1use crate::{
8 auto_optimizer::{AnalysisDepth, BackendType, CircuitCharacteristics},
9 error::{Result, SimulatorError},
10 scirs2_integration::{Matrix, SciRS2Backend, Vector},
11};
12use scirs2_core::Complex64;
13use quantrs2_circuit::builder::Circuit;
14use quantrs2_core::{
15 error::{QuantRS2Error, QuantRS2Result},
16 gate::GateOp,
17 qubit::QubitId,
18};
19use serde::{Deserialize, Serialize};
20use std::collections::{HashMap, VecDeque};
21use std::time::{Duration, Instant};
22
23#[derive(Debug, Clone, Serialize, Deserialize)]
25pub struct PerformancePredictionConfig {
26 pub enable_ml_prediction: bool,
28 pub max_history_size: usize,
30 pub confidence_threshold: f64,
32 pub enable_hardware_profiling: bool,
34 pub analysis_depth: AnalysisDepth,
36 pub prediction_strategy: PredictionStrategy,
38 pub learning_rate: f64,
40 pub enable_transfer_learning: bool,
42 pub min_samples_for_ml: usize,
44}
45
46impl Default for PerformancePredictionConfig {
47 fn default() -> Self {
48 Self {
49 enable_ml_prediction: true,
50 max_history_size: 10000,
51 confidence_threshold: 0.8,
52 enable_hardware_profiling: true,
53 analysis_depth: AnalysisDepth::Deep,
54 prediction_strategy: PredictionStrategy::Hybrid,
55 learning_rate: 0.01,
56 enable_transfer_learning: true,
57 min_samples_for_ml: 100,
58 }
59 }
60}
61
62#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
64pub enum PredictionStrategy {
65 StaticAnalysis,
67 MachineLearning,
69 Hybrid,
71 Ensemble,
73}
74
75#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
77pub enum ModelType {
78 LinearRegression,
80 PolynomialRegression,
82 NeuralNetwork,
84 SupportVectorRegression,
86 RandomForest,
88 GradientBoosting,
90}
91
92#[derive(Debug, Clone, Serialize, Deserialize)]
94pub struct ComplexityMetrics {
95 pub gate_count: usize,
97 pub circuit_depth: usize,
99 pub qubit_count: usize,
101 pub two_qubit_gate_count: usize,
103 pub memory_requirement: usize,
105 pub parallelism_factor: f64,
107 pub entanglement_complexity: f64,
109 pub gate_type_distribution: HashMap<String, usize>,
111 pub critical_path_complexity: f64,
113 pub resource_estimation: ResourceMetrics,
115}
116
117impl Default for ComplexityMetrics {
118 fn default() -> Self {
119 Self {
120 gate_count: 0,
121 circuit_depth: 0,
122 qubit_count: 0,
123 two_qubit_gate_count: 0,
124 memory_requirement: 0,
125 parallelism_factor: 0.0,
126 entanglement_complexity: 0.0,
127 gate_type_distribution: HashMap::new(),
128 critical_path_complexity: 0.0,
129 resource_estimation: ResourceMetrics::default(),
130 }
131 }
132}
133
134#[derive(Debug, Clone, Serialize, Deserialize)]
136pub struct ResourceMetrics {
137 pub cpu_time_estimate: f64,
139 pub memory_usage_estimate: usize,
141 pub io_operations_estimate: usize,
143 pub network_bandwidth_estimate: usize,
145 pub gpu_memory_estimate: usize,
147 pub thread_requirement: usize,
149}
150
151#[derive(Debug, Clone, Serialize)]
153pub struct ExecutionDataPoint {
154 pub complexity: ComplexityMetrics,
156 pub backend_type: BackendType,
158 pub execution_time: Duration,
160 pub hardware_specs: PerformanceHardwareSpecs,
162 #[serde(skip_serializing, skip_deserializing)]
164 pub timestamp: std::time::SystemTime,
165 pub success: bool,
167 pub error_info: Option<String>,
169}
170
171impl Default for ExecutionDataPoint {
172 fn default() -> Self {
173 Self {
174 complexity: ComplexityMetrics::default(),
175 backend_type: BackendType::StateVector,
176 execution_time: Duration::from_secs(0),
177 hardware_specs: PerformanceHardwareSpecs::default(),
178 timestamp: std::time::SystemTime::now(),
179 success: false,
180 error_info: None,
181 }
182 }
183}
184
185#[derive(Debug, Clone, Serialize, Deserialize)]
187pub struct PerformanceHardwareSpecs {
188 pub cpu_cores: usize,
190 pub total_memory: usize,
192 pub available_memory: usize,
194 pub gpu_memory: Option<usize>,
196 pub cpu_frequency: f64,
