quantrs2_sim/qml/
benchmarks.rs

1//! Benchmarking functions for quantum machine learning algorithms.
2//!
3//! This module provides performance benchmarking capabilities for different
4//! QML algorithms across various hardware architectures.
5
6use scirs2_core::ndarray::Array1;
7use std::collections::HashMap;
8
9use super::circuit::ParameterizedQuantumCircuit;
10use super::config::{HardwareArchitecture, QMLAlgorithmType, QMLConfig};
11use super::trainer::QuantumMLTrainer;
12use crate::circuit_interfaces::InterfaceCircuit;
13use crate::error::Result;
14
15/// Benchmark quantum ML algorithms across different configurations
16pub fn benchmark_quantum_ml_algorithms() -> Result<HashMap<String, f64>> {
17    let mut results = HashMap::new();
18
19    // Test different QML algorithms
20    let algorithms = vec![
21        QMLAlgorithmType::VQE,
22        QMLAlgorithmType::QAOA,
23        QMLAlgorithmType::QCNN,
24        QMLAlgorithmType::QSVM,
25    ];
26
27    let hardware_archs = vec![
28        HardwareArchitecture::NISQ,
29        HardwareArchitecture::Superconducting,
30        HardwareArchitecture::TrappedIon,
31    ];
32
33    for &algorithm in &algorithms {
34        for &hardware in &hardware_archs {
35            let benchmark_time = benchmark_algorithm_hardware_combination(algorithm, hardware)?;
36            results.insert(format!("{:?}_{:?}", algorithm, hardware), benchmark_time);
37        }
38    }
39
40    Ok(results)
41}
42
43/// Benchmark a specific algorithm-hardware combination
44fn benchmark_algorithm_hardware_combination(
45    algorithm: QMLAlgorithmType,
46    hardware: HardwareArchitecture,
47) -> Result<f64> {
48    let start = std::time::Instant::now();
49
50    let config = QMLConfig {
51        algorithm_type: algorithm,
52        hardware_architecture: hardware,
53        num_qubits: 4,
54        circuit_depth: 2,
55        num_parameters: 8,
56        max_epochs: 5,
57        batch_size: 4,
58        ..Default::default()
59    };
60
61    // Create a simple parameterized circuit
62    let circuit = create_test_circuit(config.num_qubits)?;
63    let parameters = Array1::from_vec(vec![0.1; config.num_parameters]);
64    let parameter_names = (0..config.num_parameters)
65        .map(|i| format!("param_{}", i))
66        .collect();
67
68    let pqc = ParameterizedQuantumCircuit::new(circuit, parameters, parameter_names, hardware);
69
70    let mut trainer = QuantumMLTrainer::new(config, pqc, None)?;
71
72    // Simple quadratic loss function for testing
73    let loss_fn = |params: &Array1<f64>| -> Result<f64> {
74        // Simple quadratic loss: sum of squared parameters
75        Ok(params.iter().map(|&x| x * x).sum::<f64>())
76    };
77
78    let _result = trainer.train(loss_fn)?;
79
80    Ok(start.elapsed().as_secs_f64() * 1000.0)
81}
82
83/// Create a test circuit for benchmarking
84fn create_test_circuit(num_qubits: usize) -> Result<InterfaceCircuit> {
85    // Create a simple test circuit
86    // In practice, this would create a proper parameterized circuit
87    let circuit = InterfaceCircuit::new(num_qubits, 0);
88    Ok(circuit)
89}
90
91/// Benchmark gradient computation methods
92pub fn benchmark_gradient_methods() -> Result<HashMap<String, f64>> {
93    let mut results = HashMap::new();
94
95    let methods = vec![
96        "parameter_shift",
97        "finite_differences",
98        "automatic_differentiation",
99        "natural_gradients",
100    ];
101
102    for method in methods {
103        let benchmark_time = benchmark_gradient_method(method)?;
104        results.insert(method.to_string(), benchmark_time);
105    }
106
107    Ok(results)
108}
109
110/// Benchmark a specific gradient computation method
111fn benchmark_gradient_method(method: &str) -> Result<f64> {
112    let start = std::time::Instant::now();
113
114    // Create a simple function to differentiate
115    let test_function = |params: &Array1<f64>| -> Result<f64> {
116        Ok(params
117            .iter()
118            .enumerate()
119            .map(|(i, &x)| (i as f64 + 1.0) * x * x)
120            .sum::<f64>())
121    };
122
123    let test_params = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
124
125    // Simulate gradient computation
126    match method {
127        "parameter_shift" => {
128            compute_parameter_shift_gradient(&test_function, &test_params)?;
129        }
130        "finite_differences" => {
131            compute_finite_difference_gradient(&test_function, &test_params)?;
132        }
133        "automatic_differentiation" => {
134            compute_autodiff_gradient(&test_function, &test_params)?;
135        }
136        "natural_gradients" => {
137            compute_natural_gradient(&test_function, &test_params)?;
