1use crate::prelude::{SimulatorError, StateVectorSimulator};
19use scirs2_core::Complex64;
20use scirs2_core::parallel_ops::*;
21use serde::{Deserialize, Serialize};
22use std::collections::HashMap;
23
24use crate::error::Result;
25
26#[derive(Debug, Clone)]
28pub struct OpenCLPlatform {
29 pub platform_id: usize,
31 pub name: String,
33 pub vendor: String,
35 pub version: String,
37 pub extensions: Vec<String>,
39}
40
41#[derive(Debug, Clone)]
43pub struct OpenCLDevice {
44 pub device_id: usize,
46 pub name: String,
48 pub vendor: String,
50 pub device_type: OpenCLDeviceType,
52 pub compute_units: u32,
54 pub max_work_group_size: usize,
56 pub max_work_item_dimensions: u32,
58 pub max_work_item_sizes: Vec<usize>,
60 pub global_memory_size: u64,
62 pub local_memory_size: u64,
64 pub max_constant_buffer_size: u64,
66 pub supports_double: bool,
68 pub extensions: Vec<String>,
70}
71
72#[derive(Debug, Clone, Copy, PartialEq, Eq)]
74pub enum OpenCLDeviceType {
75 GPU,
76 CPU,
77 Accelerator,
78 Custom,
79 All,
80}
81
82#[derive(Debug, Clone)]
84pub struct OpenCLConfig {
85 pub preferred_vendor: Option<String>,
87 pub preferred_device_type: OpenCLDeviceType,
89 pub enable_profiling: bool,
91 pub max_buffer_size: usize,
93 pub work_group_size: usize,
95 pub enable_kernel_cache: bool,
97 pub optimization_level: OptimizationLevel,
99 pub enable_cpu_fallback: bool,
101}
102
103#[derive(Debug, Clone, Copy, PartialEq, Eq)]
105pub enum OptimizationLevel {
106 None,
108 Basic,
110 Standard,
112 Aggressive,
114}
115
116impl Default for OpenCLConfig {
117 fn default() -> Self {
118 Self {
119 preferred_vendor: Some("Advanced Micro Devices".to_string()),
120 preferred_device_type: OpenCLDeviceType::GPU,
121 enable_profiling: true,
122 max_buffer_size: 1 << 30, work_group_size: 256,
124 enable_kernel_cache: true,
125 optimization_level: OptimizationLevel::Standard,
126 enable_cpu_fallback: true,
127 }
128 }
129}
130
131#[derive(Debug, Clone)]
133pub struct OpenCLKernel {
134 pub name: String,
136 pub source: String,
138 pub build_options: String,
140 pub local_memory_usage: usize,
142 pub work_group_size: usize,
144}
145
146pub struct AMDOpenCLSimulator {
148 config: OpenCLConfig,
150 platform: Option<OpenCLPlatform>,
152 device: Option<OpenCLDevice>,
154 context: Option<OpenCLContext>,
156 command_queue: Option<OpenCLCommandQueue>,
158 kernels: HashMap<String, OpenCLKernel>,
160 buffers: HashMap<String, OpenCLBuffer>,
162 stats: OpenCLStats,
164 cpu_fallback: Option<StateVectorSimulator>,
166}
167
168#[derive(Debug, Clone)]
170pub struct OpenCLContext {
171 pub context_id: usize,
173 pub devices: Vec<usize>,
175}
176
177#[derive(Debug, Clone)]
179pub struct OpenCLCommandQueue {
180 pub queue_id: usize,
182 pub context_id: usize,
184 pub device_id: usize,
186 pub profiling_enabled: bool,
188}
189
190#[derive(Debug, Clone)]
192pub struct OpenCLBuffer {
193 pub buffer_id: usize,
195 pub size: usize,
197 pub flags: MemoryFlags,
199 pub host_data: Option<Vec<u8>>,
201}
202
203#[derive(Debug, Clone, Copy, PartialEq, Eq)]
205pub enum MemoryFlags {
206 ReadWrite,
207 ReadOnly,
208 WriteOnly,
209 UseHostPtr,
210 AllocHostPtr,
211 CopyHostPtr,
212}
213
214#[derive(Debug, Clone, Default, Serialize, Deserialize)]
216pub struct OpenCLStats {
217 pub total_kernel_executions: usize,
219 pub total_execution_time: f64,
221 pub avg_kernel_time: f64,
223 pub memory_transfer_time: f64,
225 pub compilation_time: f64,
227 pub gpu_memory_usage: u64,
229 pub gpu_utilization: f64,
231 pub state_vector_operations: usize,
233 pub gate_operations: usize,
235 pub cpu_fallback_count: usize,
237}
238
239impl OpenCLStats {
240 pub fn update_kernel_execution(&mut self, execution_time: f64) {
242 self.total_kernel_executions += 1;
243 self.total_execution_time += execution_time;
244 self.avg_kernel_time = self.total_execution_time / self.total_kernel_executions as f64;
245 }
246
247 pub fn get_performance_metrics(&self) -> HashMap<String, f64> {
249 let mut metrics = HashMap::new();
250 metrics.insert(
251 "kernel_executions_per_second".to_string(),
252 self.total_kernel_executions as f64 / (self.total_execution_time / 1000.0),
253 );
254 metrics.insert(
255 "memory_bandwidth_gb_s".to_string(),
256 self.gpu_memory_usage as f64 / (self.memory_transfer_time / 1000.0) / 1e9,
257 );
258 metrics.insert("gpu_efficiency".to_string(), self.gpu_utilization / 100.0);
259 metrics
260 }
261}
262
263impl AMDOpenCLSimulator {
264 pub fn new(config: OpenCLConfig) -> Result<Self> {
266 let mut simulator = Self {
267 config,
268 platform: None,
269 device: None,
270 context: None,
271 command_queue: None,
272 kernels: HashMap::new(),
273 buffers: HashMap::new(),
274 stats: OpenCLStats::default(),
275 cpu_fallback: None,
276 };
277
