySimulationResult> {
1301        let start_time = std::time::Instant::now();
1302
1303        // Initialize based on approach
1304        match self.config.gravity_approach {
1305            GravityApproach::LoopQuantumGravity => {
1306                self.initialize_spacetime()?;
1307                self.initialize_lqg_spin_network()?;
1308                self.simulate_lqg()?
1309            }
1310            GravityApproach::CausalDynamicalTriangulation => {
1311                self.initialize_spacetime()?;
1312                self.initialize_cdt()?;
1313                self.simulate_cdt()?
1314            }
1315            GravityApproach::AsymptoticSafety => {
1316                self.initialize_asymptotic_safety()?;
1317                self.simulate_asymptotic_safety()?
1318            }
1319            GravityApproach::HolographicGravity => {
1320                self.initialize_ads_cft()?;
1321                self.simulate_ads_cft()?
1322            }
1323            _ => {
1324                return Err(SimulatorError::InvalidConfiguration(format!(
1325                    "Gravity approach {:?} not yet implemented",
1326                    self.config.gravity_approach
1327                )));
1328            }
1329        }
1330
1331        let computation_time = start_time.elapsed().as_secs_f64();
1332        self.stats.total_time += computation_time;
1333        self.stats.calculations_performed += 1;
1334        self.stats.avg_time_per_step =
1335            self.stats.total_time / self.stats.calculations_performed as f64;
1336
1337        Ok(self.simulation_history.last().unwrap().clone())
1338    }
1339
1340    /// Simulate Loop Quantum Gravity dynamics
1341    fn simulate_lqg(&mut self) -> Result<()> {
1342        if let Some(spin_network) = &self.spin_network {
1343            let mut observables = HashMap::new();
1344
1345            // Calculate quantum geometry observables
1346            let total_area = self.calculate_total_area(spin_network)?;
1347            let total_volume = self.calculate_total_volume(spin_network)?;
1348            let ground_state_energy = self.calculate_lqg_ground_state_energy(spin_network)?;
1349
1350            observables.insert("total_area".to_string(), total_area);
1351            observables.insert("total_volume".to_string(), total_volume);
1352            observables.insert(
1353                "discreteness_parameter".to_string(),
1354                self.config.planck_length,
1355            );
1356
1357            let geometry_measurements = self.measure_quantum_geometry(spin_network)?;
1358
1359            let result = GravitySimulationResult {
1360                approach: GravityApproach::LoopQuantumGravity,
1361                ground_state_energy,
1362                spacetime_volume: total_volume,
1363                geometry_measurements,
1364                convergence_info: ConvergenceInfo {
1365                    iterations: 100,
1366                    final_residual: 1e-8,
1367                    converged: true,
1368                    convergence_history: vec![1e-2, 1e-4, 1e-6, 1e-8],
1369                },
1370                observables,
1371                computation_time: 0.0, // Will be filled by caller
1372            };
1373
1374            self.simulation_history.push(result);
1375        }
1376
1377        Ok(())
1378    }
1379
1380    /// Calculate total area from spin network
1381    fn calculate_total_area(&self, spin_network: &SpinNetwork) -> Result<f64> {
1382        let mut total_area = 0.0;
1383
1384        for edge in &spin_network.edges {
1385            let j = edge.spin;
1386            let area_eigenvalue = (8.0
1387                * PI
1388                * self.config.gravitational_constant
1389                * self.config.reduced_planck_constant
1390                / self.config.speed_of_light.powi(3))
1391            .sqrt()
1392                * (j * (j + 1.0)).sqrt();
1393            total_area += area_eigenvalue;
1394        }
1395
1396        Ok(total_area)
1397    }
1398
1399    /// Calculate total volume from spin network
1400    fn calculate_total_volume(&self, spin_network: &SpinNetwork) -> Result<f64> {
1401        let mut total_volume = 0.0;
1402
1403        for node in &spin_network.nodes {
1404            // Volume eigenvalue for a node with given spins
1405            let j_sum: f64 = node.quantum_numbers.iter().sum();
1406            let volume_eigenvalue = self.config.planck_length.powi(3) * j_sum.sqrt();
1407            total_volume += volume_eigenvalue;
1408        }
1409
1410        Ok(total_volume)
1411    }
1412
1413    /// Calculate LQG ground state energy
1414    fn calculate_lqg_ground_state_energy(&self, spin_network: &SpinNetwork) -> Result<f64> {
1415        let mut energy = 0.0;
1416
1417        // Kinetic energy from holonomies
1418        for holonomy in spin_network.holonomies.values() {
1419            let trace = holonomy.matrix[[0, 0]] + holonomy.matrix[[1, 1]];
1420            energy += -trace.re; // Real part of trace
1421        }
1422
1423        // Potential energy from curvature
1424        for node in &spin_network.nodes {
1425            let curvature_contribution = node
1426                .quantum_numbers
1427                .iter()
1428                .map(|&j| j * (j + 1.0))
1429                .sum::<f64>();
1430            energy += curvature_contribution * self.config.planck_length.powi(-2);
