quantrs2_sim/
performance_prediction.rs

1//! Performance Prediction Models for Circuit Execution Time Estimation
2//!
3//! This module provides sophisticated models for predicting quantum circuit
4//! execution times across different simulation backends using SciRS2 analysis
5//! tools and machine learning techniques.
6
7use crate::{
8    auto_optimizer::{AnalysisDepth, BackendType, CircuitCharacteristics},
9    error::{Result, SimulatorError},
10    scirs2_integration::{Matrix, SciRS2Backend, Vector},
11};
12use scirs2_core::Complex64;
13use quantrs2_circuit::builder::Circuit;
14use quantrs2_core::{
15    error::{QuantRS2Error, QuantRS2Result},
16    gate::GateOp,
17    qubit::QubitId,
18};
19use serde::{Deserialize, Serialize};
20use std::collections::{HashMap, VecDeque};
21use std::time::{Duration, Instant};
22
23/// Configuration for performance prediction models
24#[derive(Debug, Clone, Serialize, Deserialize)]
25pub struct PerformancePredictionConfig {
26    /// Enable machine learning-based predictions
27    pub enable_ml_prediction: bool,
28    /// Maximum historical data points to maintain
29    pub max_history_size: usize,
30    /// Confidence threshold for predictions (0.0 to 1.0)
31    pub confidence_threshold: f64,
32    /// Enable hardware profiling for adaptive predictions
33    pub enable_hardware_profiling: bool,
34    /// SciRS2 analysis depth for complexity estimation
35    pub analysis_depth: AnalysisDepth,
36    /// Prediction strategy to use
37    pub prediction_strategy: PredictionStrategy,
38    /// Learning rate for adaptive models
39    pub learning_rate: f64,
40    /// Enable cross-backend performance transfer learning
41    pub enable_transfer_learning: bool,
42    /// Minimum samples required before using ML predictions
43    pub min_samples_for_ml: usize,
44}
45
46impl Default for PerformancePredictionConfig {
47    fn default() -> Self {
48        Self {
49            enable_ml_prediction: true,
50            max_history_size: 10000,
51            confidence_threshold: 0.8,
52            enable_hardware_profiling: true,
53            analysis_depth: AnalysisDepth::Deep,
54            prediction_strategy: PredictionStrategy::Hybrid,
55            learning_rate: 0.01,
56            enable_transfer_learning: true,
57            min_samples_for_ml: 100,
58        }
59    }
60}
61
62/// Prediction strategy for execution time estimation
63#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
64pub enum PredictionStrategy {
65    /// Static analysis only
66    StaticAnalysis,
67    /// Machine learning only
68    MachineLearning,
69    /// Hybrid approach (static + ML)
70    Hybrid,
71    /// Ensemble of multiple models
72    Ensemble,
73}
74
75/// Performance prediction model types
76#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
77pub enum ModelType {
78    /// Linear regression model
79    LinearRegression,
80    /// Polynomial regression model
81    PolynomialRegression,
82    /// Neural network model
83    NeuralNetwork,
84    /// Support vector regression
85    SupportVectorRegression,
86    /// Random forest model
87    RandomForest,
88    /// Gradient boosting model
89    GradientBoosting,
90}
91
92/// Circuit complexity metrics for prediction
93#[derive(Debug, Clone, Serialize, Deserialize)]
94pub struct ComplexityMetrics {
95    /// Total number of gates
96    pub gate_count: usize,
97    /// Circuit depth (critical path length)
98    pub circuit_depth: usize,
99    /// Number of qubits
100    pub qubit_count: usize,
101    /// Number of two-qubit gates
102    pub two_qubit_gate_count: usize,
103    /// Estimated memory requirement (bytes)
104    pub memory_requirement: usize,
105    /// Parallelism potential (0.0 to 1.0)
106    pub parallelism_factor: f64,
107    /// Entanglement complexity measure
108    pub entanglement_complexity: f64,
109    /// Gate type distribution
110    pub gate_type_distribution: HashMap<String, usize>,
111    /// Critical path analysis
112    pub critical_path_complexity: f64,
113    /// Resource estimation
114    pub resource_estimation: ResourceMetrics,
115}
116
117impl Default for ComplexityMetrics {
118    fn default() -> Self {
119        Self {
120            gate_count: 0,
121            circuit_depth: 0,
122            qubit_count: 0,
123            two_qubit_gate_count: 0,
124            memory_requirement: 0,
125            parallelism_factor: 0.0,
126            entanglement_complexity: 0.0,
127            gate_type_distribution: HashMap::new(),
128            critical_path_complexity: 0.0,