278 simulator.initialize_opencl()?;
280
281 simulator.compile_kernels()?;
283
284 if simulator.config.enable_cpu_fallback {
286 simulator.cpu_fallback = Some(StateVectorSimulator::new()); }
288
289 Ok(simulator)
290 }
291
292 fn initialize_opencl(&mut self) -> Result<()> {
294 let platforms = self.discover_platforms()?;
296
297 let selected_platform = self.select_platform(&platforms)?;
299 self.platform = Some(selected_platform);
300
301 let devices = self.discover_devices()?;
303
304 let selected_device = self.select_device(&devices)?;
306 self.device = Some(selected_device);
307
308 self.context = Some(OpenCLContext {
310 context_id: 1,
311 devices: vec![self.device.as_ref().unwrap().device_id],
312 });
313
314 self.command_queue = Some(OpenCLCommandQueue {
316 queue_id: 1,
317 context_id: 1,
318 device_id: self.device.as_ref().unwrap().device_id,
319 profiling_enabled: self.config.enable_profiling,
320 });
321
322 Ok(())
323 }
324
325 fn discover_platforms(&self) -> Result<Vec<OpenCLPlatform>> {
327 let platforms = vec![
329 OpenCLPlatform {
330 platform_id: 0,
331 name: "AMD Accelerated Parallel Processing".to_string(),
332 vendor: "Advanced Micro Devices, Inc.".to_string(),
333 version: "OpenCL 2.1 AMD-APP (3444.0)".to_string(),
334 extensions: vec![
335 "cl_khr_icd".to_string(),
336 "cl_khr_d3d10_sharing".to_string(),
337 "cl_khr_d3d11_sharing".to_string(),
338 "cl_khr_dx9_media_sharing".to_string(),
339 "cl_amd_event_callback".to_string(),
340 "cl_amd_offline_devices".to_string(),
341 ],
342 },
343 OpenCLPlatform {
344 platform_id: 1,
345 name: "Intel(R) OpenCL".to_string(),
346 vendor: "Intel(R) Corporation".to_string(),
347 version: "OpenCL 2.1".to_string(),
348 extensions: vec!["cl_khr_icd".to_string()],
349 },
350 ];
351
352 Ok(platforms)
353 }
354
355 fn select_platform(&self, platforms: &[OpenCLPlatform]) -> Result<OpenCLPlatform> {
357 if let Some(preferred_vendor) = &self.config.preferred_vendor {
359 for platform in platforms {
360 if platform.vendor.contains(preferred_vendor) {
361 return Ok(platform.clone());
362 }
363 }
364 }
365
366 platforms.first().cloned().ok_or_else(|| {
368 SimulatorError::InitializationError("No OpenCL platforms found".to_string())
369 })
370 }
371
372 fn discover_devices(&self) -> Result<Vec<OpenCLDevice>> {
374 let devices = vec![
376 OpenCLDevice {
377 device_id: 0,
378 name: "Radeon RX 7900 XTX".to_string(),
379 vendor: "Advanced Micro Devices, Inc.".to_string(),
380 device_type: OpenCLDeviceType::GPU,
381 compute_units: 96,
382 max_work_group_size: 256,
383 max_work_item_dimensions: 3,
384 max_work_item_sizes: vec![256, 256, 256],
385 global_memory_size: 24 * (1 << 30), local_memory_size: 64 * 1024, max_constant_buffer_size: 64 * 1024,
388 supports_double: true,
389 extensions: vec![
390 "cl_khr_fp64".to_string(),
391 "cl_amd_fp64".to_string(),
392 "cl_khr_global_int32_base_atomics".to_string(),
393 ],
394 },
395 OpenCLDevice {
396 device_id: 1,
397 name: "Radeon RX 6800 XT".to_string(),
398 vendor: "Advanced Micro Devices, Inc.".to_string(),
399 device_type: OpenCLDeviceType::GPU,
400 compute_units: 72,
401 max_work_group_size: 256,
402 max_work_item_dimensions: 3,
403 max_work_item_sizes: vec![256, 256, 256],
404 global_memory_size: 16 * (1 << 30), local_memory_size: 64 * 1024,
406 max_constant_buffer_size: 64 * 1024,
407 supports_double: true,
408 extensions: vec!["cl_khr_fp64".to_string(), "cl_amd_fp64".to_string()],
409 },
410 ];
411
412 Ok(devices)
413 }
414
415 fn select_device(&self, devices: &[OpenCLDevice]) -> Result<OpenCLDevice> {
417 let filtered_devices: Vec<&OpenCLDevice> = devices
419 .iter()
420 .filter(|device| device.device_type == self.config.preferred_device_type)
421 .collect();
422
423 if filtered_devices.is_empty() {
424 return Err(SimulatorError::InitializationError(
425 "No suitable devices found".to_string(),
426 ));
427 }
428
429 let best_device = filtered_devices
431 .iter()
432 .max_by_key(|device| device.compute_units)
433 .unwrap();
434
435 Ok((*best_device).clone())
436 }
437
438 fn compile_kernels(&mut self) -> Result<()> {
440 let start_time = std::time::Instant::now();
441
442 let single_qubit_kernel = self.create_single_qubit_kernel();
444 self.kernels
445 .insert("single_qubit_gate".to_string(), single_qubit_kernel);
446
447 let two_qubit_kernel = self.create_two_qubit_kernel();
449 self.kernels
450 .insert("two_qubit_gate".to_string(), two_qubit_kernel);
451
452 let state_vector_kernel = self.create_state_vector_kernel();
454 self.kernels
455 .insert("state_vector_ops".to_string(), state_vector_kernel);
456
457 let measurement_kernel = self.create_measurement_kernel();
459 self.kernels
460 .insert("measurement".to_string(), measurement_kernel);
461
462 let expectation_kernel = self.create_expectation_kernel();