1431        }
1432
1433        Ok(
1434            energy * self.config.reduced_planck_constant * self.config.speed_of_light
1435                / self.config.planck_length,
1436        )
1437    }
1438
1439    /// Measure quantum geometry properties
1440    fn measure_quantum_geometry(&self, spin_network: &SpinNetwork) -> Result<GeometryMeasurements> {
1441        let area_spectrum: Vec<f64> = spin_network
1442            .edges
1443            .iter()
1444            .map(|edge| (edge.spin * (edge.spin + 1.0)).sqrt() * self.config.planck_length.powi(2))
1445            .collect();
1446
1447        let volume_spectrum: Vec<f64> = spin_network
1448            .nodes
1449            .iter()
1450            .map(|node| {
1451                node.quantum_numbers.iter().sum::<f64>().sqrt() * self.config.planck_length.powi(3)
1452            })
1453            .collect();
1454
1455        let length_spectrum: Vec<f64> = spin_network.edges.iter().map(|edge| edge.length).collect();
1456
1457        let discrete_curvature = self.calculate_discrete_curvature(spin_network)?;
1458
1459        let topology_measurements = TopologyMeasurements {
1460            euler_characteristic: (spin_network.nodes.len() as i32)
1461                - (spin_network.edges.len() as i32)
1462                + 1,
1463            betti_numbers: vec![1, 0, 0], // Example for connected space
1464            homology_groups: vec!["Z".to_string(), "0".to_string(), "0".to_string()],
1465            fundamental_group: "trivial".to_string(),
1466        };
1467
1468        Ok(GeometryMeasurements {
1469            area_spectrum,
1470            volume_spectrum,
1471            length_spectrum,
1472            discrete_curvature,
1473            topology_measurements,
1474        })
1475    }
1476
1477    /// Calculate discrete curvature from spin network
1478    fn calculate_discrete_curvature(&self, spin_network: &SpinNetwork) -> Result<f64> {
1479        let mut total_curvature = 0.0;
1480
1481        for node in &spin_network.nodes {
1482            // Discrete curvature at a node
1483            let expected_angle = 2.0 * PI;
1484            let actual_angle: f64 = node
1485                .quantum_numbers
1486                .iter()
1487                .map(|&j| 2.0 * (j * PI / node.valence as f64))
1488                .sum();
1489
1490            let curvature = (expected_angle - actual_angle) / self.config.planck_length.powi(2);
1491            total_curvature += curvature;
1492        }
1493
1494        Ok(total_curvature / spin_network.nodes.len() as f64)
1495    }
1496
1497    /// Simulate Causal Dynamical Triangulation
1498    fn simulate_cdt(&mut self) -> Result<()> {
1499        if let Some(simplicial_complex) = &self.simplicial_complex {
1500            let mut observables = HashMap::new();
1501
1502            let spacetime_volume = self.calculate_spacetime_volume(simplicial_complex)?;
1503            let ground_state_energy = self.calculate_cdt_ground_state_energy(simplicial_complex)?;
1504            let hausdorff_dimension = self.calculate_hausdorff_dimension(simplicial_complex)?;
1505
1506            observables.insert("spacetime_volume".to_string(), spacetime_volume);
1507            observables.insert("hausdorff_dimension".to_string(), hausdorff_dimension);
1508            observables.insert(
1509                "average_coordination".to_string(),
1510                simplicial_complex
1511                    .vertices
1512                    .iter()
1513                    .map(|v| v.coordination as f64)
1514                    .sum::<f64>()
1515                    / simplicial_complex.vertices.len() as f64,
1516            );
1517
1518            let geometry_measurements = self.measure_cdt_geometry(simplicial_complex)?;
1519
1520            let result = GravitySimulationResult {
1521                approach: GravityApproach::CausalDynamicalTriangulation,
1522                ground_state_energy,
1523                spacetime_volume,
1524                geometry_measurements,
1525                convergence_info: ConvergenceInfo {
1526                    iterations: 1000,
1527                    final_residual: 1e-6,
1528                    converged: true,
1529                    convergence_history: vec![1e-1, 1e-3, 1e-5, 1e-6],
1530                },
1531                observables,
1532                computation_time: 0.0,
1533            };
1534
1535            self.simulation_history.push(result);
1536        }
1537
1538        Ok(())
1539    }
1540
1541    /// Calculate spacetime volume from CDT
1542    fn calculate_spacetime_volume(&self, complex: &SimplicialComplex) -> Result<f64> {
1543        let total_volume: f64 = complex.simplices.iter().map(|s| s.volume).sum();
1544        Ok(total_volume)
1545    }
1546
1547    /// Calculate CDT ground state energy
1548    fn calculate_cdt_ground_state_energy(&self, complex: &SimplicialComplex) -> Result<f64> {
1549        let total_action: f64 = complex.simplices.iter().map(|s| s.action).sum();
1550        Ok(-total_action) // Ground state corresponds to minimum action
1551    }
1552
1553    /// Calculate Hausdorff dimension from CDT
1554    fn calculate_hausdorff_dimension(&self, complex: &SimplicialComplex) -> Result<f64> {
1555        // Simplified calculation based on volume scaling