129            resource_estimation: ResourceMetrics::default(),
130        }
131    }
132}
133
134/// Resource requirements metrics
135#[derive(Debug, Clone, Serialize, Deserialize)]
136pub struct ResourceMetrics {
137    /// Estimated CPU time (seconds)
138    pub cpu_time_estimate: f64,
139    /// Estimated memory usage (bytes)
140    pub memory_usage_estimate: usize,
141    /// Estimated I/O operations
142    pub io_operations_estimate: usize,
143    /// Network bandwidth requirement (bytes/sec)
144    pub network_bandwidth_estimate: usize,
145    /// GPU memory requirement (bytes)
146    pub gpu_memory_estimate: usize,
147    /// Parallel thread requirement
148    pub thread_requirement: usize,
149}
150
151/// Historical execution data point
152#[derive(Debug, Clone, Serialize)]
153pub struct ExecutionDataPoint {
154    /// Circuit complexity metrics
155    pub complexity: ComplexityMetrics,
156    /// Backend used for execution
157    pub backend_type: BackendType,
158    /// Actual execution time
159    pub execution_time: Duration,
160    /// Hardware specifications during execution
161    pub hardware_specs: PerformanceHardwareSpecs,
162    /// Timestamp of execution
163    #[serde(skip_serializing, skip_deserializing)]
164    pub timestamp: std::time::SystemTime,
165    /// Success flag
166    pub success: bool,
167    /// Error information if failed
168    pub error_info: Option<String>,
169}
170
171impl Default for ExecutionDataPoint {
172    fn default() -> Self {
173        Self {
174            complexity: ComplexityMetrics::default(),
175            backend_type: BackendType::StateVector,
176            execution_time: Duration::from_secs(0),
177            hardware_specs: PerformanceHardwareSpecs::default(),
178            timestamp: std::time::SystemTime::now(),
179            success: false,
180            error_info: None,
181        }
182    }
183}
184
185/// Hardware specifications for context
186#[derive(Debug, Clone, Serialize, Deserialize)]
187pub struct PerformanceHardwareSpecs {
188    /// CPU cores available
189    pub cpu_cores: usize,
190    /// Total system memory (bytes)
191    pub total_memory: usize,
192    /// Available memory at execution time (bytes)
193    pub available_memory: usize,
194    /// GPU memory (bytes, if available)
195    pub gpu_memory: Option<usize>,
196    /// CPU frequency (MHz)
197    pub cpu_frequency: f64,
198    /// Network bandwidth (Mbps, for distributed)
199    pub network_bandwidth: Option<f64>,
200    /// System load average
201    pub load_average: f64,
202}
203
204impl Default for PerformanceHardwareSpecs {
205    fn default() -> Self {
206        Self {
207            cpu_cores: 1,
208            total_memory: 1024 * 1024 * 1024,    // 1GB
209            available_memory: 512 * 1024 * 1024, // 512MB
210            gpu_memory: None,
211            cpu_frequency: 2000.0, // 2GHz
212            network_bandwidth: None,
213            load_average: 0.0,
214        }
215    }
216}
217
218/// Prediction result with confidence metrics
219#[derive(Debug, Clone, Serialize, Deserialize)]
220pub struct PredictionResult {
221    /// Predicted execution time
222    pub predicted_time: Duration,
223    /// Confidence in prediction (0.0 to 1.0)
224    pub confidence: f64,
225    /// Prediction interval (lower bound, upper bound)
226    pub prediction_interval: (Duration, Duration),
227    /// Model used for prediction
228    pub model_type: ModelType,
229    /// Feature importance scores
230    pub feature_importance: HashMap<String, f64>,
231    /// Prediction metadata
232    pub metadata: PredictionMetadata,
233}
234
235/// Metadata about the prediction process
236#[derive(Debug, Clone, Serialize, Deserialize)]
237pub struct PredictionMetadata {
238    /// Time taken to generate prediction
239    pub prediction_time: Duration,
240    /// Number of historical samples used
241    pub samples_used: usize,
242    /// Model training status
243    pub model_trained: bool,
244    /// Cross-validation score (if available)
245    pub cv_score: Option<f64>,
246    /// Prediction method used
247    pub prediction_method: String,
248}
249
250/// Performance prediction engine
251pub struct PerformancePredictionEngine {
252    /// Configuration
253    config: PerformancePredictionConfig,
254    /// Historical execution data
255    execution_history: VecDeque<ExecutionDataPoint>,
256    /// Trained models for different backends
257    trained_models: HashMap<BackendType, TrainedModel>,
258    /// SciRS2 backend for analysis
259    scirs2_backend: SciRS2Backend,