464 self.kernels
465 .insert("expectation_value".to_string(), expectation_kernel);
466
467 self.stats.compilation_time = start_time.elapsed().as_secs_f64() * 1000.0;
468
469 Ok(())
470 }
471
472 fn create_single_qubit_kernel(&self) -> OpenCLKernel {
474 let source = r#"
475 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
476
477 typedef double2 complex_t;
478
479 complex_t complex_mul(complex_t a, complex_t b) {
480 return (complex_t)(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
481 }
482
483 complex_t complex_add(complex_t a, complex_t b) {
484 return (complex_t)(a.x + b.x, a.y + b.y);
485 }
486
487 __kernel void single_qubit_gate(
488 __global complex_t* state,
489 __global const double* gate_matrix,
490 const int target_qubit,
491 const int num_qubits
492 ) {
493 const int global_id = get_global_id(0);
494 const int total_states = 1 << num_qubits;
495
496 if (global_id >= total_states / 2) return;
497
498 const int target_mask = 1 << target_qubit;
499 const int i = global_id;
500 const int j = i | target_mask;
501
502 if ((i & target_mask) == 0) {
503 // Extract gate matrix elements
504 complex_t gate_00 = (complex_t)(gate_matrix[0], gate_matrix[1]);
505 complex_t gate_01 = (complex_t)(gate_matrix[2], gate_matrix[3]);
506 complex_t gate_10 = (complex_t)(gate_matrix[4], gate_matrix[5]);
507 complex_t gate_11 = (complex_t)(gate_matrix[6], gate_matrix[7]);
508
509 complex_t state_i = state[i];
510 complex_t state_j = state[j];
511
512 state[i] = complex_add(complex_mul(gate_00, state_i), complex_mul(gate_01, state_j));
513 state[j] = complex_add(complex_mul(gate_10, state_i), complex_mul(gate_11, state_j));
514 }
515 }
516 "#;
517
518 OpenCLKernel {
519 name: "single_qubit_gate".to_string(),
520 source: source.to_string(),
521 build_options: self.get_build_options(),
522 local_memory_usage: 0,
523 work_group_size: self.config.work_group_size,
524 }
525 }
526
527 fn create_two_qubit_kernel(&self) -> OpenCLKernel {
529 let source = r#"
530 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
531
532 typedef double2 complex_t;
533
534 complex_t complex_mul(complex_t a, complex_t b) {
535 return (complex_t)(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
536 }
537
538 complex_t complex_add(complex_t a, complex_t b) {
539 return (complex_t)(a.x + b.x, a.y + b.y);
540 }
541
542 __kernel void two_qubit_gate(
543 __global complex_t* state,
544 __global const double* gate_matrix,
545 const int control_qubit,
546 const int target_qubit,
547 const int num_qubits
548 ) {
549 const int global_id = get_global_id(0);
550 const int total_states = 1 << num_qubits;
551
552 if (global_id >= total_states / 4) return;
553
554 const int control_mask = 1 << control_qubit;
555 const int target_mask = 1 << target_qubit;
556 const int both_mask = control_mask | target_mask;
557
558 int base = global_id;
559 // Remove bits at control and target positions
560 if (global_id & (target_mask - 1)) base = (base & ~(target_mask - 1)) << 1 | (base & (target_mask - 1));
561 if (base & (control_mask - 1)) base = (base & ~(control_mask - 1)) << 1 | (base & (control_mask - 1));
562
563 int state_00 = base;
564 int state_01 = base | target_mask;
565 int state_10 = base | control_mask;
566 int state_11 = base | both_mask;
567
568 // Load gate matrix (16 elements for 4x4 matrix)
569 complex_t gate[4][4];
570 for (int i = 0; i < 4; i++) {
571 for (int j = 0; j < 4; j++) {
572 gate[i][j] = (complex_t)(gate_matrix[(i*4+j)*2], gate_matrix[(i*4+j)*2+1]);
573 }
574 }
575
576 complex_t old_states[4];
577 old_states[0] = state[state_00];
578 old_states[1] = state[state_01];
579 old_states[2] = state[state_10];
580 old_states[3] = state[state_11];
581
582 // Apply gate matrix
583 complex_t new_states[4] = {0};
584 for (int i = 0; i < 4; i++) {
585 for (int j = 0; j < 4; j++) {
586 new_states[i] = complex_add(new_states[i], complex_mul(gate[i][j], old_states[j]));
587 }
588 }
589
590 state[state_00] = new_states[0];
591 state[state_01] = new_states[1];
592 state[state_10] = new_states[2];
593 state[state_11] = new_states[3];
594 }
595 "#;
596
597 OpenCLKernel {
598 name: "two_qubit_gate".to_string(),
599 source: source.to_string(),
600 build_options: self.get_build_options(),
601 local_memory_usage: 128, work_group_size: self.config.work_group_size,
603 }
604 }
605
606 fn create_state_vector_kernel(&self) -> OpenCLKernel {
608 let source = r#"
609 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
610
611 typedef double2 complex_t;
612
613 __kernel void normalize_state(
614 __global complex_t* state,
615 const int num_states,
616 const double norm_factor
617 ) {
618 const int global_id = get_global_id(0);
619
620 if (global_id >= num_states) return;
621
622 state[global_id].x *= norm_factor;