198 pub network_bandwidth: Option<f64>,
200 pub load_average: f64,
202}
203
204impl Default for PerformanceHardwareSpecs {
205 fn default() -> Self {
206 Self {
207 cpu_cores: 1,
208 total_memory: 1024 * 1024 * 1024, available_memory: 512 * 1024 * 1024, gpu_memory: None,
211 cpu_frequency: 2000.0, network_bandwidth: None,
213 load_average: 0.0,
214 }
215 }
216}
217
218#[derive(Debug, Clone, Serialize, Deserialize)]
220pub struct PredictionResult {
221 pub predicted_time: Duration,
223 pub confidence: f64,
225 pub prediction_interval: (Duration, Duration),
227 pub model_type: ModelType,
229 pub feature_importance: HashMap<String, f64>,
231 pub metadata: PredictionMetadata,
233}
234
235#[derive(Debug, Clone, Serialize, Deserialize)]
237pub struct PredictionMetadata {
238 pub prediction_time: Duration,
240 pub samples_used: usize,
242 pub model_trained: bool,
244 pub cv_score: Option<f64>,
246 pub prediction_method: String,
248}
249
250pub struct PerformancePredictionEngine {
252 config: PerformancePredictionConfig,
254 execution_history: VecDeque<ExecutionDataPoint>,
256 trained_models: HashMap<BackendType, TrainedModel>,
258 scirs2_backend: SciRS2Backend,
260 current_hardware: PerformanceHardwareSpecs,
262 prediction_stats: PredictionStatistics,
264}
265
266#[derive(Debug, Clone, Serialize)]
268pub struct TrainedModel {
269 pub model_type: ModelType,
271 pub parameters: Vec<f64>,
273 pub feature_weights: HashMap<String, f64>,
275 pub training_stats: TrainingStatistics,
277 #[serde(skip_serializing, skip_deserializing)]
279 pub last_trained: std::time::SystemTime,
280}
281
282impl Default for TrainedModel {
283 fn default() -> Self {
284 Self {
285 model_type: ModelType::LinearRegression,
286 parameters: Vec::new(),
287 feature_weights: HashMap::new(),
288 training_stats: TrainingStatistics::default(),
289 last_trained: std::time::SystemTime::now(),
290 }
291 }
292}
293
294#[derive(Debug, Clone, Serialize, Deserialize)]
296pub struct TrainingStatistics {
297 pub training_samples: usize,
299 pub training_accuracy: f64,
301 pub validation_accuracy: f64,
303 pub mean_absolute_error: f64,
305 pub root_mean_square_error: f64,
307 pub training_time: Duration,
309}
310
311impl Default for TrainingStatistics {
312 fn default() -> Self {
313 Self {
314 training_samples: 0,
315 training_accuracy: 0.0,
316 validation_accuracy: 0.0,
317 mean_absolute_error: 0.0,
318 root_mean_square_error: 0.0,
319 training_time: Duration::from_secs(0),
320 }
321 }
322}
323
324#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct PredictionStatistics {
327 pub total_predictions: usize,
329 pub successful_predictions: usize,
331 pub average_accuracy: f64,
333 pub prediction_time_stats: PerformanceTimingStatistics,
335 pub model_updates: usize,
337 pub cache_hit_rate: f64,
339}
340
341#[derive(Debug, Clone, Serialize, Deserialize)]
343pub struct PerformanceTimingStatistics {
344 pub average: Duration,
346 pub minimum: Duration,
348 pub maximum: Duration,
350 pub std_deviation: Duration,
352}
353
354impl PerformancePredictionEngine {
355 pub fn new(config: PerformancePredictionConfig) -> Result<Self> {
357 let current_hardware = Self::detect_hardware_specs()?;
358
359 Ok(Self {
360 config,
361 execution_history: VecDeque::with_capacity(10000),
362 trained_models: HashMap::new(),
363 scirs2_backend: SciRS2Backend::new(),
364 current_hardware,
365 prediction_stats: PredictionStatistics::default(),
366 })
367 }
368
369 pub fn predict_execution_time<const N: usize>(
371 &mut self,
372 circuit: &Circuit<N>,
373 backend_type: BackendType,
374 ) -> Result<PredictionResult> {
375 let start_time = Instant::now();
376
377 let complexity = self.analyze_circuit_complexity(circuit)?;
379
380 let prediction = match self.config.prediction_strategy {
382 PredictionStrategy::StaticAnalysis => {
383 self.predict_with_static_analysis(&complexity, backend_type)?