138        }
139        _ => {
140            return Err(crate::error::SimulatorError::InvalidInput(format!(
141                "Unknown gradient method: {}",
142                method
143            )))
144        }
145    }
146
147    Ok(start.elapsed().as_secs_f64() * 1000.0)
148}
149
150/// Compute parameter shift gradient (simplified implementation)
151fn compute_parameter_shift_gradient<F>(
152    function: &F,
153    parameters: &Array1<f64>,
154) -> Result<Array1<f64>>
155where
156    F: Fn(&Array1<f64>) -> Result<f64>,
157{
158    let num_params = parameters.len();
159    let mut gradient = Array1::zeros(num_params);
160    let shift = std::f64::consts::PI / 2.0;
161
162    for i in 0..num_params {
163        let mut params_plus = parameters.clone();
164        let mut params_minus = parameters.clone();
165
166        params_plus[i] += shift;
167        params_minus[i] -= shift;
168
169        let loss_plus = function(&params_plus)?;
170        let loss_minus = function(&params_minus)?;
171
172        gradient[i] = (loss_plus - loss_minus) / 2.0;
173    }
174
175    Ok(gradient)
176}
177
178/// Compute finite difference gradient
179fn compute_finite_difference_gradient<F>(
180    function: &F,
181    parameters: &Array1<f64>,
182) -> Result<Array1<f64>>
183where
184    F: Fn(&Array1<f64>) -> Result<f64>,
185{
186    let num_params = parameters.len();
187    let mut gradient = Array1::zeros(num_params);
188    let eps = 1e-8;
189
190    for i in 0..num_params {
191        let mut params_plus = parameters.clone();
192        params_plus[i] += eps;
193
194        let loss_plus = function(&params_plus)?;
195        let loss_current = function(parameters)?;
196
197        gradient[i] = (loss_plus - loss_current) / eps;
198    }
199
200    Ok(gradient)
201}
202
203/// Compute autodiff gradient (placeholder)
204fn compute_autodiff_gradient<F>(function: &F, parameters: &Array1<f64>) -> Result<Array1<f64>>
205where
206    F: Fn(&Array1<f64>) -> Result<f64>,
207{
208    // For simplicity, use parameter shift
209    compute_parameter_shift_gradient(function, parameters)
210}
211
212/// Compute natural gradient (placeholder)
213fn compute_natural_gradient<F>(function: &F, parameters: &Array1<f64>) -> Result<Array1<f64>>
214where
215    F: Fn(&Array1<f64>) -> Result<f64>,
216{
217    // For simplicity, use parameter shift
218    compute_parameter_shift_gradient(function, parameters)
219}
220
221/// Benchmark optimizer performance
222pub fn benchmark_optimizers() -> Result<HashMap<String, f64>> {
223    let mut results = HashMap::new();
224
225    let optimizers = vec!["adam", "sgd", "rmsprop", "lbfgs"];
226
227    for optimizer in optimizers {
228        let benchmark_time = benchmark_optimizer(optimizer)?;
229        results.insert(optimizer.to_string(), benchmark_time);
230    }
231
232    Ok(results)
233}
234
235/// Benchmark a specific optimizer
236fn benchmark_optimizer(optimizer: &str) -> Result<f64> {
237    let start = std::time::Instant::now();
238
239    // Simulate optimizer performance on a simple quadratic function
240    let mut params = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
241    let target = Array1::<f64>::zeros(4);
242
243    for _iteration in 0..100 {
244        // Compute gradient
245        let gradient = &params - &target;
246
247        // Apply optimizer update (simplified)
248        match optimizer {
249            "adam" => {
250                // Simplified Adam update
251                params = &params - 0.01 * &gradient;
252            }
253            "sgd" => {
254                params = &params - 0.01 * &gradient;
255            }
256            "rmsprop" => {
257                // Simplified RMSprop update
258                params = &params - 0.01 * &gradient;
259            }
260            "lbfgs" => {
261                // Simplified L-BFGS update
262                params = &params - 0.01 * &gradient;
263            }
264            _ => {
265                return Err(crate::error::SimulatorError::InvalidInput(format!(
266                    "Unknown optimizer: {}",
267                    optimizer
268                )))
269            }
270        }
271    }
272
273    Ok(start.elapsed().as_secs_f64() * 1000.0)
274}
275
276/// Run comprehensive benchmarks
277pub fn run_comprehensive_benchmarks() -> Result<HashMap<String, HashMap<String, f64>>> {
278    let mut all_results = HashMap::new();
279
280    all_results.insert("algorithms".to_string(), benchmark_quantum_ml_algorithms()?);
281    all_results.insert("gradients".to_string(), benchmark_gradient_methods()?);
282    all_results.insert("optimizers".to_string(), benchmark_optimizers()?);
283
284    Ok(all_results)
285}