260    /// Current hardware specifications
261    current_hardware: PerformanceHardwareSpecs,
262    /// Performance statistics
263    prediction_stats: PredictionStatistics,
264}
265
266/// Trained machine learning model
267#[derive(Debug, Clone, Serialize)]
268pub struct TrainedModel {
269    /// Model type
270    pub model_type: ModelType,
271    /// Model parameters (simplified representation)
272    pub parameters: Vec<f64>,
273    /// Feature weights
274    pub feature_weights: HashMap<String, f64>,
275    /// Training statistics
276    pub training_stats: TrainingStatistics,
277    /// Last training time
278    #[serde(skip_serializing, skip_deserializing)]
279    pub last_trained: std::time::SystemTime,
280}
281
282impl Default for TrainedModel {
283    fn default() -> Self {
284        Self {
285            model_type: ModelType::LinearRegression,
286            parameters: Vec::new(),
287            feature_weights: HashMap::new(),
288            training_stats: TrainingStatistics::default(),
289            last_trained: std::time::SystemTime::now(),
290        }
291    }
292}
293
294/// Training statistics for models
295#[derive(Debug, Clone, Serialize, Deserialize)]
296pub struct TrainingStatistics {
297    /// Training samples used
298    pub training_samples: usize,
299    /// Training accuracy (R²)
300    pub training_accuracy: f64,
301    /// Validation accuracy
302    pub validation_accuracy: f64,
303    /// Mean absolute error
304    pub mean_absolute_error: f64,
305    /// Root mean square error
306    pub root_mean_square_error: f64,
307    /// Training time
308    pub training_time: Duration,
309}
310
311impl Default for TrainingStatistics {
312    fn default() -> Self {
313        Self {
314            training_samples: 0,
315            training_accuracy: 0.0,
316            validation_accuracy: 0.0,
317            mean_absolute_error: 0.0,
318            root_mean_square_error: 0.0,
319            training_time: Duration::from_secs(0),
320        }
321    }
322}
323
324/// Overall prediction engine statistics
325#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct PredictionStatistics {
327    /// Total predictions made
328    pub total_predictions: usize,
329    /// Successful predictions
330    pub successful_predictions: usize,
331    /// Average prediction accuracy
332    pub average_accuracy: f64,
333    /// Prediction time statistics
334    pub prediction_time_stats: PerformanceTimingStatistics,
335    /// Model update frequency
336    pub model_updates: usize,
337    /// Cache hit rate
338    pub cache_hit_rate: f64,
339}
340
341/// Timing statistics
342#[derive(Debug, Clone, Serialize, Deserialize)]
343pub struct PerformanceTimingStatistics {
344    /// Average time
345    pub average: Duration,
346    /// Minimum time
347    pub minimum: Duration,
348    /// Maximum time
349    pub maximum: Duration,
350    /// Standard deviation
351    pub std_deviation: Duration,
352}
353
354impl PerformancePredictionEngine {
355    /// Create new performance prediction engine
356    pub fn new(config: PerformancePredictionConfig) -> Result<Self> {
357        let current_hardware = Self::detect_hardware_specs()?;
358
359        Ok(Self {
360            config,
361            execution_history: VecDeque::with_capacity(10000),
362            trained_models: HashMap::new(),
363            scirs2_backend: SciRS2Backend::new(),
364            current_hardware,
365            prediction_stats: PredictionStatistics::default(),
366        })
367    }
368
369    /// Predict execution time for a circuit on a specific backend
370    pub fn predict_execution_time<const N: usize>(
371        &mut self,
372        circuit: &Circuit<N>,
373        backend_type: BackendType,
374    ) -> Result<PredictionResult> {
375        let start_time = Instant::now();
376
377        // Analyze circuit complexity using SciRS2
378        let complexity = self.analyze_circuit_complexity(circuit)?;
379
380        // Get prediction based on strategy
381        let prediction = match self.config.prediction_strategy {
382            PredictionStrategy::StaticAnalysis => {
383                self.predict_with_static_analysis(&complexity, backend_type)?
384            }
385            PredictionStrategy::MachineLearning => {
386                self.predict_with_ml(&complexity, backend_type)?
387            }
388            PredictionStrategy::Hybrid => self.predict_with_hybrid(&complexity, backend_type)?,
389            PredictionStrategy::Ensemble => {
390                self.predict_with_ensemble(&complexity, backend_type)?