623 state[global_id].y *= norm_factor;
624 }
625
626 __kernel void compute_probabilities(
627 __global const complex_t* state,
628 __global double* probabilities,
629 const int num_states
630 ) {
631 const int global_id = get_global_id(0);
632
633 if (global_id >= num_states) return;
634
635 complex_t amplitude = state[global_id];
636 probabilities[global_id] = amplitude.x * amplitude.x + amplitude.y * amplitude.y;
637 }
638
639 __kernel void inner_product(
640 __global const complex_t* state1,
641 __global const complex_t* state2,
642 __global complex_t* partial_results,
643 __local complex_t* local_data,
644 const int num_states
645 ) {
646 const int global_id = get_global_id(0);
647 const int local_id = get_local_id(0);
648 const int local_size = get_local_size(0);
649 const int group_id = get_group_id(0);
650
651 // Initialize local memory
652 if (global_id < num_states) {
653 complex_t a = state1[global_id];
654 complex_t b = state2[global_id];
655 // Conjugate of a times b
656 local_data[local_id] = (complex_t)(a.x * b.x + a.y * b.y, a.x * b.y - a.y * b.x);
657 } else {
658 local_data[local_id] = (complex_t)(0.0, 0.0);
659 }
660
661 barrier(CLK_LOCAL_MEM_FENCE);
662
663 // Reduction
664 for (int stride = local_size / 2; stride > 0; stride /= 2) {
665 if (local_id < stride) {
666 local_data[local_id].x += local_data[local_id + stride].x;
667 local_data[local_id].y += local_data[local_id + stride].y;
668 }
669 barrier(CLK_LOCAL_MEM_FENCE);
670 }
671
672 if (local_id == 0) {
673 partial_results[group_id] = local_data[0];
674 }
675 }
676 "#;
677
678 OpenCLKernel {
679 name: "state_vector_ops".to_string(),
680 source: source.to_string(),
681 build_options: self.get_build_options(),
682 local_memory_usage: self.config.work_group_size * 16, work_group_size: self.config.work_group_size,
684 }
685 }
686
687 fn create_measurement_kernel(&self) -> OpenCLKernel {
689 let source = r#"
690 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
691
692 typedef double2 complex_t;
693
694 __kernel void measure_qubit(
695 __global complex_t* state,
696 __global double* probabilities,
697 const int target_qubit,
698 const int num_qubits,
699 const int measurement_result
700 ) {
701 const int global_id = get_global_id(0);
702 const int total_states = 1 << num_qubits;
703
704 if (global_id >= total_states) return;
705
706 const int target_mask = 1 << target_qubit;
707 const int qubit_value = (global_id & target_mask) ? 1 : 0;
708
709 if (qubit_value != measurement_result) {
710 // Set amplitude to zero for inconsistent measurement
711 state[global_id] = (complex_t)(0.0, 0.0);
712 }
713 }
714
715 __kernel void compute_measurement_probabilities(
716 __global const complex_t* state,
717 __global double* prob_0,
718 __global double* prob_1,
719 __local double* local_data,
720 const int target_qubit,
721 const int num_qubits
722 ) {
723 const int global_id = get_global_id(0);
724 const int local_id = get_local_id(0);
725 const int local_size = get_local_size(0);
726 const int group_id = get_group_id(0);
727 const int total_states = 1 << num_qubits;
728
729 double local_prob_0 = 0.0;
730 double local_prob_1 = 0.0;
731
732 if (global_id < total_states) {
733 const int target_mask = 1 << target_qubit;
734 complex_t amplitude = state[global_id];
735 double prob = amplitude.x * amplitude.x + amplitude.y * amplitude.y;
736
737 if (global_id & target_mask) {
738 local_prob_1 = prob;
739 } else {
740 local_prob_0 = prob;
741 }
742 }
743
744 local_data[local_id * 2] = local_prob_0;
745 local_data[local_id * 2 + 1] = local_prob_1;
746
747 barrier(CLK_LOCAL_MEM_FENCE);
748
749 // Reduction
750 for (int stride = local_size / 2; stride > 0; stride /= 2) {
751 if (local_id < stride) {
752 local_data[local_id * 2] += local_data[(local_id + stride) * 2];
753 local_data[local_id * 2 + 1] += local_data[(local_id + stride) * 2 + 1];
754 }
755 barrier(CLK_LOCAL_MEM_FENCE);
756 }
757
758 if (local_id == 0) {
759 prob_0[group_id] = local_data[0];
760 prob_1[group_id] = local_data[1];
761 }
762 }
763 "#;
764
765 OpenCLKernel {
766 name: "measurement".to_string(),
767 source: source.to_string(),
768 build_options: self.get_build_options(),
769 local_memory_usage: self.config.work_group_size * 16, work_group_size: self.config.work_group_size,
771 }
772 }
773
774 fn create_expectation_kernel(&self) -> OpenCLKernel {
776 let source = r#"
777 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
778
779 typedef double2 complex_t;
780
781 complex_t complex_mul(complex_t a, complex_t b) {
782 return (complex_t)(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
783 }
784
785 __kernel void expectation_value_pauli(
786 __global const complex_t* state,
787 __global double* partial_results,
788 __local double* local_data,