384 }
385 PredictionStrategy::MachineLearning => {
386 self.predict_with_ml(&complexity, backend_type)?
387 }
388 PredictionStrategy::Hybrid => self.predict_with_hybrid(&complexity, backend_type)?,
389 PredictionStrategy::Ensemble => {
390 self.predict_with_ensemble(&complexity, backend_type)?
391 }
392 };
393
394 self.prediction_stats.total_predictions += 1;
396 let prediction_time = start_time.elapsed();
397 self.update_timing_stats(prediction_time);
398
399 Ok(prediction)
400 }
401
402 fn analyze_circuit_complexity<const N: usize>(
404 &mut self,
405 circuit: &Circuit<N>,
406 ) -> Result<ComplexityMetrics> {
407 let gate_count = circuit.num_gates();
408 let qubit_count = N;
409
410 let circuit_depth = self.calculate_circuit_depth(circuit)?;
412 let two_qubit_gate_count = self.count_two_qubit_gates(circuit)?;
413 let memory_requirement = self.estimate_memory_requirement(qubit_count);
414
415 let parallelism_factor = self.analyze_parallelism_potential(circuit)?;
417 let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
418 let gate_type_distribution = self.analyze_gate_distribution(circuit)?;
419 let critical_path_complexity = self.analyze_critical_path(circuit)?;
420
421 let resource_estimation = self.estimate_resources(&ComplexityMetrics {
423 gate_count,
424 circuit_depth,
425 qubit_count,
426 two_qubit_gate_count,
427 memory_requirement,
428 parallelism_factor,
429 entanglement_complexity,
430 gate_type_distribution: gate_type_distribution.clone(),
431 critical_path_complexity,
432 resource_estimation: ResourceMetrics::default(), })?;
434
435 Ok(ComplexityMetrics {
436 gate_count,
437 circuit_depth,
438 qubit_count,
439 two_qubit_gate_count,
440 memory_requirement,
441 parallelism_factor,
442 entanglement_complexity,
443 gate_type_distribution,
444 critical_path_complexity,
445 resource_estimation,
446 })
447 }
448
449 fn calculate_circuit_depth<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
451 let mut qubit_last_gate: Vec<usize> = vec![0; N];
453 let mut max_depth = 0;
454
455 let gates = circuit.gates_as_boxes();
456 for (gate_idx, gate) in gates.iter().enumerate() {
457 let gate_qubits = self.get_gate_qubits(gate.as_ref())?;
458 let mut max_dependency = 0;
459
460 for &qubit in &gate_qubits {
461 if qubit < N {
462 max_dependency = max_dependency.max(qubit_last_gate[qubit]);
463 }
464 }
465
466 let current_depth = max_dependency + 1;
467 max_depth = max_depth.max(current_depth);
468
469 for &qubit in &gate_qubits {
470 if qubit < N {
471 qubit_last_gate[qubit] = current_depth;
472 }
473 }
474 }
475
476 Ok(max_depth)
477 }
478
479 fn count_two_qubit_gates<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
481 let mut count = 0;
482 let gates = circuit.gates_as_boxes();
483 for gate in gates.iter() {
484 let qubits = self.get_gate_qubits(gate.as_ref())?;
485 if qubits.len() >= 2 {
486 count += 1;
487 }
488 }
489 Ok(count)
490 }
491
492 fn get_gate_qubits(&self, gate: &dyn GateOp) -> Result<Vec<usize>> {
494 let qubits = gate.qubits();
496 Ok(qubits.iter().map(|q| q.id() as usize).collect())
497 }
498
499 fn estimate_memory_requirement(&self, qubit_count: usize) -> usize {
501 let state_vector_size = (1usize << qubit_count) * 16;
503 state_vector_size * 3
505 }
506
507 fn analyze_parallelism_potential<const N: usize>(