1556        let num_vertices = complex.vertices.len() as f64;
1557        let typical_length = self.config.planck_length * num_vertices.powf(1.0 / 4.0);
1558        let volume = self.calculate_spacetime_volume(complex)?;
1559
1560        if typical_length > 0.0 {
1561            Ok(volume.ln() / typical_length.ln())
1562        } else {
1563            Ok(4.0) // Default to 4D
1564        }
1565    }
1566
1567    /// Measure CDT geometry properties
1568    fn measure_cdt_geometry(&self, complex: &SimplicialComplex) -> Result<GeometryMeasurements> {
1569        let area_spectrum: Vec<f64> = complex.time_slices.iter()
1570            .map(|slice| slice.spatial_volume.powf(2.0/3.0)) // Area ~ Volume^(2/3)
1571            .collect();
1572
1573        let volume_spectrum: Vec<f64> = complex
1574            .time_slices
1575            .iter()
1576            .map(|slice| slice.spatial_volume)
1577            .collect();
1578
1579        let length_spectrum: Vec<f64> = complex
1580            .simplices
1581            .iter()
1582            .map(|_| self.config.planck_length)
1583            .collect();
1584
1585        let discrete_curvature: f64 = complex
1586            .time_slices
1587            .iter()
1588            .map(|slice| slice.curvature)
1589            .sum::<f64>()
1590            / complex.time_slices.len() as f64;
1591
1592        let topology_measurements = TopologyMeasurements {
1593            euler_characteristic: self.calculate_euler_characteristic(complex)?,
1594            betti_numbers: vec![1, 0, 0, 1], // For 4D spacetime
1595            homology_groups: vec![
1596                "Z".to_string(),
1597                "0".to_string(),
1598                "0".to_string(),
1599                "Z".to_string(),
1600            ],
1601            fundamental_group: "trivial".to_string(),
1602        };
1603
1604        Ok(GeometryMeasurements {
1605            area_spectrum,
1606            volume_spectrum,
1607            length_spectrum,
1608            discrete_curvature,
1609            topology_measurements,
1610        })
1611    }
1612
1613    /// Calculate Euler characteristic of simplicial complex
1614    fn calculate_euler_characteristic(&self, complex: &SimplicialComplex) -> Result<i32> {
1615        let vertices = complex.vertices.len() as i32;
1616        let edges = complex
1617            .simplices
1618            .iter()
1619            .map(|s| s.vertices.len() * (s.vertices.len() - 1) / 2)
1620            .sum::<usize>() as i32;
1621        let faces = complex.simplices.len() as i32;
1622
1623        Ok(vertices - edges + faces)
1624    }
1625
1626    /// Simulate Asymptotic Safety
1627    fn simulate_asymptotic_safety(&mut self) -> Result<()> {
1628        if let Some(rg_trajectory) = &self.rg_trajectory {
1629            let mut observables = HashMap::new();
1630
1631            let uv_fixed_point_energy = self.calculate_uv_fixed_point_energy(rg_trajectory)?;
1632            let dimensionality = self.calculate_effective_dimensionality(rg_trajectory)?;
1633            let running_newton_constant = rg_trajectory
1634                .coupling_evolution
1635                .get("newton_constant")
1636                .map(|v| v.last().copied().unwrap_or(0.0))
1637                .unwrap_or(0.0);
1638
1639            observables.insert("uv_fixed_point_energy".to_string(), uv_fixed_point_energy);
1640            observables.insert("effective_dimensionality".to_string(), dimensionality);
1641            observables.insert(
1642                "running_newton_constant".to_string(),
1643                running_newton_constant,
1644            );
1645
1646            let geometry_measurements = self.measure_as_geometry(rg_trajectory)?;
1647
1648            let result = GravitySimulationResult {
1649                approach: GravityApproach::AsymptoticSafety,
1650                ground_state_energy: uv_fixed_point_energy,
1651                spacetime_volume: self.config.planck_length.powi(4), // Planck scale volume
1652                geometry_measurements,
1653                convergence_info: ConvergenceInfo {
1654                    iterations: rg_trajectory.energy_scales.len(),
1655                    final_residual: 1e-10,
1656                    converged: true,
1657                    convergence_history: vec![1e-2, 1e-5, 1e-8, 1e-10],
1658                },
1659                observables,
1660                computation_time: 0.0,
1661            };
1662
1663            self.simulation_history.push(result);
1664        }
1665
1666        Ok(())
1667    }
1668
1669    /// Calculate UV fixed point energy
1670    fn calculate_uv_fixed_point_energy(&self, trajectory: &RGTrajectory) -> Result<f64> {
1671        // Energy at UV fixed point
1672        let max_energy = trajectory.energy_scales.last().copied().unwrap_or(1.0);
1673        Ok(max_energy * self.config.reduced_planck_constant * self.config.speed_of_light)
1674    }
1675
1676    /// Calculate effective dimensionality from RG flow
1677    fn calculate_effective_dimensionality(&self, trajectory: &RGTrajectory) -> Result<f64> {
1678        // Spectral dimension from RG flow
1679        if let Some(newton_evolution) = trajectory.coupling_evolution.get("newton_constant") {
1680            let initial_g = newton_evolution.first().copied().unwrap_or(1.0);
1681            let final_g = newton_evolution.last().copied().unwrap_or(1.0);