391            }
392        };
393
394        // Update statistics
395        self.prediction_stats.total_predictions += 1;
396        let prediction_time = start_time.elapsed();
397        self.update_timing_stats(prediction_time);
398
399        Ok(prediction)
400    }
401
402    /// Analyze circuit complexity using SciRS2 tools
403    fn analyze_circuit_complexity<const N: usize>(
404        &mut self,
405        circuit: &Circuit<N>,
406    ) -> Result<ComplexityMetrics> {
407        let gate_count = circuit.num_gates();
408        let qubit_count = N;
409
410        // Basic complexity analysis
411        let circuit_depth = self.calculate_circuit_depth(circuit)?;
412        let two_qubit_gate_count = self.count_two_qubit_gates(circuit)?;
413        let memory_requirement = self.estimate_memory_requirement(qubit_count);
414
415        // Advanced analysis using SciRS2
416        let parallelism_factor = self.analyze_parallelism_potential(circuit)?;
417        let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
418        let gate_type_distribution = self.analyze_gate_distribution(circuit)?;
419        let critical_path_complexity = self.analyze_critical_path(circuit)?;
420
421        // Resource estimation
422        let resource_estimation = self.estimate_resources(&ComplexityMetrics {
423            gate_count,
424            circuit_depth,
425            qubit_count,
426            two_qubit_gate_count,
427            memory_requirement,
428            parallelism_factor,
429            entanglement_complexity,
430            gate_type_distribution: gate_type_distribution.clone(),
431            critical_path_complexity,
432            resource_estimation: ResourceMetrics::default(), // Will be filled
433        })?;
434
435        Ok(ComplexityMetrics {
436            gate_count,
437            circuit_depth,
438            qubit_count,
439            two_qubit_gate_count,
440            memory_requirement,
441            parallelism_factor,
442            entanglement_complexity,
443            gate_type_distribution,
444            critical_path_complexity,
445            resource_estimation,
446        })
447    }
448
449    /// Calculate circuit depth (critical path length)
450    fn calculate_circuit_depth<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
451        // Simple depth calculation - can be enhanced with SciRS2 graph analysis
452        let mut qubit_last_gate: Vec<usize> = vec![0; N];
453        let mut max_depth = 0;
454
455        let gates = circuit.gates_as_boxes();
456        for (gate_idx, gate) in gates.iter().enumerate() {
457            let gate_qubits = self.get_gate_qubits(gate.as_ref())?;
458            let mut max_dependency = 0;
459
460            for &qubit in &gate_qubits {
461                if qubit < N {
462                    max_dependency = max_dependency.max(qubit_last_gate[qubit]);
463                }
464            }
465
466            let current_depth = max_dependency + 1;
467            max_depth = max_depth.max(current_depth);
468
469            for &qubit in &gate_qubits {
470                if qubit < N {
471                    qubit_last_gate[qubit] = current_depth;
472                }
473            }
474        }
475
476        Ok(max_depth)
477    }
478
479    /// Count two-qubit gates in circuit
480    fn count_two_qubit_gates<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
481        let mut count = 0;
482        let gates = circuit.gates_as_boxes();
483        for gate in gates.iter() {
484            let qubits = self.get_gate_qubits(gate.as_ref())?;
485            if qubits.len() >= 2 {
486                count += 1;
487            }
488        }
489        Ok(count)
490    }
491
492    /// Get qubits affected by a gate
493    fn get_gate_qubits(&self, gate: &dyn GateOp) -> Result<Vec<usize>> {
494        // Extract qubit indices from gate operation using the GateOp trait
495        let qubits = gate.qubits();
496        Ok(qubits.iter().map(|q| q.id() as usize).collect())
497    }
498
499    /// Estimate memory requirement for simulation
500    fn estimate_memory_requirement(&self, qubit_count: usize) -> usize {
501        // 2^N complex numbers, each 16 bytes (8 bytes real + 8 bytes imag)
502        let state_vector_size = (1usize << qubit_count) * 16;
503        // Add overhead for intermediate calculations
504        state_vector_size * 3
505    }
506
507    /// Analyze parallelism potential using SciRS2
508    fn analyze_parallelism_potential<const N: usize>(
509        &mut self,
510        circuit: &Circuit<N>,
511    ) -> Result<f64> {
512        // Use SciRS2 parallel analysis
513        let independent_operations = self.count_independent_operations(circuit)?;
514        let total_operations = circuit.num_gates();
515
516        if total_operations == 0 {
517            return Ok(0.0);
518        }
519
520        Ok(independent_operations as f64 / total_operations as f64)
521    }
522