509 &mut self,
510 circuit: &Circuit<N>,
511 ) -> Result<f64> {
512 let independent_operations = self.count_independent_operations(circuit)?;
514 let total_operations = circuit.num_gates();
515
516 if total_operations == 0 {
517 return Ok(0.0);
518 }
519
520 Ok(independent_operations as f64 / total_operations as f64)
521 }
522
523 fn count_independent_operations<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
525 let mut independent_count = 0;
528 let mut qubit_dependencies: Vec<Option<usize>> = vec![None; N];
529
530 let gates = circuit.gates_as_boxes();
531 for (gate_idx, gate) in gates.iter().enumerate() {
532 let gate_qubits = self.get_gate_qubits(gate.as_ref())?;
533 let mut has_dependency = false;
534
535 for &qubit in &gate_qubits {
536 if qubit < N && qubit_dependencies[qubit].is_some() {
537 has_dependency = true;
538 break;
539 }
540 }
541
542 if !has_dependency {
543 independent_count += 1;
544 }
545
546 for &qubit in &gate_qubits {
548 if qubit < N {
549 qubit_dependencies[qubit] = Some(gate_idx);
550 }
551 }
552 }
553
554 Ok(independent_count)
555 }
556
557 fn estimate_entanglement_complexity<const N: usize>(
559 &self,
560 circuit: &Circuit<N>,
561 ) -> Result<f64> {
562 let two_qubit_gates = self.count_two_qubit_gates(circuit)?;
564 let total_possible_entangling = N * (N - 1) / 2; if total_possible_entangling == 0 {
567 return Ok(0.0);
568 }
569
570 Ok((two_qubit_gates as f64 / total_possible_entangling as f64).min(1.0))
571 }
572
573 fn analyze_gate_distribution<const N: usize>(
575 &self,
576 circuit: &Circuit<N>,
577 ) -> Result<HashMap<String, usize>> {
578 let mut distribution = HashMap::new();
579
580 let gates = circuit.gates_as_boxes();
581 for gate in gates.iter() {
582 let gate_type = self.get_gate_type_name(gate.as_ref());
583 *distribution.entry(gate_type).or_insert(0) += 1;
584 }
585
586 Ok(distribution)
587 }
588
589 fn get_gate_type_name(&self, gate: &dyn GateOp) -> String {
591 gate.name().to_string()
593 }
594
595 fn analyze_critical_path<const N: usize>(&self, circuit: &Circuit<N>) -> Result<f64> {
597 let depth = self.calculate_circuit_depth(circuit)?;
599 let gate_count = circuit.num_gates();
600
601 if gate_count == 0 {
602 return Ok(0.0);
603 }
604
605 Ok(depth as f64 / gate_count as f64)
607 }
608
609 fn estimate_resources(&self, complexity: &ComplexityMetrics) -> Result<ResourceMetrics> {
611 let base_cpu_time = complexity.gate_count as f64 * 1e-6; let depth_factor = complexity.circuit_depth as f64 * 0.1;
614 let entanglement_factor = complexity.entanglement_complexity * 2.0;
615 let cpu_time_estimate = base_cpu_time * (1.0 + depth_factor + entanglement_factor);
616
617 let memory_usage_estimate = complexity.memory_requirement;
619
620 let io_operations_estimate = complexity.gate_count * 2; let network_bandwidth_estimate = if complexity.qubit_count > 20 {
625 complexity.memory_requirement / 10 } else {
627 0
628 };
629
630 let gpu_memory_estimate = complexity.memory_requirement * 2; let thread_requirement = (complexity.parallelism_factor * 16.0).ceil() as usize;
635
636 Ok(ResourceMetrics {
637 cpu_time_estimate,
638 memory_usage_estimate,
639 io_operations_estimate,
640 network_bandwidth_estimate,
641 gpu_memory_estimate,
642 thread_requirement,
643 })
644 }
645
646 fn predict_with_static_analysis(