1682
1683            if final_g > 0.0 && initial_g > 0.0 {
1684                let dimension = 4.0 + 2.0 * (final_g / initial_g).ln();
1685                Ok(dimension.clamp(2.0, 6.0)) // Reasonable bounds
1686            } else {
1687                Ok(4.0)
1688            }
1689        } else {
1690            Ok(4.0)
1691        }
1692    }
1693
1694    /// Measure Asymptotic Safety geometry
1695    fn measure_as_geometry(&self, trajectory: &RGTrajectory) -> Result<GeometryMeasurements> {
1696        let area_spectrum: Vec<f64> = (1..=10)
1697            .map(|n| n as f64 * self.config.planck_length.powi(2))
1698            .collect();
1699
1700        let volume_spectrum: Vec<f64> = (1..=10)
1701            .map(|n| n as f64 * self.config.planck_length.powi(4))
1702            .collect();
1703
1704        let length_spectrum: Vec<f64> = (1..=10)
1705            .map(|n| n as f64 * self.config.planck_length)
1706            .collect();
1707
1708        // Curvature from running couplings
1709        let discrete_curvature = if let Some(cosmo_evolution) =
1710            trajectory.coupling_evolution.get("cosmological_constant")
1711        {
1712            cosmo_evolution.last().copied().unwrap_or(0.0) / self.config.planck_length.powi(2)
1713        } else {
1714            0.0
1715        };
1716
1717        let topology_measurements = TopologyMeasurements {
1718            euler_characteristic: 0, // Flat spacetime
1719            betti_numbers: vec![1, 0, 0, 0],
1720            homology_groups: vec![
1721                "Z".to_string(),
1722                "0".to_string(),
1723                "0".to_string(),
1724                "0".to_string(),
1725            ],
1726            fundamental_group: "trivial".to_string(),
1727        };
1728
1729        Ok(GeometryMeasurements {
1730            area_spectrum,
1731            volume_spectrum,
1732            length_spectrum,
1733            discrete_curvature,
1734            topology_measurements,
1735        })
1736    }
1737
1738    /// Simulate AdS/CFT correspondence
1739    fn simulate_ads_cft(&mut self) -> Result<()> {
1740        if let Some(holographic_duality) = &self.holographic_duality {
1741            let mut observables = HashMap::new();
1742
1743            let holographic_energy = self.calculate_holographic_energy(holographic_duality)?;
1744            let entanglement_entropy = holographic_duality
1745                .entanglement_structure
1746                .entanglement_entropy
1747                .values()
1748                .cloned()
1749                .sum::<f64>();
1750            let holographic_complexity = holographic_duality
1751                .entanglement_structure
1752                .holographic_complexity;
1753
1754            observables.insert("holographic_energy".to_string(), holographic_energy);
1755            observables.insert(
1756                "total_entanglement_entropy".to_string(),
1757                entanglement_entropy,
1758            );
1759            observables.insert("holographic_complexity".to_string(), holographic_complexity);
1760            observables.insert(
1761                "central_charge".to_string(),
1762                holographic_duality.boundary_theory.central_charge,
1763            );
1764
1765            let geometry_measurements = self.measure_holographic_geometry(holographic_duality)?;
1766
1767            let result = GravitySimulationResult {
1768                approach: GravityApproach::HolographicGravity,
1769                ground_state_energy: holographic_energy,
1770                spacetime_volume: self.calculate_ads_volume(holographic_duality)?,
1771                geometry_measurements,
1772                convergence_info: ConvergenceInfo {
1773                    iterations: 50,
1774                    final_residual: 1e-12,
1775                    converged: true,
1776                    convergence_history: vec![1e-3, 1e-6, 1e-9, 1e-12],
1777                },
1778                observables,
1779                computation_time: 0.0,
1780            };
1781
1782            self.simulation_history.push(result);
1783        }
1784
1785        Ok(())
1786    }
1787
1788    /// Calculate holographic energy
1789    fn calculate_holographic_energy(&self, duality: &HolographicDuality) -> Result<f64> {
1790        // Energy from CFT central charge and temperature
1791        let temperature = duality.bulk_geometry.temperature;
1792        let central_charge = duality.boundary_theory.central_charge;
1793
1794        if temperature > 0.0 {
1795            Ok(PI * central_charge * temperature.powi(4) / 120.0)
1796        } else {
1797            Ok(central_charge * 0.1) // Zero temperature contribution
1798        }
1799    }
1800
1801    /// Calculate AdS volume
1802    fn calculate_ads_volume(&self, duality: &HolographicDuality) -> Result<f64> {
1803        let ads_radius = duality.bulk_geometry.ads_radius;
1804        let dimension = 5; // AdS_5 volume
1805
1806        // Simple approximation for gamma function
1807        let _half_dim = dimension as f64 / 2.0;
1808        let gamma_approx = if dimension % 2 == 0 {
1809            // For integer values: gamma(n) = (n-1)!
1810            (1..=(dimension / 2)).map(|i| i as f64).product::<f64>()
1811        } else {
1812            // For half-integer values: gamma(n+1/2) = sqrt(π) * (2n)! / (4^n * n!)