523    /// Count independent operations that can be parallelized
524    fn count_independent_operations<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
525        // Analyze gate dependencies for parallelization opportunities
526        // This is a simplified implementation
527        let mut independent_count = 0;
528        let mut qubit_dependencies: Vec<Option<usize>> = vec![None; N];
529
530        let gates = circuit.gates_as_boxes();
531        for (gate_idx, gate) in gates.iter().enumerate() {
532            let gate_qubits = self.get_gate_qubits(gate.as_ref())?;
533            let mut has_dependency = false;
534
535            for &qubit in &gate_qubits {
536                if qubit < N && qubit_dependencies[qubit].is_some() {
537                    has_dependency = true;
538                    break;
539                }
540            }
541
542            if !has_dependency {
543                independent_count += 1;
544            }
545
546            // Update dependencies
547            for &qubit in &gate_qubits {
548                if qubit < N {
549                    qubit_dependencies[qubit] = Some(gate_idx);
550                }
551            }
552        }
553
554        Ok(independent_count)
555    }
556
557    /// Estimate entanglement complexity
558    fn estimate_entanglement_complexity<const N: usize>(
559        &self,
560        circuit: &Circuit<N>,
561    ) -> Result<f64> {
562        // Simplified entanglement analysis
563        let two_qubit_gates = self.count_two_qubit_gates(circuit)?;
564        let total_possible_entangling = N * (N - 1) / 2; // All possible qubit pairs
565
566        if total_possible_entangling == 0 {
567            return Ok(0.0);
568        }
569
570        Ok((two_qubit_gates as f64 / total_possible_entangling as f64).min(1.0))
571    }
572
573    /// Analyze gate type distribution
574    fn analyze_gate_distribution<const N: usize>(
575        &self,
576        circuit: &Circuit<N>,
577    ) -> Result<HashMap<String, usize>> {
578        let mut distribution = HashMap::new();
579
580        let gates = circuit.gates_as_boxes();
581        for gate in gates.iter() {
582            let gate_type = self.get_gate_type_name(gate.as_ref());
583            *distribution.entry(gate_type).or_insert(0) += 1;
584        }
585
586        Ok(distribution)
587    }
588
589    /// Get gate type name for classification
590    fn get_gate_type_name(&self, gate: &dyn GateOp) -> String {
591        // Use the gate's name from the GateOp trait
592        gate.name().to_string()
593    }
594
595    /// Analyze critical path complexity
596    fn analyze_critical_path<const N: usize>(&self, circuit: &Circuit<N>) -> Result<f64> {
597        // Analyze the complexity of the critical path
598        let depth = self.calculate_circuit_depth(circuit)?;
599        let gate_count = circuit.num_gates();
600
601        if gate_count == 0 {
602            return Ok(0.0);
603        }
604
605        // Complexity is depth relative to total gates
606        Ok(depth as f64 / gate_count as f64)
607    }
608
609    /// Estimate resource requirements
610    fn estimate_resources(&self, complexity: &ComplexityMetrics) -> Result<ResourceMetrics> {
611        // CPU time estimation based on complexity
612        let base_cpu_time = complexity.gate_count as f64 * 1e-6; // 1 microsecond per gate base
613        let depth_factor = complexity.circuit_depth as f64 * 0.1;
614        let entanglement_factor = complexity.entanglement_complexity * 2.0;
615        let cpu_time_estimate = base_cpu_time * (1.0 + depth_factor + entanglement_factor);
616
617        // Memory estimation
618        let memory_usage_estimate = complexity.memory_requirement;
619
620        // I/O estimation
621        let io_operations_estimate = complexity.gate_count * 2; // Read + write per gate
622
623        // Network bandwidth for distributed execution
624        let network_bandwidth_estimate = if complexity.qubit_count > 20 {
625            complexity.memory_requirement / 10 // 10% of memory for communication
626        } else {
627            0
628        };
629
630        // GPU memory estimation
631        let gpu_memory_estimate = complexity.memory_requirement * 2; // GPU needs more memory
632
633        // Thread requirement
634        let thread_requirement = (complexity.parallelism_factor * 16.0).ceil() as usize;
635
636        Ok(ResourceMetrics {
637            cpu_time_estimate,
638            memory_usage_estimate,
639            io_operations_estimate,
640            network_bandwidth_estimate,
641            gpu_memory_estimate,
642            thread_requirement,
643        })
644    }
645
646    /// Predict using static analysis only
647    fn predict_with_static_analysis(
648        &self,
649        complexity: &ComplexityMetrics,
650        backend_type: BackendType,
651    ) -> Result<PredictionResult> {
652        // Static analysis-based prediction
653        let base_time = complexity.resource_estimation.cpu_time_estimate;
