quantrs2_sim/mixed_precision_impl/
simulator.rs

1//! Mixed-precision quantum simulator implementation.
2//!
3//! This module provides the main simulator class that automatically
4//! manages precision levels for optimal performance and accuracy.
5
6use crate::adaptive_gate_fusion::{FusedGateBlock, GateType, QuantumGate};
7use scirs2_core::random::prelude::*;
8use crate::error::{Result, SimulatorError};
9use crate::prelude::SciRS2Backend;
10use scirs2_core::ndarray::Array1;
11use scirs2_core::Complex64;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14
15use super::analysis::{PrecisionAnalysis, PrecisionAnalyzer};
16use super::config::{MixedPrecisionConfig, QuantumPrecision};
17use super::state_vector::MixedPrecisionStateVector;
18
19/// Mixed-precision quantum simulator
20pub struct MixedPrecisionSimulator {
21    /// Configuration
22    config: MixedPrecisionConfig,
23    /// Current state vector
24    state: Option<MixedPrecisionStateVector>,
25    /// Number of qubits
26    num_qubits: usize,
27    /// SciRS2 backend for advanced operations
28    #[cfg(feature = "advanced_math")]
29    backend: Option<SciRS2Backend>,
30    /// Performance statistics
31    stats: MixedPrecisionStats,
32    /// Precision analyzer
33    analyzer: PrecisionAnalyzer,
34}
35
36/// Performance statistics for mixed-precision simulation
37#[derive(Debug, Clone, Default, Serialize, Deserialize)]
38pub struct MixedPrecisionStats {
39    /// Total number of gates applied
40    pub total_gates: usize,
41    /// Number of precision adaptations
42    pub precision_adaptations: usize,
43    /// Total execution time in milliseconds
44    pub total_time_ms: f64,
45    /// Memory usage by precision level
46    pub memory_usage_by_precision: HashMap<QuantumPrecision, usize>,
47    /// Gate execution time by precision
48    pub gate_time_by_precision: HashMap<QuantumPrecision, f64>,
49    /// Error estimates by precision
50    pub error_estimates: HashMap<QuantumPrecision, f64>,
51}
52
53impl MixedPrecisionSimulator {
54    /// Create a new mixed-precision simulator
55    pub fn new(num_qubits: usize, config: MixedPrecisionConfig) -> Result<Self> {
56        config.validate()?;
57
58        let state = Some(MixedPrecisionStateVector::computational_basis(
59            num_qubits,
60            config.state_vector_precision,
61        ));
62
63        Ok(Self {
64            config,
65            state,
66            num_qubits,
67            #[cfg(feature = "advanced_math")]
68            backend: None,
69            stats: MixedPrecisionStats::default(),
70            analyzer: PrecisionAnalyzer::new(),
71        })
72    }
73
74    /// Initialize with SciRS2 backend
75    #[cfg(feature = "advanced_math")]
76    pub fn with_backend(mut self) -> Result<Self> {
77        self.backend = Some(SciRS2Backend::new());
78        Ok(self)
79    }
80
81    /// Apply a quantum gate with automatic precision selection
82    pub fn apply_gate(&mut self, gate: &QuantumGate) -> Result<()> {
83        let start_time = std::time::Instant::now();
84
85        // Select optimal precision for this gate
86        let gate_precision = self.select_gate_precision(gate)?;
87
88        // Ensure state vector is in the correct precision
89        self.adapt_state_precision(gate_precision)?;
90
91        // Apply the gate
92        self.apply_gate_with_precision(gate, gate_precision)?;
93
94        // Update statistics
95        let execution_time = start_time.elapsed().as_millis() as f64;
96        self.stats.total_gates += 1;
97        self.stats.total_time_ms += execution_time;
98        *self
99            .stats
100            .gate_time_by_precision
101            .entry(gate_precision)
102            .or_insert(0.0) += execution_time;
103
104        Ok(())
105    }
106
107    /// Apply multiple gates as a fused block
108    pub fn apply_fused_block(&mut self, block: &FusedGateBlock) -> Result<()> {
109        let optimal_precision = self.select_block_precision(block)?;
110        self.adapt_state_precision(optimal_precision)?;
111
112        // Apply each gate in the block
113        for gate in &block.gates {
114            self.apply_gate_with_precision(gate, optimal_precision)?;
115        }
116
117        Ok(())
118    }
119
120    /// Measure a qubit and return the result
121    pub fn measure_qubit(&mut self, qubit: usize) -> Result<bool> {
122        if qubit >= self.num_qubits {
123            return Err(SimulatorError::InvalidInput(format!(
124                "Qubit {} out of range for {}-qubit system",
125                qubit, self.num_qubits
126            )));
127        }
128
129        // Use measurement precision for this operation
130        self.adapt_state_precision(self.config.measurement_precision)?;
131
132        let state = self.state.as_ref().unwrap();
133
134        // Calculate probability of measuring |1⟩
135        let mut prob_one = 0.0;
136        let mask = 1 << qubit;
137        for i in 0..state.len() {
138            if i & mask != 0 {
139                prob_one += state.probability(i)?;
140            }
141        }
142
143        // Simulate random measurement
144        let result = thread_rng().gen::<f64>() < prob_one;
145
146        // Collapse the state vector
147        self.collapse_state(qubit, result)?;
148
149        Ok(result)
150    }
151
152    /// Measure all qubits and return the bit string
153    pub fn measure_all(&mut self) -> Result<Vec<bool>> {
154        let mut results = Vec::new();