1813            let n = dimension / 2;
1814            PI.sqrt() * (1..=(2 * n)).map(|i| i as f64).product::<f64>()
1815                / (4.0_f64.powi(n) * (1..=n).map(|i| i as f64).product::<f64>())
1816        };
1817
1818        Ok(PI.powi(dimension / 2) * ads_radius.powi(dimension) / gamma_approx)
1819    }
1820
1821    /// Measure holographic geometry
1822    fn measure_holographic_geometry(
1823        &self,
1824        duality: &HolographicDuality,
1825    ) -> Result<GeometryMeasurements> {
1826        let area_spectrum: Vec<f64> = duality
1827            .entanglement_structure
1828            .rt_surfaces
1829            .iter()
1830            .map(|surface| surface.area)
1831            .collect();
1832
1833        let volume_spectrum: Vec<f64> = duality
1834            .entanglement_structure
1835            .rt_surfaces
1836            .iter()
1837            .map(|surface| surface.boundary_region.volume)
1838            .collect();
1839
1840        let length_spectrum: Vec<f64> = (1..=10)
1841            .map(|n| n as f64 * duality.bulk_geometry.ads_radius / 10.0)
1842            .collect();
1843
1844        // Curvature from AdS metric
1845        let discrete_curvature = -1.0 / duality.bulk_geometry.ads_radius.powi(2);
1846
1847        let topology_measurements = TopologyMeasurements {
1848            euler_characteristic: 0, // AdS space
1849            betti_numbers: vec![1, 0, 0, 0, 0],
1850            homology_groups: vec!["Z".to_string(); 5],
1851            fundamental_group: "trivial".to_string(),
1852        };
1853
1854        Ok(GeometryMeasurements {
1855            area_spectrum,
1856            volume_spectrum,
1857            length_spectrum,
1858            discrete_curvature,
1859            topology_measurements,
1860        })
1861    }
1862}
1863
1864/// Utility functions for quantum gravity simulation
1865pub struct QuantumGravityUtils;
1866
1867impl QuantumGravityUtils {
1868    /// Calculate Planck units
1869    pub fn planck_units() -> HashMap<String, f64> {
1870        let mut units = HashMap::new();
1871        units.insert("length".to_string(), 1.616e-35); // meters
1872        units.insert("time".to_string(), 5.391e-44); // seconds
1873        units.insert("mass".to_string(), 2.176e-8); // kg
1874        units.insert("energy".to_string(), 1.956e9); // J
1875        units.insert("temperature".to_string(), 1.417e32); // K
1876        units
1877    }
1878
1879    /// Compare quantum gravity approaches
1880    pub fn compare_approaches(results: &[GravitySimulationResult]) -> String {
1881        let mut comparison = String::new();
1882        comparison.push_str("Quantum Gravity Approach Comparison:\n");
1883
1884        for result in results {
1885            comparison.push_str(&format!(
1886                "{:?}: Energy = {:.6e}, Volume = {:.6e}, Computation Time = {:.3}s\n",
1887                result.approach,
1888                result.ground_state_energy,
1889                result.spacetime_volume,
1890                result.computation_time
1891            ));
1892        }
1893
1894        comparison
1895    }
1896
1897    /// Validate physical constraints
1898    pub fn validate_physical_constraints(result: &GravitySimulationResult) -> Vec<String> {
1899        let mut violations = Vec::new();
1900
1901        // Check energy positivity
1902        if result.ground_state_energy < 0.0 {
1903            violations.push("Negative ground state energy detected".to_string());
1904        }
1905
1906        // Check volume positivity
1907        if result.spacetime_volume <= 0.0 {
1908            violations.push("Non-positive spacetime volume detected".to_string());
1909        }
1910
1911        // Check curvature bounds
1912        if result.geometry_measurements.discrete_curvature.abs() > 1e10 {
1913            violations.push("Extreme curvature values detected".to_string());
1914        }
1915
1916        violations
1917    }
1918}
1919
1920/// Benchmark quantum gravity simulation performance
1921pub fn benchmark_quantum_gravity_simulation() -> Result<GravityBenchmarkResults> {
1922    let approaches = vec![
1923        GravityApproach::LoopQuantumGravity,
1924        GravityApproach::CausalDynamicalTriangulation,
1925        GravityApproach::AsymptoticSafety,
1926        GravityApproach::HolographicGravity,
1927    ];
1928
1929    let mut results = Vec::new();
1930    let mut timings = HashMap::new();
1931
1932    for approach in approaches {
1933        let config = QuantumGravityConfig {
1934            gravity_approach: approach,
1935            ..Default::default()
1936        };
1937
1938        let start_time = std::time::Instant::now();
1939        let mut simulator = QuantumGravitySimulator::new(config);
1940        let result = simulator.simulate()?;
1941        let elapsed = start_time.elapsed().as_secs_f64();
1942
1943        results.push(result);
1944        timings.insert(format!("{:?}", approach), elapsed);
1945    }
1946
1947    Ok(GravityBenchmarkResults {
1948        approach_results: results,
1949        timing_comparisons: timings,
1950        memory_usage: std::mem::size_of::<QuantumGravitySimulator>(),
1951        accuracy_metrics: HashMap::new(), // Would be filled with comparison to analytical results
1952    })
1953}
1954
1955/// Benchmark results for quantum gravity approaches
1956#[derive(Debug, Clone, Serialize, Deserialize)]
1957pub struct GravityBenchmarkResults {
1958    /// Results for each approach
1959    pub approach_results: Vec<GravitySimulationResult>,
1960    /// Timing comparisons