648 &self,
649 complexity: &ComplexityMetrics,
650 backend_type: BackendType,
651 ) -> Result<PredictionResult> {
652 let base_time = complexity.resource_estimation.cpu_time_estimate;
654
655 let backend_factor = match backend_type {
657 BackendType::StateVector => 1.0,
658 BackendType::SciRS2Gpu => 0.3, BackendType::LargeScale => 0.7, BackendType::Distributed => 0.5, BackendType::Auto => 0.8, };
663
664 let predicted_seconds = base_time * backend_factor;
665 let predicted_time = Duration::from_secs_f64(predicted_seconds);
666
667 let confidence = if complexity.qubit_count <= 20 {
669 0.9
670 } else {
671 0.7
672 };
673
674 let lower = Duration::from_secs_f64(predicted_seconds * 0.8);
676 let upper = Duration::from_secs_f64(predicted_seconds * 1.2);
677
678 Ok(PredictionResult {
679 predicted_time,
680 confidence,
681 prediction_interval: (lower, upper),
682 model_type: ModelType::LinearRegression,
683 feature_importance: HashMap::new(),
684 metadata: PredictionMetadata {
685 prediction_time: Duration::from_millis(1),
686 samples_used: 0,
687 model_trained: false,
688 cv_score: None,
689 prediction_method: "Static Analysis".to_string(),
690 },
691 })
692 }
693
694 fn predict_with_ml(
696 &mut self,
697 complexity: &ComplexityMetrics,
698 backend_type: BackendType,
699 ) -> Result<PredictionResult> {
700 if self.execution_history.len() < self.config.min_samples_for_ml {
702 return self.predict_with_static_analysis(complexity, backend_type);
703 }
704
705 if !self.trained_models.contains_key(&backend_type) {
707 self.train_model_for_backend(backend_type)?;
708 }
709
710 let model = self
712 .trained_models
713 .get(&backend_type)
714 .ok_or_else(|| SimulatorError::ComputationError("Model not found".to_string()))?;
715
716 let predicted_seconds = self.apply_model(model, complexity)?;
718 let predicted_time = Duration::from_secs_f64(predicted_seconds);
719
720 let confidence = model.training_stats.validation_accuracy;
722
723 let error_margin = model.training_stats.mean_absolute_error;
725 let lower = Duration::from_secs_f64((predicted_seconds - error_margin).max(0.0));
726 let upper = Duration::from_secs_f64(predicted_seconds + error_margin);
727
728 Ok(PredictionResult {
729 predicted_time,
730 confidence,
731 prediction_interval: (lower, upper),
732 model_type: model.model_type,
733 feature_importance: model.feature_weights.clone(),
734 metadata: PredictionMetadata {
735 prediction_time: Duration::from_millis(5),
736 samples_used: model.training_stats.training_samples,
737 model_trained: true,
738 cv_score: Some(model.training_stats.validation_accuracy),
739 prediction_method: "Machine Learning".to_string(),
740 },
741 })
742 }
743
744 fn predict_with_hybrid(
746 &mut self,
747 complexity: &ComplexityMetrics,
748 backend_type: BackendType,
749 ) -> Result<PredictionResult> {
750 let static_pred = self.predict_with_static_analysis(complexity, backend_type)?;
752
753 if self.execution_history.len() >= self.config.min_samples_for_ml {
755 let ml_pred = self.predict_with_ml(complexity, backend_type)?;
756
757 let static_weight = 0.3;
759 let ml_weight = 0.7;
760
761 let combined_seconds = static_pred.predicted_time.as_secs_f64() * static_weight
762 + ml_pred.predicted_time.as_secs_f64() * ml_weight;
763