155        for qubit in 0..self.num_qubits {
156            results.push(self.measure_qubit(qubit)?);
157        }
158        Ok(results)
159    }
160
161    /// Get the current state vector
162    pub fn get_state(&self) -> Option<&MixedPrecisionStateVector> {
163        self.state.as_ref()
164    }
165
166    /// Calculate expectation value of a Pauli operator
167    pub fn expectation_value(&self, pauli_string: &str) -> Result<f64> {
168        if pauli_string.len() != self.num_qubits {
169            return Err(SimulatorError::InvalidInput(
170                "Pauli string length must match number of qubits".to_string(),
171            ));
172        }
173
174        let state = self.state.as_ref().unwrap();
175        let mut expectation = 0.0;
176
177        for i in 0..state.len() {
178            let mut sign = 1.0;
179            let mut amplitude = state.amplitude(i)?;
180
181            // Apply Pauli operators
182            for (qubit, pauli) in pauli_string.chars().enumerate() {
183                match pauli {
184                    'I' => {} // Identity - no change
185                    'X' => {
186                        // Flip bit
187                        let flipped = i ^ (1 << qubit);
188                        amplitude = state.amplitude(flipped)?;
189                    }
190                    'Y' => {
191                        // Flip bit and apply phase
192                        if i & (1 << qubit) != 0 {
193                            sign *= -1.0;
194                        }
195                        amplitude *= Complex64::new(0.0, sign);
196                    }
197                    'Z' => {
198                        // Apply phase
199                        if i & (1 << qubit) != 0 {
200                            sign *= -1.0;
201                        }
202                    }
203                    _ => {
204                        return Err(SimulatorError::InvalidInput(format!(
205                            "Invalid Pauli operator: {}",
206                            pauli
207                        )))
208                    }
209                }
210            }
211
212            expectation += (amplitude.conj() * amplitude * sign).re;
213        }
214
215        Ok(expectation)
216    }
217
218    /// Run precision analysis
219    pub fn analyze_precision(&mut self) -> Result<PrecisionAnalysis> {
220        Ok(self
221            .analyzer
222            .analyze_for_tolerance(self.config.error_tolerance))
223    }
224
225    /// Get performance statistics
226    pub fn get_stats(&self) -> &MixedPrecisionStats {
227        &self.stats
228    }
229
230    /// Reset the simulator to initial state
231    pub fn reset(&mut self) -> Result<()> {
232        self.state = Some(MixedPrecisionStateVector::computational_basis(
233            self.num_qubits,
234            self.config.state_vector_precision,
235        ));
236        self.stats = MixedPrecisionStats::default();
237        self.analyzer.reset();
238        Ok(())
239    }
240
241    /// Select optimal precision for a gate
242    fn select_gate_precision(&self, gate: &QuantumGate) -> Result<QuantumPrecision> {
243        if !self.config.adaptive_precision {
244            return Ok(self.config.gate_precision);
245        }
246
247        // Use heuristics to select precision based on gate type
248        let precision = match gate.gate_type {
249            GateType::PauliX
250            | GateType::PauliY
251            | GateType::PauliZ
252            | GateType::Hadamard
253            | GateType::Phase
254            | GateType::T
255            | GateType::RotationX
256            | GateType::RotationY
257            | GateType::RotationZ
258            | GateType::Identity => {
259                // Single qubit gates are usually numerically stable
260                if self.config.gate_precision == QuantumPrecision::Adaptive {
261                    QuantumPrecision::Single
262                } else {
263                    self.config.gate_precision
264                }
265            }
266            GateType::CNOT | GateType::CZ | GateType::SWAP | GateType::ISwap => {
267                // Two qubit gates may require higher precision
268                if self.config.gate_precision == QuantumPrecision::Adaptive {
269                    if self.num_qubits > self.config.large_system_threshold {
270                        QuantumPrecision::Single
271                    } else {
272                        QuantumPrecision::Double
273                    }
274                } else {
275                    self.config.gate_precision
276                }
277            }
278            GateType::Toffoli | GateType::Fredkin => {
279                // Multi-qubit gates typically need higher precision
280                if self.config.gate_precision == QuantumPrecision::Adaptive {
281                    QuantumPrecision::Double
282                } else {
283                    self.config.gate_precision
284                }
285            }
286            GateType::Custom(_) => {
287                // Custom gates - use conservative precision
288                QuantumPrecision::Double
289            }
290        };
291
292        Ok(precision)
293    }
294
295    /// Select optimal precision for a fused gate block
296    fn select_block_precision(&self, _block: &FusedGateBlock) -> Result<QuantumPrecision> {
297        // For fused blocks, use a conservative approach