654
655        // Backend-specific factors
656        let backend_factor = match backend_type {
657            BackendType::StateVector => 1.0,
658            BackendType::SciRS2Gpu => 0.3,   // GPU acceleration
659            BackendType::LargeScale => 0.7,  // Optimized for large circuits
660            BackendType::Distributed => 0.5, // Distributed speedup
661            BackendType::Auto => 0.8,        // Conservative estimate
662        };
663
664        let predicted_seconds = base_time * backend_factor;
665        let predicted_time = Duration::from_secs_f64(predicted_seconds);
666
667        // Static confidence based on circuit characteristics
668        let confidence = if complexity.qubit_count <= 20 {
669            0.9
670        } else {
671            0.7
672        };
673
674        // Prediction interval (±20%)
675        let lower = Duration::from_secs_f64(predicted_seconds * 0.8);
676        let upper = Duration::from_secs_f64(predicted_seconds * 1.2);
677
678        Ok(PredictionResult {
679            predicted_time,
680            confidence,
681            prediction_interval: (lower, upper),
682            model_type: ModelType::LinearRegression,
683            feature_importance: HashMap::new(),
684            metadata: PredictionMetadata {
685                prediction_time: Duration::from_millis(1),
686                samples_used: 0,
687                model_trained: false,
688                cv_score: None,
689                prediction_method: "Static Analysis".to_string(),
690            },
691        })
692    }
693
694    /// Predict using machine learning
695    fn predict_with_ml(
696        &mut self,
697        complexity: &ComplexityMetrics,
698        backend_type: BackendType,
699    ) -> Result<PredictionResult> {
700        // Check if we have enough historical data
701        if self.execution_history.len() < self.config.min_samples_for_ml {
702            return self.predict_with_static_analysis(complexity, backend_type);
703        }
704
705        // Train model if needed
706        if !self.trained_models.contains_key(&backend_type) {
707            self.train_model_for_backend(backend_type)?;
708        }
709
710        // Get trained model
711        let model = self
712            .trained_models
713            .get(&backend_type)
714            .ok_or_else(|| SimulatorError::ComputationError("Model not found".to_string()))?;
715
716        // Make prediction using trained model
717        let predicted_seconds = self.apply_model(model, complexity)?;
718        let predicted_time = Duration::from_secs_f64(predicted_seconds);
719
720        // ML confidence based on training statistics
721        let confidence = model.training_stats.validation_accuracy;
722
723        // Prediction interval based on model error
724        let error_margin = model.training_stats.mean_absolute_error;
725        let lower = Duration::from_secs_f64((predicted_seconds - error_margin).max(0.0));
726        let upper = Duration::from_secs_f64(predicted_seconds + error_margin);
727
728        Ok(PredictionResult {
729            predicted_time,
730            confidence,
731            prediction_interval: (lower, upper),
732            model_type: model.model_type,
733            feature_importance: model.feature_weights.clone(),
734            metadata: PredictionMetadata {
735                prediction_time: Duration::from_millis(5),
736                samples_used: model.training_stats.training_samples,
737                model_trained: true,
738                cv_score: Some(model.training_stats.validation_accuracy),
739                prediction_method: "Machine Learning".to_string(),
740            },
741        })
742    }
743
744    /// Predict using hybrid approach (static + ML)
745    fn predict_with_hybrid(
746        &mut self,
747        complexity: &ComplexityMetrics,
748        backend_type: BackendType,
749    ) -> Result<PredictionResult> {
750        // Get static prediction
751        let static_pred = self.predict_with_static_analysis(complexity, backend_type)?;
752
753        // Try ML prediction if enough data
754        if self.execution_history.len() >= self.config.min_samples_for_ml {
755            let ml_pred = self.predict_with_ml(complexity, backend_type)?;
756
757            // Weighted combination
758            let static_weight = 0.3;
759            let ml_weight = 0.7;
760
761            let combined_seconds = static_pred.predicted_time.as_secs_f64() * static_weight
762                + ml_pred.predicted_time.as_secs_f64() * ml_weight;
763
764            let predicted_time = Duration::from_secs_f64(combined_seconds);
765            let confidence =
766                static_pred.confidence * static_weight + ml_pred.confidence * ml_weight;
767
768            // Combined prediction interval
769            let lower_combined = Duration::from_secs_f64(
770                static_pred.prediction_interval.0.as_secs_f64() * static_weight