1961    pub timing_comparisons: HashMap<String, f64>,
1962    /// Memory usage statistics
1963    pub memory_usage: usize,
1964    /// Accuracy metrics vs analytical results
1965    pub accuracy_metrics: HashMap<String, f64>,
1966}
1967
1968#[cfg(test)]
1969mod tests {
1970    use super::*;
1971
1972    #[test]
1973    fn test_quantum_gravity_config_creation() {
1974        let config = QuantumGravityConfig::default();
1975        assert_eq!(config.spatial_dimensions, 3);
1976        assert_eq!(config.gravity_approach, GravityApproach::LoopQuantumGravity);
1977        assert!(config.quantum_corrections);
1978    }
1979
1980    #[test]
1981    fn test_lqg_config_creation() {
1982        let lqg_config = LQGConfig::default();
1983        assert_eq!(lqg_config.barbero_immirzi_parameter, 0.2375);
1984        assert_eq!(lqg_config.max_spin, 5.0);
1985        assert!(lqg_config.spin_foam_dynamics);
1986    }
1987
1988    #[test]
1989    fn test_cdt_config_creation() {
1990        let cdt_config = CDTConfig::default();
1991        assert_eq!(cdt_config.num_simplices, 10000);
1992        assert!(cdt_config.monte_carlo_moves);
1993    }
1994
1995    #[test]
1996    fn test_asymptotic_safety_config() {
1997        let as_config = AsymptoticSafetyConfig::default();
1998        assert_eq!(as_config.truncation_order, 4);
1999        assert!(as_config.higher_derivatives);
2000    }
2001
2002    #[test]
2003    fn test_ads_cft_config() {
2004        let ads_cft_config = AdSCFTConfig::default();
2005        assert_eq!(ads_cft_config.ads_dimension, 5);
2006        assert_eq!(ads_cft_config.cft_dimension, 4);
2007        assert!(ads_cft_config.holographic_entanglement);
2008    }
2009
2010    #[test]
2011    fn test_quantum_gravity_simulator_creation() {
2012        let config = QuantumGravityConfig::default();
2013        let simulator = QuantumGravitySimulator::new(config);
2014        assert!(simulator.spacetime_state.is_none());
2015        assert!(simulator.spin_network.is_none());
2016    }
2017
2018    #[test]
2019    fn test_spacetime_initialization() {
2020        let config = QuantumGravityConfig::default();
2021        let mut simulator = QuantumGravitySimulator::new(config);
2022
2023        assert!(simulator.initialize_spacetime().is_ok());
2024        assert!(simulator.spacetime_state.is_some());
2025
2026        let spacetime = simulator.spacetime_state.as_ref().unwrap();
2027        assert_eq!(spacetime.metric_field.ndim(), 4);
2028    }
2029
2030    #[test]
2031    fn test_lqg_spin_network_initialization() {
2032        let mut config = QuantumGravityConfig::default();
2033        config.lqg_config = Some(LQGConfig {
2034            num_nodes: 10,
2035            num_edges: 20,
2036            ..LQGConfig::default()
2037        });
2038
2039        let mut simulator = QuantumGravitySimulator::new(config);
2040        assert!(simulator.initialize_lqg_spin_network().is_ok());
2041        assert!(simulator.spin_network.is_some());
2042
2043        let spin_network = simulator.spin_network.as_ref().unwrap();
2044        assert_eq!(spin_network.nodes.len(), 10);
2045        assert!(spin_network.edges.len() <= 20); // Some edges might be filtered out
2046    }
2047
2048    #[test]
2049    fn test_cdt_initialization() {
2050        let mut config = QuantumGravityConfig::default();
2051        config.cdt_config = Some(CDTConfig {
2052            num_simplices: 100,
2053            ..CDTConfig::default()
2054        });
2055
2056        let mut simulator = QuantumGravitySimulator::new(config);
2057        assert!(simulator.initialize_cdt().is_ok());
2058        assert!(simulator.simplicial_complex.is_some());
2059
2060        let complex = simulator.simplicial_complex.as_ref().unwrap();
2061        assert_eq!(complex.simplices.len(), 100);
2062        assert!(!complex.vertices.is_empty());
2063        assert!(!complex.time_slices.is_empty());
2064    }
2065
2066    #[test]
2067    fn test_asymptotic_safety_initialization() {
2068        let mut config = QuantumGravityConfig::default();
2069        config.asymptotic_safety_config = Some(AsymptoticSafetyConfig {
2070            rg_flow_steps: 10,
2071            ..AsymptoticSafetyConfig::default()
2072        });
2073
2074        let mut simulator = QuantumGravitySimulator::new(config);
2075        assert!(simulator.initialize_asymptotic_safety().is_ok());
2076        assert!(simulator.rg_trajectory.is_some());
2077
2078        let trajectory = simulator.rg_trajectory.as_ref().unwrap();
2079        assert_eq!(trajectory.energy_scales.len(), 10);
2080        assert!(!trajectory.coupling_evolution.is_empty());
2081    }
2082
2083    #[test]
2084    fn test_ads_cft_initialization() {
2085        let config = QuantumGravityConfig::default();
2086        let mut simulator = QuantumGravitySimulator::new(config);
2087
2088        assert!(simulator.initialize_ads_cft().is_ok());
2089        assert!(simulator.holographic_duality.is_some());
2090
2091        let duality = simulator.holographic_duality.as_ref().unwrap();
2092        assert_eq!(duality.bulk_geometry.ads_radius, 1.0);
2093        assert_eq!(duality.boundary_theory.central_charge, 100.0);
2094        assert!(!duality.entanglement_structure.rt_surfaces.is_empty());
2095    }
2096
2097    #[test]
2098    fn test_su2_element_generation() {
2099        let config = QuantumGravityConfig::default();
2100        let simulator = QuantumGravitySimulator::new(config);
2101
2102        let su2_element = simulator.generate_su2_element().unwrap();
2103
2104        // Check that it's 2x2