298        if self.config.adaptive_precision {
299            Ok(QuantumPrecision::Single)
300        } else {
301            Ok(self.config.gate_precision)
302        }
303    }
304
305    /// Adapt state vector to the target precision
306    fn adapt_state_precision(&mut self, target_precision: QuantumPrecision) -> Result<()> {
307        if let Some(ref state) = self.state {
308            if state.precision() != target_precision {
309                let new_state = state.to_precision(target_precision)?;
310                self.state = Some(new_state);
311                self.stats.precision_adaptations += 1;
312            }
313        }
314        Ok(())
315    }
316
317    /// Apply a gate with a specific precision
318    fn apply_gate_with_precision(
319        &mut self,
320        gate: &QuantumGate,
321        _precision: QuantumPrecision,
322    ) -> Result<()> {
323        // This is a simplified implementation
324        // In practice, this would apply the actual gate operation
325        if let Some(ref mut state) = self.state {
326            // For demonstration, just record that we applied a gate
327            // Real implementation would perform matrix multiplication
328
329            // Update memory usage statistics
330            let memory_usage = state.memory_usage();
331            self.stats
332                .memory_usage_by_precision
333                .insert(state.precision(), memory_usage);
334        }
335
336        Ok(())
337    }
338
339    /// Collapse the state vector after measurement
340    fn collapse_state(&mut self, qubit: usize, result: bool) -> Result<()> {
341        if let Some(ref mut state) = self.state {
342            let mask = 1 << qubit;
343            let mut norm_factor = 0.0;
344
345            // Calculate normalization factor
346            for i in 0..state.len() {
347                let bit_value = (i & mask) != 0;
348                if bit_value == result {
349                    norm_factor += state.probability(i)?;
350                }
351            }
352
353            if norm_factor == 0.0 {
354                return Err(SimulatorError::InvalidInput(
355                    "Invalid measurement result: zero probability".to_string(),
356                ));
357            }
358
359            norm_factor = norm_factor.sqrt();
360
361            // Update amplitudes
362            for i in 0..state.len() {
363                let bit_value = (i & mask) != 0;
364                if bit_value == result {
365                    let amplitude = state.amplitude(i)?;
366                    state.set_amplitude(i, amplitude / norm_factor)?;
367                } else {
368                    state.set_amplitude(i, Complex64::new(0.0, 0.0))?;
369                }
370            }
371        }
372
373        Ok(())
374    }
375}
376
377impl MixedPrecisionStats {
378    /// Calculate average gate time
379    pub fn average_gate_time(&self) -> f64 {
380        if self.total_gates > 0 {
381            self.total_time_ms / self.total_gates as f64
382        } else {
383            0.0
384        }
385    }
386
387    /// Get total memory usage across all precisions
388    pub fn total_memory_usage(&self) -> usize {
389        self.memory_usage_by_precision.values().sum()
390    }
391
392    /// Get adaptation rate (adaptations per gate)
393    pub fn adaptation_rate(&self) -> f64 {
394        if self.total_gates > 0 {
395            self.precision_adaptations as f64 / self.total_gates as f64
396        } else {
397            0.0
398        }
399    }
400
401    /// Get performance summary
402    pub fn summary(&self) -> String {
403        format!(
404            "Gates: {}, Adaptations: {}, Avg Time: {:.2}ms, Total Memory: {}MB",
405            self.total_gates,
406            self.precision_adaptations,
407            self.average_gate_time(),
408            self.total_memory_usage() / (1024 * 1024)
409        )
410    }
411}
412
413/// Utility functions for mixed precision simulation
414pub mod utils {
415    use super::*;
416
417    /// Convert a regular state vector to mixed precision
418    pub fn convert_state_vector(
419        state: &Array1<Complex64>,
420        precision: QuantumPrecision,
421    ) -> Result<MixedPrecisionStateVector> {
422        let mut mp_state = MixedPrecisionStateVector::new(state.len(), precision);
423        for (i, &amplitude) in state.iter().enumerate() {
424            mp_state.set_amplitude(i, amplitude)?;
425        }
426        Ok(mp_state)
427    }
428
429    /// Extract a regular state vector from mixed precision
430    pub fn extract_state_vector(mp_state: &MixedPrecisionStateVector) -> Result<Array1<Complex64>> {
431        let mut state = Array1::zeros(mp_state.len());
432        for i in 0..mp_state.len() {
433            state[i] = mp_state.amplitude(i)?;
434        }
435        Ok(state)
436    }
437
438    /// Calculate memory savings compared to double precision
439    pub fn memory_savings(config: &MixedPrecisionConfig, num_qubits: usize) -> f64 {
440        let double_precision_size = (1 << num_qubits) * std::mem::size_of::<Complex64>();
441        let mixed_precision_size = config.estimate_memory_usage(num_qubits);
442        1.0 - (mixed_precision_size as f64 / double_precision_size as f64)
443    }
444
445    /// Estimate performance improvement factor
446    pub fn performance_improvement_factor(precision: QuantumPrecision) -> f64 {
447        1.0 / precision.computation_factor()
448    }
449}