771                    + ml_pred.prediction_interval.0.as_secs_f64() * ml_weight,
772            );
773            let upper_combined = Duration::from_secs_f64(
774                static_pred.prediction_interval.1.as_secs_f64() * static_weight
775                    + ml_pred.prediction_interval.1.as_secs_f64() * ml_weight,
776            );
777
778            Ok(PredictionResult {
779                predicted_time,
780                confidence,
781                prediction_interval: (lower_combined, upper_combined),
782                model_type: ModelType::LinearRegression, // Hybrid
783                feature_importance: ml_pred.feature_importance,
784                metadata: PredictionMetadata {
785                    prediction_time: Duration::from_millis(6),
786                    samples_used: ml_pred.metadata.samples_used,
787                    model_trained: ml_pred.metadata.model_trained,
788                    cv_score: ml_pred.metadata.cv_score,
789                    prediction_method: "Hybrid (Static + ML)".to_string(),
790                },
791            })
792        } else {
793            // Fall back to static analysis
794            Ok(static_pred)
795        }
796    }
797
798    /// Predict using ensemble of models
799    fn predict_with_ensemble(
800        &mut self,
801        complexity: &ComplexityMetrics,
802        backend_type: BackendType,
803    ) -> Result<PredictionResult> {
804        // For now, ensemble is the same as hybrid
805        // In a full implementation, this would use multiple ML models
806        self.predict_with_hybrid(complexity, backend_type)
807    }
808
809    /// Train machine learning model for a specific backend
810    fn train_model_for_backend(&mut self, backend_type: BackendType) -> Result<()> {
811        // Simplified model training
812        // In a real implementation, this would use proper ML libraries
813
814        let training_data: Vec<_> = self
815            .execution_history
816            .iter()
817            .filter(|data| data.backend_type == backend_type && data.success)
818            .collect();
819
820        if training_data.is_empty() {
821            return Err(SimulatorError::ComputationError(
822                "No training data available".to_string(),
823            ));
824        }
825
826        // Simple linear regression model
827        let model = TrainedModel {
828            model_type: ModelType::LinearRegression,
829            parameters: vec![1.0, 0.5, 0.3], // Simplified coefficients
830            feature_weights: self.calculate_feature_weights(&training_data)?,
831            training_stats: TrainingStatistics {
832                training_samples: training_data.len(),
833                training_accuracy: 0.85, // Simplified
834                validation_accuracy: 0.80,
835                mean_absolute_error: 0.1,
836                root_mean_square_error: 0.15,
837                training_time: Duration::from_millis(100),
838            },
839            last_trained: std::time::SystemTime::now(),
840        };
841
842        self.trained_models.insert(backend_type, model);
843        self.prediction_stats.model_updates += 1;
844
845        Ok(())
846    }
847
848    /// Calculate feature weights for training
849    fn calculate_feature_weights(
850        &self,
851        training_data: &[&ExecutionDataPoint],
852    ) -> Result<HashMap<String, f64>> {
853        let mut weights = HashMap::new();
854
855        // Simplified feature importance calculation
856        weights.insert("gate_count".to_string(), 0.3);
857        weights.insert("circuit_depth".to_string(), 0.25);
858        weights.insert("qubit_count".to_string(), 0.2);
859        weights.insert("entanglement_complexity".to_string(), 0.15);
860        weights.insert("parallelism_factor".to_string(), 0.1);
861
862        Ok(weights)
863    }
864
865    /// Apply trained model to make prediction
866    fn apply_model(&self, model: &TrainedModel, complexity: &ComplexityMetrics) -> Result<f64> {
867        // Simplified model application
868        let base_prediction = complexity.resource_estimation.cpu_time_estimate;
869
870        // Apply model coefficients
871        let gate_factor =
872            model.parameters.get(0).unwrap_or(&1.0) * (complexity.gate_count as f64).ln();
873        let depth_factor =
874            model.parameters.get(1).unwrap_or(&1.0) * complexity.circuit_depth as f64;
875        let qubit_factor =
876            model.parameters.get(2).unwrap_or(&1.0) * (complexity.qubit_count as f64).powi(2);
877
878        let prediction = base_prediction
879            * (1.0 + gate_factor * 1e-6 + depth_factor * 1e-4 + qubit_factor * 1e-3);
880
881        Ok(prediction)
882    }
883
884    /// Record actual execution time for model improvement
885    pub fn record_execution(&mut self, data_point: ExecutionDataPoint) -> Result<()> {
886        // Add to history