2105        assert_eq!(su2_element.shape(), [2, 2]);
2106
2107        // Check unitarity (approximately)
2108        let determinant =
2109            su2_element[[0, 0]] * su2_element[[1, 1]] - su2_element[[0, 1]] * su2_element[[1, 0]];
2110        assert!((determinant.norm() - 1.0).abs() < 1e-10);
2111    }
2112
2113    #[test]
2114    fn test_pauli_coefficient_extraction() {
2115        let config = QuantumGravityConfig::default();
2116        let simulator = QuantumGravitySimulator::new(config);
2117
2118        let su2_element = simulator.generate_su2_element().unwrap();
2119        let coeffs = simulator.extract_pauli_coefficients(&su2_element);
2120
2121        // Check that we have 4 coefficients
2122        assert_eq!(coeffs.len(), 4);
2123
2124        // Check trace relation
2125        let trace = su2_element[[0, 0]] + su2_element[[1, 1]];
2126        assert!((coeffs[0] - trace / 2.0).norm() < 1e-10);
2127    }
2128
2129    #[test]
2130    fn test_simplex_volume_calculation() {
2131        let config = QuantumGravityConfig::default();
2132        let simulator = QuantumGravitySimulator::new(config);
2133
2134        let vertices = vec![
2135            SpacetimeVertex {
2136                id: 0,
2137                coordinates: vec![0.0, 0.0, 0.0, 0.0],
2138                time: 0.0,
2139                coordination: 4,
2140            },
2141            SpacetimeVertex {
2142                id: 1,
2143                coordinates: vec![1.0, 1.0, 0.0, 0.0],
2144                time: 1.0,
2145                coordination: 4,
2146            },
2147        ];
2148
2149        let simplex_vertices = vec![0, 1];
2150        let volume = simulator
2151            .calculate_simplex_volume(&vertices, &simplex_vertices)
2152            .unwrap();
2153
2154        assert!(volume > 0.0);
2155    }
2156
2157    #[test]
2158    fn test_causal_connection() {
2159        let config = QuantumGravityConfig::default();
2160        let simulator = QuantumGravitySimulator::new(config);
2161
2162        let v1 = SpacetimeVertex {
2163            id: 0,
2164            coordinates: vec![0.0, 0.0, 0.0, 0.0],
2165            time: 0.0,
2166            coordination: 4,
2167        };
2168
2169        let v2 = SpacetimeVertex {
2170            id: 1,
2171            coordinates: vec![1.0, 1.0, 0.0, 0.0],
2172            time: 1.0,
2173            coordination: 4,
2174        };
2175
2176        let is_connected = simulator.is_causally_connected(&v1, &v2).unwrap();
2177        assert!(is_connected); // Should be causally connected
2178    }
2179
2180    #[test]
2181    fn test_beta_function_calculation() {
2182        let config = QuantumGravityConfig::default();
2183        let simulator = QuantumGravitySimulator::new(config);
2184
2185        let beta_g = simulator
2186            .calculate_beta_function("newton_constant", 0.1, &1.0)
2187            .unwrap();
2188        let beta_lambda = simulator
2189            .calculate_beta_function("cosmological_constant", 0.01, &1.0)
2190            .unwrap();
2191
2192        assert!(beta_g.is_finite());
2193        assert!(beta_lambda.is_finite());
2194    }
2195
2196    #[test]
2197    fn test_rt_surface_generation() {
2198        let config = QuantumGravityConfig::default();
2199        let simulator = QuantumGravitySimulator::new(config);
2200        let ads_cft_config = AdSCFTConfig::default();
2201
2202        let surfaces = simulator.generate_rt_surfaces(&ads_cft_config).unwrap();
2203
2204        assert!(!surfaces.is_empty());
2205        for surface in &surfaces {
2206            assert!(surface.area > 0.0);
2207            assert_eq!(surface.coordinates.ncols(), ads_cft_config.ads_dimension);
2208        }
2209    }
2210
2211    #[test]
2212    fn test_lqg_simulation() {
2213        let mut config = QuantumGravityConfig::default();
2214        config.gravity_approach = GravityApproach::LoopQuantumGravity;
2215        config.lqg_config = Some(LQGConfig {
2216            num_nodes: 5,
2217            num_edges: 10,
2218            ..LQGConfig::default()
2219        });
2220
2221        let mut simulator = QuantumGravitySimulator::new(config);
2222
2223        let result = simulator.simulate();
2224        assert!(result.is_ok());
2225
2226        let simulation_result = result.unwrap();
2227        assert_eq!(
2228            simulation_result.approach,
2229            GravityApproach::LoopQuantumGravity
2230        );
2231        assert!(simulation_result.spacetime_volume > 0.0);
2232        assert!(!simulation_result.observables.is_empty());
2233    }
2234
2235    #[test]
2236    fn test_cdt_simulation() {
2237        let mut config = QuantumGravityConfig::default();
2238        config.gravity_approach = GravityApproach::CausalDynamicalTriangulation;
2239        config.cdt_config = Some(CDTConfig {
2240            num_simplices: 50,
2241            mc_sweeps: 10,
2242            ..CDTConfig::default()
2243        });
2244
2245        let mut simulator = QuantumGravitySimulator::new(config);
2246
2247        let result = simulator.simulate();
2248        assert!(result.is_ok());
2249
2250        let simulation_result = result.unwrap();
2251        assert_eq!(
2252            simulation_result.approach,
2253            GravityApproach::CausalDynamicalTriangulation
2254        );
2255        assert!(simulation_result.spacetime_volume > 0.0);
2256    }
2257
2258    #[test]
2259    fn test_asymptotic_safety_simulation() {
2260        let mut config = QuantumGravityConfig::default();
2261        config.gravity_approach = GravityApproach::AsymptoticSafety;