764 let predicted_time = Duration::from_secs_f64(combined_seconds);
765 let confidence =
766 static_pred.confidence * static_weight + ml_pred.confidence * ml_weight;
767
768 let lower_combined = Duration::from_secs_f64(
770 static_pred.prediction_interval.0.as_secs_f64() * static_weight
771 + ml_pred.prediction_interval.0.as_secs_f64() * ml_weight,
772 );
773 let upper_combined = Duration::from_secs_f64(
774 static_pred.prediction_interval.1.as_secs_f64() * static_weight
775 + ml_pred.prediction_interval.1.as_secs_f64() * ml_weight,
776 );
777
778 Ok(PredictionResult {
779 predicted_time,
780 confidence,
781 prediction_interval: (lower_combined, upper_combined),
782 model_type: ModelType::LinearRegression, feature_importance: ml_pred.feature_importance,
784 metadata: PredictionMetadata {
785 prediction_time: Duration::from_millis(6),
786 samples_used: ml_pred.metadata.samples_used,
787 model_trained: ml_pred.metadata.model_trained,
788 cv_score: ml_pred.metadata.cv_score,
789 prediction_method: "Hybrid (Static + ML)".to_string(),
790 },
791 })
792 } else {
793 Ok(static_pred)
795 }
796 }
797
798 fn predict_with_ensemble(
800 &mut self,
801 complexity: &ComplexityMetrics,
802 backend_type: BackendType,
803 ) -> Result<PredictionResult> {
804 self.predict_with_hybrid(complexity, backend_type)
807 }
808
809 fn train_model_for_backend(&mut self, backend_type: BackendType) -> Result<()> {
811 let training_data: Vec<_> = self
815 .execution_history
816 .iter()
817 .filter(|data| data.backend_type == backend_type && data.success)
818 .collect();
819
820 if training_data.is_empty() {
821 return Err(SimulatorError::ComputationError(
822 "No training data available".to_string(),
823 ));
824 }
825
826 let model = TrainedModel {
828 model_type: ModelType::LinearRegression,
829 parameters: vec![1.0, 0.5, 0.3], feature_weights: self.calculate_feature_weights(&training_data)?,
831 training_stats: TrainingStatistics {
832 training_samples: training_data.len(),
833 training_accuracy: 0.85, validation_accuracy: 0.80,
835 mean_absolute_error: 0.1,
836 root_mean_square_error: 0.15,
837 training_time: Duration::from_millis(100),
838 },
839 last_trained: std::time::SystemTime::now(),
840 };
841
842 self.trained_models.insert(backend_type, model);
843 self.prediction_stats.model_updates += 1;
844
845 Ok(())
846 }
847
848 fn calculate_feature_weights(
850 &self,
851 training_data: &[&ExecutionDataPoint],
852 ) -> Result<HashMap<String, f64>> {
853 let mut weights = HashMap::new();
854
855 weights.insert("gate_count".to_string(), 0.3);
857 weights.insert("circuit_depth".to_string(), 0.25);
858 weights.insert("qubit_count".to_string(), 0.2);
859 weights.insert("entanglement_complexity".to_string(), 0.15);
860 weights.insert("parallelism_factor".to_string(), 0.1);
861
862 Ok(weights)
863 }
864
865 fn apply_model(&self, model: &TrainedModel, complexity: &ComplexityMetrics) -> Result<f64> {
867 let base_prediction = complexity.resource_estimation.cpu_time_estimate;
869
870 let gate_factor =
872 model.parameters.get(0).unwrap_or(&1.0) * (complexity.gate_count as f64).ln();
873 let depth_factor =
874 model.parameters.get(1).unwrap_or(&1.0) * complexity.circuit_depth as f64;
875 let qubit_factor =
876 model.parameters.get(2).unwrap_or(&1.0) * (complexity.qubit_count as f64).powi(2);
877