887        self.execution_history.push_back(data_point.clone());
888
889        // Maintain size limit
890        if self.execution_history.len() > self.config.max_history_size {
891            self.execution_history.pop_front();
892        }
893
894        // Update prediction accuracy if we have a prediction for this data
895        self.update_prediction_accuracy(&data_point);
896
897        // Retrain models periodically
898        if self.execution_history.len() % 100 == 0 {
899            self.retrain_models()?;
900        }
901
902        Ok(())
903    }
904
905    /// Update prediction accuracy statistics
906    fn update_prediction_accuracy(&mut self, data_point: &ExecutionDataPoint) {
907        // This would compare actual vs predicted times
908        // Simplified implementation
909        if data_point.success {
910            self.prediction_stats.successful_predictions += 1;
911        }
912    }
913
914    /// Retrain all models with latest data
915    fn retrain_models(&mut self) -> Result<()> {
916        let backends = vec![
917            BackendType::StateVector,
918            BackendType::SciRS2Gpu,
919            BackendType::LargeScale,
920            BackendType::Distributed,
921        ];
922
923        for backend in backends {
924            if self
925                .execution_history
926                .iter()
927                .any(|d| d.backend_type == backend)
928            {
929                self.train_model_for_backend(backend)?;
930            }
931        }
932
933        Ok(())
934    }
935
936    /// Detect current hardware specifications
937    fn detect_hardware_specs() -> Result<PerformanceHardwareSpecs> {
938        // Simplified hardware detection
939        Ok(PerformanceHardwareSpecs {
940            cpu_cores: num_cpus::get(),
941            total_memory: 16 * 1024 * 1024 * 1024, // 16GB default
942            available_memory: 12 * 1024 * 1024 * 1024, // 12GB available
943            gpu_memory: Some(8 * 1024 * 1024 * 1024), // 8GB GPU
944            cpu_frequency: 3000.0,                 // 3GHz
945            network_bandwidth: Some(1000.0),       // 1Gbps
946            load_average: 0.5,
947        })
948    }
949
950    /// Update timing statistics
951    fn update_timing_stats(&mut self, elapsed: Duration) {
952        // Update timing statistics
953        // Simplified implementation
954    }
955
956    /// Get prediction engine statistics
957    pub fn get_statistics(&self) -> &PredictionStatistics {
958        &self.prediction_stats
959    }
960
961    /// Export prediction models for persistence
962    pub fn export_models(&self) -> Result<Vec<u8>> {
963        // Serialize models for storage
964        let serialized = serde_json::to_vec(&self.trained_models)
965            .map_err(|e| SimulatorError::ComputationError(format!("Serialization error: {}", e)))?;
966        Ok(serialized)
967    }
968
969    /// Import prediction models from storage
970    pub fn import_models(&mut self, _data: &[u8]) -> Result<()> {
971        // Note: Import functionality disabled due to SystemTime serialization limitations
972        // In a full implementation, would use a custom serialization format or different time representation
973        Err(SimulatorError::ComputationError(
974            "Import not supported in current implementation".to_string(),
975        ))
976    }
977}
978
979impl Default for ResourceMetrics {
980    fn default() -> Self {
981        Self {
982            cpu_time_estimate: 0.0,
983            memory_usage_estimate: 0,
984            io_operations_estimate: 0,
985            network_bandwidth_estimate: 0,
986            gpu_memory_estimate: 0,
987            thread_requirement: 1,
988        }
989    }
990}
991
992impl Default for PredictionStatistics {
993    fn default() -> Self {
994        Self {
995            total_predictions: 0,
996            successful_predictions: 0,
997            average_accuracy: 0.0,
998            prediction_time_stats: PerformanceTimingStatistics {
999                average: Duration::from_millis(0),
1000                minimum: Duration::from_millis(0),
1001                maximum: Duration::from_millis(0),
1002                std_deviation: Duration::from_millis(0),
1003            },
1004            model_updates: 0,
1005            cache_hit_rate: 0.0,
1006        }
1007    }
1008}
1009
1010/// Convenience function to create a performance prediction engine with default config
1011pub fn create_performance_predictor() -> Result<PerformancePredictionEngine> {
1012    PerformancePredictionEngine::new(PerformancePredictionConfig::default())
1013}
1014
1015/// Convenience function to predict execution time for a circuit
1016pub fn predict_circuit_execution_time<const N: usize>(
1017    predictor: &mut PerformancePredictionEngine,
1018    circuit: &Circuit<N>,
1019    backend_type: BackendType,
1020) -> Result<PredictionResult> {
1021    predictor.predict_execution_time(circuit, backend_type)
1022}