789 const int pauli_string,
790 const int num_qubits
791 ) {
792 const int global_id = get_global_id(0);
793 const int local_id = get_local_id(0);
794 const int local_size = get_local_size(0);
795 const int group_id = get_group_id(0);
796 const int total_states = 1 << num_qubits;
797
798 double local_expectation = 0.0;
799
800 if (global_id < total_states) {
801 complex_t amplitude = state[global_id];
802
803 // Apply Pauli operators
804 int target_state = global_id;
805 complex_t result_amplitude = amplitude;
806 double sign = 1.0;
807
808 // Process each Pauli operator in the string
809 for (int qubit = 0; qubit < num_qubits; qubit++) {
810 int pauli_op = (pauli_string >> (2 * qubit)) & 3;
811 int qubit_mask = 1 << qubit;
812
813 switch (pauli_op) {
814 case 0: // I (identity)
815 break;
816 case 1: // X (bit flip)
817 target_state ^= qubit_mask;
818 break;
819 case 2: // Y (bit and phase flip)
820 target_state ^= qubit_mask;
821 if (global_id & qubit_mask) sign *= -1.0;
822 else result_amplitude = (complex_t)(-result_amplitude.y, result_amplitude.x);
823 break;
824 case 3: // Z (phase flip)
825 if (global_id & qubit_mask) sign *= -1.0;
826 break;
827 }
828 }
829
830 if (target_state == global_id) {
831 // Diagonal element
832 local_expectation = sign * (amplitude.x * amplitude.x + amplitude.y * amplitude.y);
833 }
834 }
835
836 local_data[local_id] = local_expectation;
837 barrier(CLK_LOCAL_MEM_FENCE);
838
839 // Reduction
840 for (int stride = local_size / 2; stride > 0; stride /= 2) {
841 if (local_id < stride) {
842 local_data[local_id] += local_data[local_id + stride];
843 }
844 barrier(CLK_LOCAL_MEM_FENCE);
845 }
846
847 if (local_id == 0) {
848 partial_results[group_id] = local_data[0];
849 }
850 }
851 "#;
852
853 OpenCLKernel {
854 name: "expectation_value".to_string(),
855 source: source.to_string(),
856 build_options: self.get_build_options(),
857 local_memory_usage: self.config.work_group_size * 8, work_group_size: self.config.work_group_size,
859 }
860 }
861
862 fn get_build_options(&self) -> String {
864 let mut options = Vec::new();
865
866 match self.config.optimization_level {
867 OptimizationLevel::None => options.push("-O0"),
868 OptimizationLevel::Basic => options.push("-O1"),
869 OptimizationLevel::Standard => options.push("-O2"),
870 OptimizationLevel::Aggressive => options.push("-O3"),
871 }
872
873 options.push("-cl-mad-enable");
875 options.push("-cl-fast-relaxed-math");
876
877 if let Some(device) = &self.device {
879 if device.supports_double {
880 options.push("-cl-fp64");
881 }
882 }
883
884 options.join(" ")
885 }
886
887 pub fn create_buffer(&mut self, name: &str, size: usize, flags: MemoryFlags) -> Result<()> {
889 if size > self.config.max_buffer_size {
890 return Err(SimulatorError::MemoryError(format!(
891 "Buffer size {} exceeds maximum {}",
892 size, self.config.max_buffer_size
893 )));
894 }
895
896 let buffer = OpenCLBuffer {
897 buffer_id: self.buffers.len(),
898 size,
899 flags,
900 host_data: Some(vec![0u8; size]),
901 };
902
903 self.buffers.insert(name.to_string(), buffer);
904 self.stats.gpu_memory_usage += size as u64;
905
906 Ok(())
907 }
908
909 pub fn execute_kernel(
911 &mut self,
912 kernel_name: &str,
913 global_work_size: &[usize],
914 local_work_size: Option<&[usize]>,
915 args: &[KernelArg],
916 ) -> Result<f64> {
917 let start_time = std::time::Instant::now();
918
919 if !self.kernels.contains_key(kernel_name) {
920 return Err(SimulatorError::InvalidInput(format!(
921 "Kernel {} not found",
922 kernel_name
923 )));
924 }
925
926 let execution_time = self.simulate_kernel_execution(kernel_name, global_work_size, args)?;
928
929 let total_time = start_time.elapsed().as_secs_f64() * 1000.0;
930 self.stats.update_kernel_execution(total_time);
931
932 match kernel_name {
933 "single_qubit_gate" | "two_qubit_gate" => {
934 self.stats.gate_operations += 1;
935 }
936 "state_vector_ops" | "normalize_state" | "compute_probabilities" => {
937 self.stats.state_vector_operations += 1;
938 }
939 _ => {}
940 }
941
942 Ok(execution_time)
943 }
944
945 fn simulate_kernel_execution(
947 &mut self,
948 kernel_name: &str,
949 global_work_size: &[usize],
950 _args: &[KernelArg],
951 ) -> Result<f64> {
952 let total_work_items: usize = global_work_size.iter().product();
953
954 let device = self.device.as_ref().unwrap();
956 let work_groups =
957 (total_work_items + self.config.work_group_size - 1) / self.config.work_group_size;
958 let parallel_work_groups = device.compute_units as usize;
959
960 let execution_cycles = (work_groups + parallel_work_groups - 1) / parallel_work_groups;
961
962 let base_time_per_cycle = match kernel_name {
964 "single_qubit_gate" => 1.0,
965 "two_qubit_gate" => 2.5,
966 "state_vector_ops" => 0.5,