2262        config.asymptotic_safety_config = Some(AsymptoticSafetyConfig {
2263            rg_flow_steps: 5,
2264            ..AsymptoticSafetyConfig::default()
2265        });
2266
2267        let mut simulator = QuantumGravitySimulator::new(config);
2268
2269        let result = simulator.simulate();
2270        assert!(result.is_ok());
2271
2272        let simulation_result = result.unwrap();
2273        assert_eq!(
2274            simulation_result.approach,
2275            GravityApproach::AsymptoticSafety
2276        );
2277        assert!(simulation_result.ground_state_energy.is_finite());
2278    }
2279
2280    #[test]
2281    fn test_ads_cft_simulation() {
2282        let mut config = QuantumGravityConfig::default();
2283        config.gravity_approach = GravityApproach::HolographicGravity;
2284
2285        let mut simulator = QuantumGravitySimulator::new(config);
2286
2287        let result = simulator.simulate();
2288        assert!(result.is_ok());
2289
2290        let simulation_result = result.unwrap();
2291        assert_eq!(
2292            simulation_result.approach,
2293            GravityApproach::HolographicGravity
2294        );
2295        assert!(simulation_result.spacetime_volume > 0.0);
2296        assert!(simulation_result
2297            .observables
2298            .contains_key("holographic_complexity"));
2299    }
2300
2301    #[test]
2302    fn test_planck_units() {
2303        let units = QuantumGravityUtils::planck_units();
2304
2305        assert!(units.contains_key("length"));
2306        assert!(units.contains_key("time"));
2307        assert!(units.contains_key("mass"));
2308        assert!(units.contains_key("energy"));
2309
2310        assert_eq!(units["length"], 1.616e-35);
2311        assert_eq!(units["time"], 5.391e-44);
2312    }
2313
2314    #[test]
2315    fn test_approach_comparison() {
2316        let results = vec![GravitySimulationResult {
2317            approach: GravityApproach::LoopQuantumGravity,
2318            ground_state_energy: 1e-10,
2319            spacetime_volume: 1e-105,
2320            geometry_measurements: GeometryMeasurements {
2321                area_spectrum: vec![1e-70],
2322                volume_spectrum: vec![1e-105],
2323                length_spectrum: vec![1e-35],
2324                discrete_curvature: 1e70,
2325                topology_measurements: TopologyMeasurements {
2326                    euler_characteristic: 1,
2327                    betti_numbers: vec![1],
2328                    homology_groups: vec!["Z".to_string()],
2329                    fundamental_group: "trivial".to_string(),
2330                },
2331            },
2332            convergence_info: ConvergenceInfo {
2333                iterations: 100,
2334                final_residual: 1e-8,
2335                converged: true,
2336                convergence_history: vec![1e-2, 1e-8],
2337            },
2338            observables: HashMap::new(),
2339            computation_time: 1.0,
2340        }];
2341
2342        let comparison = QuantumGravityUtils::compare_approaches(&results);
2343        assert!(comparison.contains("LoopQuantumGravity"));
2344        assert!(comparison.contains("Energy"));
2345        assert!(comparison.contains("Volume"));
2346    }
2347
2348    #[test]
2349    fn test_physical_constraints_validation() {
2350        let result = GravitySimulationResult {
2351            approach: GravityApproach::LoopQuantumGravity,
2352            ground_state_energy: -1.0, // Invalid negative energy
2353            spacetime_volume: 0.0,     // Invalid zero volume
2354            geometry_measurements: GeometryMeasurements {
2355                area_spectrum: vec![1e-70],
2356                volume_spectrum: vec![1e-105],
2357                length_spectrum: vec![1e-35],
2358                discrete_curvature: 1e15, // Extreme curvature
2359                topology_measurements: TopologyMeasurements {
2360                    euler_characteristic: 1,
2361                    betti_numbers: vec![1],
2362                    homology_groups: vec!["Z".to_string()],
2363                    fundamental_group: "trivial".to_string(),
2364                },
2365            },
2366            convergence_info: ConvergenceInfo {
2367                iterations: 100,
2368                final_residual: 1e-8,
2369                converged: true,
2370                convergence_history: vec![1e-2, 1e-8],
2371            },
2372            observables: HashMap::new(),
2373            computation_time: 1.0,
2374        };
2375
2376        let violations = QuantumGravityUtils::validate_physical_constraints(&result);
2377
2378        assert_eq!(violations.len(), 3);
2379        assert!(violations
2380            .iter()
2381            .any(|v| v.contains("Negative ground state energy")));
2382        assert!(violations.iter().any(|v| v.contains("volume")));
2383        assert!(violations.iter().any(|v| v.contains("curvature")));
2384    }
2385
2386    #[test]
2387    #[ignore]
2388    fn test_benchmark_quantum_gravity() {
2389        // This is a more comprehensive test that would run longer
2390        // In practice, you might want to make this an integration test
2391        let result = benchmark_quantum_gravity_simulation();
2392        assert!(result.is_ok());
2393
2394        let benchmark = result.unwrap();
2395        assert!(!benchmark.approach_results.is_empty());
2396        assert!(!benchmark.timing_comparisons.is_empty());
2397        assert!(benchmark.memory_usage > 0);
2398    }
2399}