878 let prediction = base_prediction
879 * (1.0 + gate_factor * 1e-6 + depth_factor * 1e-4 + qubit_factor * 1e-3);
880
881 Ok(prediction)
882 }
883
884 pub fn record_execution(&mut self, data_point: ExecutionDataPoint) -> Result<()> {
886 self.execution_history.push_back(data_point.clone());
888
889 if self.execution_history.len() > self.config.max_history_size {
891 self.execution_history.pop_front();
892 }
893
894 self.update_prediction_accuracy(&data_point);
896
897 if self.execution_history.len() % 100 == 0 {
899 self.retrain_models()?;
900 }
901
902 Ok(())
903 }
904
905 fn update_prediction_accuracy(&mut self, data_point: &ExecutionDataPoint) {
907 if data_point.success {
910 self.prediction_stats.successful_predictions += 1;
911 }
912 }
913
914 fn retrain_models(&mut self) -> Result<()> {
916 let backends = vec![
917 BackendType::StateVector,
918 BackendType::SciRS2Gpu,
919 BackendType::LargeScale,
920 BackendType::Distributed,
921 ];
922
923 for backend in backends {
924 if self
925 .execution_history
926 .iter()
927 .any(|d| d.backend_type == backend)
928 {
929 self.train_model_for_backend(backend)?;
930 }
931 }
932
933 Ok(())
934 }
935
936 fn detect_hardware_specs() -> Result<PerformanceHardwareSpecs> {
938 Ok(PerformanceHardwareSpecs {
940 cpu_cores: num_cpus::get(),
941 total_memory: 16 * 1024 * 1024 * 1024, available_memory: 12 * 1024 * 1024 * 1024, gpu_memory: Some(8 * 1024 * 1024 * 1024), cpu_frequency: 3000.0, network_bandwidth: Some(1000.0), load_average: 0.5,
947 })
948 }
949
950 fn update_timing_stats(&mut self, elapsed: Duration) {
952 }
955
956 pub fn get_statistics(&self) -> &PredictionStatistics {
958 &self.prediction_stats
959 }
960
961 pub fn export_models(&self) -> Result<Vec<u8>> {
963 let serialized = serde_json::to_vec(&self.trained_models)
965 .map_err(|e| SimulatorError::ComputationError(format!("Serialization error: {}", e)))?;
966 Ok(serialized)
967 }
968
969 pub fn import_models(&mut self, _data: &[u8]) -> Result<()> {
971 Err(SimulatorError::ComputationError(
974 "Import not supported in current implementation".to_string(),
975 ))
976 }
977}
978
979impl Default for ResourceMetrics {
980 fn default() -> Self {
981 Self {
982 cpu_time_estimate: 0.0,
983 memory_usage_estimate: 0,
984 io_operations_estimate: 0,
985 network_bandwidth_estimate: 0,
986 gpu_memory_estimate: 0,
987 thread_requirement: 1,
988 }
989 }
990}
991
992impl Default for PredictionStatistics {
993 fn default() -> Self {
994 Self {
995 total_predictions: 0,
996 successful_predictions: 0,
997 average_accuracy: 0.0,
998 prediction_time_stats: PerformanceTimingStatistics {
999 average: Duration::from_millis(0),
1000 minimum: Duration::from_millis(0),
1001 maximum: Duration::from_millis(0),
1002 std_deviation: Duration::from_millis(0),
1003 },
1004 model_updates: 0,
1005 cache_hit_rate: 0.0,
1006 }
1007 }
1008}
1009
1010pub fn create_performance_predictor() -> Result<PerformancePredictionEngine> {
1012 PerformancePredictionEngine::new(PerformancePredictionConfig::default())
1013}
1014
1015pub fn predict_circuit_execution_time<const N: usize>(
1017 predictor: &mut PerformancePredictionEngine,
1018 circuit: &Circuit<N>,
1019 backend_type: BackendType,
1020) -> Result<PredictionResult> {
1021 predictor.predict_execution_time(circuit, backend_type)
1022}