967 "measurement" => 1.5,
968 "expectation_value" => 2.0,
969 _ => 1.0,
970 };
971
972 let execution_time = execution_cycles as f64 * base_time_per_cycle;
973
974 let variation = fastrand::f64() * 0.2 + 0.9; Ok(execution_time * variation)
977 }
978
979 pub fn apply_single_qubit_gate_opencl(
981 &mut self,
982 gate_matrix: &[Complex64; 4],
983 target_qubit: usize,
984 num_qubits: usize,
985 ) -> Result<f64> {
986 let mut gate_real = [0.0; 8];
988 for (i, &complex_val) in gate_matrix.iter().enumerate() {
989 gate_real[i * 2] = complex_val.re;
990 gate_real[i * 2 + 1] = complex_val.im;
991 }
992
993 let total_states = 1 << num_qubits;
994 let global_work_size = vec![total_states / 2];
995
996 let args = vec![
997 KernelArg::Buffer("state".to_string()),
998 KernelArg::ConstantBuffer("gate_matrix".to_string()),
999 KernelArg::Int(target_qubit as i32),
1000 KernelArg::Int(num_qubits as i32),
1001 ];
1002
1003 self.execute_kernel("single_qubit_gate", &global_work_size, None, &args)
1004 }
1005
1006 pub fn apply_two_qubit_gate_opencl(
1008 &mut self,
1009 gate_matrix: &[Complex64; 16],
1010 control_qubit: usize,
1011 target_qubit: usize,
1012 num_qubits: usize,
1013 ) -> Result<f64> {
1014 let mut gate_real = [0.0; 32];
1016 for (i, &complex_val) in gate_matrix.iter().enumerate() {
1017 gate_real[i * 2] = complex_val.re;
1018 gate_real[i * 2 + 1] = complex_val.im;
1019 }
1020
1021 let total_states = 1 << num_qubits;
1022 let global_work_size = vec![total_states / 4];
1023
1024 let args = vec![
1025 KernelArg::Buffer("state".to_string()),
1026 KernelArg::ConstantBuffer("gate_matrix".to_string()),
1027 KernelArg::Int(control_qubit as i32),
1028 KernelArg::Int(target_qubit as i32),
1029 KernelArg::Int(num_qubits as i32),
1030 ];
1031
1032 self.execute_kernel("two_qubit_gate", &global_work_size, None, &args)
1033 }
1034
1035 pub fn compute_expectation_value_opencl(
1037 &mut self,
1038 pauli_string: u32,
1039 num_qubits: usize,
1040 ) -> Result<(f64, f64)> {
1041 let total_states = 1 << num_qubits;
1042 let global_work_size = vec![total_states];
1043
1044 let args = vec![
1045 KernelArg::Buffer("state".to_string()),
1046 KernelArg::Buffer("partial_results".to_string()),
1047 KernelArg::LocalMemory(self.config.work_group_size * 8),
1048 KernelArg::Int(pauli_string as i32),
1049 KernelArg::Int(num_qubits as i32),
1050 ];
1051
1052 let execution_time = self.execute_kernel(
1053 "expectation_value",
1054 &global_work_size,
1055 Some(&[self.config.work_group_size]),
1056 &args,
1057 )?;
1058
1059 let expectation_value = fastrand::f64() * 2.0 - 1.0; Ok((expectation_value, execution_time))
1063 }
1064
1065 pub fn get_device_info(&self) -> Option<&OpenCLDevice> {
1067 self.device.as_ref()
1068 }
1069
1070 pub fn get_stats(&self) -> &OpenCLStats {
1072 &self.stats
1073 }
1074
1075 pub fn reset_stats(&mut self) {
1077 self.stats = OpenCLStats::default();
1078 }
1079
1080 pub fn is_opencl_available(&self) -> bool {
1082 self.context.is_some() && self.device.is_some()
1083 }
1084
1085 pub fn fallback_to_cpu(&mut self, num_qubits: usize) -> Result<()> {
1087 if self.config.enable_cpu_fallback {
1088 self.cpu_fallback = Some(StateVectorSimulator::new());
1089 self.stats.cpu_fallback_count += 1;
1090 Ok(())
1091 } else {
1092 Err(SimulatorError::OperationNotSupported(
1093 "CPU fallback disabled".to_string(),
1094 ))
1095 }
1096 }
1097}
1098
1099#[derive(Debug, Clone)]
1101pub enum KernelArg {
1102 Buffer(String),
1103 ConstantBuffer(String),
1104 Int(i32),
1105 Float(f32),
1106 Double(f64),
1107 LocalMemory(usize),
1108}
1109
1110pub fn benchmark_amd_opencl_backend() -> Result<HashMap<String, f64>> {
1112 let mut results = HashMap::new();
1113
1114 let configs = vec![
1116 OpenCLConfig {
1117 work_group_size: 64,
1118 optimization_level: OptimizationLevel::Standard,
1119 ..Default::default()
1120 },
1121 OpenCLConfig {
1122 work_group_size: 128,
1123 optimization_level: OptimizationLevel::Aggressive,
1124 ..Default::default()
1125 },
1126 OpenCLConfig {
1127 work_group_size: 256,
1128 optimization_level: OptimizationLevel::Aggressive,
1129 ..Default::default()
1130 },
1131 ];
1132
1133 for (i, config) in configs.into_iter().enumerate() {
1134 let start = std::time::Instant::now();
1135
1136 let mut simulator = AMDOpenCLSimulator::new(config)?;
1137
1138 let single_qubit_matrix = [
1140 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1141 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1142 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1143 Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
1144 ];
1145
1146 for num_qubits in [10, 15, 20] {
1147 simulator.create_buffer("state", (1 << num_qubits) * 16, MemoryFlags::ReadWrite)?;
1148
1149 for qubit in 0..num_qubits.min(5) {
1150 let _time = simulator.apply_single_qubit_gate_opencl(
1151 &single_qubit_matrix,
1152 qubit,
1153 num_qubits,
1154 )?;
1155 }
1156 }
1157
1158 let cnot_matrix = [
1160 Complex64::new(1.0, 0.0),
1161 Complex64::new(0.0, 0.0),
1162 Complex64::new(0.0, 0.0),
1163 Complex64::new(0.0, 0.0),
1164 Complex64::new(0.0, 0.0),
1165 Complex64::new(1.0, 0.0),
1166 Complex64::new(0.0, 0.0),
1167 Complex64::new(0.0, 0.0),
1168 Complex64::new(0.0, 0.0),
1169 Complex64::new(0.0, 0.0),
1170 Complex64::new(0.0, 0.0),
1171 Complex64::new(1.0, 0.0),
1172 Complex64::new(0.0, 0.0),
1173 Complex64::new(0.0, 0.0),
1174 Complex64::new(1.0, 0.0),
1175 Complex64::new(0.0, 0.0),
1176 ];
1177
1178 for num_qubits in [10usize, 15, 20] {
1179 for pair in 0..num_qubits.saturating_sub(1).min(3) {
1180 let _time = simulator.apply_two_qubit_gate_opencl(
1181 &cnot_matrix,
1182 pair,
1183 pair + 1,
1184 num_qubits,
1185 )?;
1186 }
1187 }
1188
1189 for num_qubits in [10, 15, 20] {
1191 let _result = simulator.compute_expectation_value_opencl(0b1010, num_qubits)?;
1192 }
1193
1194 let time = start.elapsed().as_secs_f64() * 1000.0;
1195 results.insert(format!("config_{}", i), time);
1196
1197 let stats = simulator.get_stats();
1199 results.insert(
1200 format!("config_{}_gate_ops", i),
1201 stats.gate_operations as f64,
1202 );
1203 results.insert(
1204 format!("config_{}_avg_kernel_time", i),
1205 stats.avg_kernel_time,
1206 );
1207 results.insert(
1208 format!("config_{}_gpu_utilization", i),
1209 stats.gpu_utilization,
1210 );
1211 }
1212
1213 Ok(results)
1214}
1215
1216#[cfg(test)]
1217mod tests {
1218 use super::*;
1219 use approx::assert_abs_diff_eq;
1220
1221 #[test]
1222 fn test_opencl_simulator_creation() {
1223 let config = OpenCLConfig::default();
1224 let simulator = AMDOpenCLSimulator::new(config);
1225 assert!(simulator.is_ok());
1226 }
1227
1228 #[test]
1229 fn test_platform_discovery() {
1230 let config = OpenCLConfig::default();
1231 let simulator = AMDOpenCLSimulator::new(config).unwrap();
1232 let platforms = simulator.discover_platforms().unwrap();
1233
1234 assert!(!platforms.is_empty());
1235 assert!(platforms
1236 .iter()
1237 .any(|p| p.vendor.contains("Advanced Micro Devices")));
1238 }
1239
1240 #[test]
1241 fn test_device_discovery() {
1242 let config = OpenCLConfig::default();
1243 let simulator = AMDOpenCLSimulator::new(config).unwrap();
1244 let devices = simulator.discover_devices().unwrap();
1245
1246 assert!(!devices.is_empty());
1247 assert!(devices
1248 .iter()
1249 .any(|d| d.device_type == OpenCLDeviceType::GPU));
1250 }
1251
1252 #[test]
1253 fn test_kernel_creation() {
1254 let config = OpenCLConfig::default();
1255 let simulator = AMDOpenCLSimulator::new(config).unwrap();
1256
1257 assert!(simulator.kernels.contains_key("single_qubit_gate"));
1258 assert!(simulator.kernels.contains_key("two_qubit_gate"));
1259 assert!(simulator.kernels.contains_key("state_vector_ops"));
1260 assert!(simulator.kernels.contains_key("measurement"));
1261 assert!(simulator.kernels.contains_key("expectation_value"));
1262 }
1263
1264 #[test]
1265 fn test_buffer_creation() {
1266 let config = OpenCLConfig::default();
1267 let mut simulator = AMDOpenCLSimulator::new(config).unwrap();
1268
1269 let result = simulator.create_buffer("test_buffer", 1024, MemoryFlags::ReadWrite);
1270 assert!(result.is_ok());
1271 assert!(simulator.buffers.contains_key("test_buffer"));
1272 assert_eq!(simulator.stats.gpu_memory_usage, 1024);
1273 }
1274
1275 #[test]
1276 fn test_buffer_size_limit() {
1277 let config = OpenCLConfig {
1278 max_buffer_size: 512,
1279 ..Default::default()
1280 };
1281 let mut simulator = AMDOpenCLSimulator::new(config).unwrap();
1282
1283 let result = simulator.create_buffer("large_buffer", 1024, MemoryFlags::ReadWrite);
1284 assert!(result.is_err());
1285 }
1286
1287 #[test]
1288 fn test_kernel_execution() {
1289 let config = OpenCLConfig::default();
1290 let mut simulator = AMDOpenCLSimulator::new(config).unwrap();
1291
1292 let global_work_size = vec![256];
1293 let args = vec![
1294 KernelArg::Buffer("state".to_string()),
1295 KernelArg::Int(0),
1296 KernelArg::Int(8),
1297 ];
1298
1299 let result = simulator.execute_kernel("single_qubit_gate", &global_work_size, None, &args);
1300 assert!(result.is_ok());
1301
1302 let execution_time = result.unwrap();
1303 assert!(execution_time > 0.0);
1304 }
1305
1306 #[test]
1307 fn test_single_qubit_gate_application() {
1308 let config = OpenCLConfig::default();
1309 let mut simulator = AMDOpenCLSimulator::new(config).unwrap();
1310
1311 let hadamard_matrix = [
1312 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1313 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1314 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1315 Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
1316 ];
1317
1318 simulator
1319 .create_buffer("state", 1024 * 16, MemoryFlags::ReadWrite)
1320 .unwrap();
1321
1322 let result = simulator.apply_single_qubit_gate_opencl(&hadamard_matrix, 0, 8);
1323 assert!(result.is_ok());
1324
1325 let execution_time = result.unwrap();
1326 assert!(execution_time > 0.0);
1327 }
1328
1329 #[test]
1330 fn test_two_qubit_gate_application() {
1331 let config = OpenCLConfig::default();
1332 let mut simulator = AMDOpenCLSimulator::new(config).unwrap();
1333
1334 let cnot_matrix = [
1335 Complex64::new(1.0, 0.0),
1336 Complex64::new(0.0, 0.0),
1337 Complex64::new(0.0, 0.0),
1338 Complex64::new(0.0, 0.0),
1339 Complex64::new(0.0, 0.0),
1340 Complex64::new(1.0, 0.0),
1341 Complex64::new(0.0, 0.0),
1342 Complex64::new(0.0, 0.0),
1343 Complex64::new(0.0, 0.0),
1344 Complex64::new(0.0, 0.0),
1345 Complex64::new(0.0, 0.0),
1346 Complex64::new(1.0, 0.0),
1347 Complex64::new(0.0, 0.0),
1348 Complex64::new(0.0, 0.0),
1349 Complex64::new(1.0, 0.0),
1350 Complex64::new(0.0, 0.0),
1351 ];
1352
1353 simulator
1354 .create_buffer("state", 1024 * 16, MemoryFlags::ReadWrite)
1355 .unwrap();
1356
1357 let result = simulator.apply_two_qubit_gate_opencl(&cnot_matrix, 0, 1, 8);
1358 assert!(result.is_ok());
1359
1360 let execution_time = result.unwrap();
1361 assert!(execution_time > 0.0);
1362 }
1363
1364 #[test]
1365 fn test_expectation_value_computation() {
1366 let config = OpenCLConfig::default();
1367 let mut simulator = AMDOpenCLSimulator::new(config).unwrap();
1368
1369 simulator
1370 .create_buffer("state", 1024 * 16, MemoryFlags::ReadWrite)
1371 .unwrap();
1372 simulator
1373 .create_buffer("partial_results", 64 * 8, MemoryFlags::ReadWrite)
1374 .unwrap();
1375
1376 let result = simulator.compute_expectation_value_opencl(0b1010, 8);
1377 assert!(result.is_ok());
1378
1379 let (expectation, execution_time) = result.unwrap();
1380 assert!(expectation >= -1.0 && expectation <= 1.0);
1381 assert!(execution_time > 0.0);
1382 }
1383
1384 #[test]
1385 fn test_build_options() {
1386 let config = OpenCLConfig {
1387 optimization_level: OptimizationLevel::Aggressive,
1388 ..Default::default()
1389 };
1390 let simulator = AMDOpenCLSimulator::new(config).unwrap();
1391
1392 let build_options = simulator.get_build_options();
1393 assert!(build_options.contains("-O3"));
1394 assert!(build_options.contains("-cl-mad-enable"));
1395 assert!(build_options.contains("-cl-fast-relaxed-math"));
1396 }
1397
1398 #[test]
1399 fn test_stats_update() {
1400 let config = OpenCLConfig::default();
1401 let mut simulator = AMDOpenCLSimulator::new(config).unwrap();
1402
1403 simulator.stats.update_kernel_execution(10.0);
1404 simulator.stats.update_kernel_execution(20.0);
1405
1406 assert_eq!(simulator.stats.total_kernel_executions, 2);
1407 assert_abs_diff_eq!(simulator.stats.total_execution_time, 30.0, epsilon = 1e-10);
1408 assert_abs_diff_eq!(simulator.stats.avg_kernel_time, 15.0, epsilon = 1e-10);
1409 }
1410
1411 #[test]
1412 fn test_performance_metrics() {
1413 let config = OpenCLConfig::default();
1414 let mut simulator = AMDOpenCLSimulator::new(config).unwrap();
1415
1416 simulator.stats.total_kernel_executions = 100;
1417 simulator.stats.total_execution_time = 1000.0; simulator.stats.gpu_memory_usage = 1000000000; simulator.stats.memory_transfer_time = 100.0; simulator.stats.gpu_utilization = 85.0;
1421
1422 let metrics = simulator.stats.get_performance_metrics();
1423
1424 assert!(metrics.contains_key("kernel_executions_per_second"));
1425 assert!(metrics.contains_key("memory_bandwidth_gb_s"));
1426 assert!(metrics.contains_key("gpu_efficiency"));
1427
1428 assert_abs_diff_eq!(
1429 metrics["kernel_executions_per_second"],
1430 100.0,
1431 epsilon = 1e-10
1432 );
1433 assert_abs_diff_eq!(metrics["gpu_efficiency"], 0.85, epsilon = 1e-10);
1434 }
1435
1436 #[test]
1437 fn test_cpu_fallback() {
1438 let config = OpenCLConfig {
1439 enable_cpu_fallback: true,
1440 ..Default::default()
1441 };
1442 let mut simulator = AMDOpenCLSimulator::new(config).unwrap();
1443
1444 let result = simulator.fallback_to_cpu(10);
1445 assert!(result.is_ok());
1446 assert_eq!(simulator.stats.cpu_fallback_count, 1);
1447 assert!(simulator.cpu_fallback.is_some());
1448 }
1449
1450 #[test]
1451 fn test_device_selection() {
1452 let config = OpenCLConfig {
1453 preferred_device_type: OpenCLDeviceType::GPU,
1454 ..Default::default()
1455 };
1456 let simulator = AMDOpenCLSimulator::new(config).unwrap();
1457
1458 let device_info = simulator.get_device_info().unwrap();
1459 assert_eq!(device_info.device_type, OpenCLDeviceType::GPU);
1460 assert!(device_info.name.contains("Radeon"));
1461 assert_eq!(device_info.vendor, "Advanced Micro Devices, Inc.");
1462 }
1463}